
Suplemento de la Revista Mexicana de Fı́sica3 0308006 (2022) 1–6

Proton charge radius from a dispersive analysis
of the latest space-likee-p scattering data
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We present a dispersion theoretical analysis of recent data from electron-proton scattering. This allows for a high-precision extraction of the
electric and magnetic radius of the proton,rE = (0.839±0.002+0.002

−0.003) fm andrM = (0.846±0.001+0.001
−0.005) fm, where the first error refers

to the statistical type estimated from the bootstrap method, and the second one refers to the systematic uncertainty related to the underlying
spectral functions.
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1. Introduction

Nucleons and electrons are fundamental blocks that make up
everyday matter with the former accounting for essentially
all of its mass. Measurements of nucleon structure have been
one of the most important tasks since the early days of par-
ticle physics. The first measurement on the electric radius
of the proton,rE , from the muonic hydrogen, which led to
the small radius,rP

E = 0.84184(67) fm, with unprecedented
precision but differing by 5σ from the CODATA value at that
time, was reported by Ref. [1] in 2010. This glaring dis-
crepancy became well known as the “proton radius puzzle”
and has ushered a renaissance in the interest in the electro-
magnetic structure of nucleon in the last decade (see,e.g.,
Refs. [2–4] for recent reviews).

The proton charge radius can be accessed experimentally
through the proton electromagnetic form factors which are
embedded in the elastic lepton-proton (ep or µp) scattering
but also in the Lamb shift of electronic or muonic hydrogen
as performed in Ref. [1]. Recently, new electron-proton scat-
tering data at low momentum transfer were reported by the
Jefferson Laboratory (PRad collaboration) [5], which is the
lowest momentum transfer measurement until now (achieved
around10−4 GeV2) and has high precision. To extract the
proton charge radius, one must parameterize the nucleon
form factors with some model and fit it to the scattering data.
The parametrization framework inspired by the dispersion
theory contains all the physical knowledge we have on the
nucleon form factors so far, specifically, it includes all con-
straints from unitarity, analyticity and crossing symmetry. In
addition, it is also consistent with the strictures from pertur-
bative QCD at very large momentum transfer (see Ref. [6]
for a recent review). In this work, we implement the disper-
sion theoretical analysis on the latest PRad data together with
the precise data from the A1 collaboration at the Mainz Mi-
crotron (MAMI) [8] and some world data of the nucleon form
factors in the space-like region. With a detailed investigation

on the uncertainties from these experimental data and the un-
derlying formalism, this allows for a high-precision determi-
nation of both the electric and the magnetic form factors and
the corresponding charge and magnetic radius,rE andrM ,
respectively.

2. Formalism

In this section, we collect all necessary theoretical tools, for
details see Ref. [6]. With the one-photon-exchange assump-
tion, the differential cross section for electron-proton (ep)
scattering can be expressed through the electric (GE) and
magnetic (GM ) Sachs form factors as
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where τ = −t/4m2
N , with t the four-momentum trans-

fer squared andmN the nucleon mass.ε = [1 + 2(1 +
τ) tan2(θ/2)]−1 is the virtual photon polarization, andθ is
the scattering angle of the outgoing electron in the laboratory
frame. In addition,(dσ/dΩ)Mott is the Mott cross section,
which corresponds to scattering off a point-like proton. In
the literature, the nucleon form factors are often displayed as
a function ofQ2 sinceQ2 ≡ −t > 0 is spacelike in elasticep
scattering. When analyzing the measured cross section data,
one usually needs to go beyond the one-photon assumption
and consider the two-photon-exchange corrections to Eq. (1).
Here we adopt the same convention as used in Refs. [7]. Note
that the electric and magnetic radius of the proton are defined
as
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. (2)

For the theoretical analysis, it is convenient to work with
the Dirac (F1) and Pauli (F2) form factors (FFs), which are
related to the Sachs FFs by the following linear combinations:

GE(t) = F1(t)− τF2(t) , GM (t) = F1(t) + F2(t) . (3)



2 YONG-HUI LIN

They are normalized att = 0, which gives the charge and
anomalous magnetic moment of the proton and the neutron,
as

F p
1 (0) = 1 , Fn

1 (0) = 0 ,

F p
2 (0) = κp , Fn

2 (0) = κn , (4)

with κp = 1.793 and κn = −1.913 in units of the nu-
clear magneton,µN = e/(2mp). When transforming to the
isospin basis, the Dirac and Pauli FFs of proton and neutron
will be decomposed into the isoscalar (s) and isovector (v)
parts,

F s
i =

1
2
(F p

i + Fn
i ) , F v

i =
1
2
(F p

i − Fn
i ) , (5)

wherei = 1, 2 .
The unsubtracted dispersion relations for the nucleon FFs

are given by

Fi(t) =
1
π

∞∫

t0

ImFi(t′)dt′

t′ − t
, i = 1, 2 , (6)

where t0 denotes the threshold of the lowest cut ofF (t).
t0 = 4M2

π (9M2
π) for the isovector (isoscalar) threshold,

with Mπ the charged pion mass. In our work, the spectral
functions are described by means of the spectral decomposi-
tion [9, 10] and the vector meson dominance (VMD) model,
see Ref. [6] for more details. Then the spectral functions can
be written as the form:

F s
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V =ω,φ,s1,s2,..

aV
i

m2
V − t

+ Fπρ
i (t) + F K̄K

i (t) ,
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+ F 2π
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with i = 1, 2. As shown in Eq. (7), the isoscalar spec-
tral functions contain two lowest poles,ω(782) andφ(1020)
mesons, and theπρ andK̄K continuum. The isovector spec-
tral functions consist of the two-pion continuum which is es-
timated from the Roy-Steiner analysis of the pion-nucleon
scattering [11] and is found to be a critical ingredient for the
nucleon form factors as claimed in Ref. [12]. Both isoscalar
and isovector spectral functions include some effective vec-
tor meson poles which contribute to the higher mass parts.
A cartoon of the resulting (isoscalar and isovector) spectral
functions is shown in Fig. 1.

With this dispersion-theoretical parametrization of the
nucleon FFs, we can fit to experimental cross sections and
nucleon FFs data. Note that the fit parameters in our frame-
work are the various vector meson residuaaV

i and the masses
of the effective vector mesonssi, vi (the masses ofω(782)
andφ(1020) are fixed at their physical values). In the fitting
procedure, we implement several constraints on those param-
eters that are refined from the physical knowledge we have
about the nucleon FFs. Firstly, we fulfill the normalization
conditions as given in Eq. (4). We also fix the squared neu-
tron charge radius at the recent high-precision determination
based on a chiral effective field theory analysis of electron-
deuteron scattering [13],

〈r2
n〉 = −0.105+0.005

−0.006 fm2 . (8)

Moreover, the residua ofω(782) and φ(1020)) are con-
strained within the range:0.5 GeV2 < aω

1 < 1 GeV2,
|aω

2 | < 0.5 GeV2 and |aφ
1 | < 2 GeV2, |aφ

2 | < 1 GeV2. All
other residua are bounded as|aV

i | < 5 GeV2 due to the
naturalness consideration for the couplings. And the masses
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FIGURE 1. Cartoon of the isoscalar (left) and isovector (right) spectral function in terms of continuum and (effective) vector meson poles.
The vertical dashed line separates the well-constrained low-mass region from the high-mass region which is parameterized by effective poles.

of the effective poles (s1, s2, . . . , v1, v2, . . .) are required to
be in the range of1 − 5 GeV. Finally, the FFs must satisfy
the superconvergence relations which are consistent with the
requirements of perturbative QCD at very large momentum
transfer,

∞∫

t0

ImFi(t)tndt = 0 , i = 1, 2 , (9)

with n = 0 for F1 andn = 0, 1 for F2.

Before going to the data fitting, let us briefly introduce
our fit strategy. The quality of the fits is measured by means
of two differentχ2 functions,χ2

1 andχ2
2, which are defined

as

χ2
1 =

∑

i

∑

k

(nkCi − C(ti, θi, ~p ))2

(σi + νi)2
, (10)

χ2
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i,j

∑

k

(nkCi − C(ti, θi, ~p ))[V −1]ij

× (nkCj − C(tj , θj , ~p )) , (11)

where Ci are the experimental data at the points(ti, θi)
and C(ti, θi, ~p ) is the theoretical value for a given FF
parametrization for the parameter values contained in~p. Note
that the dependence onθi is applied only to the differential
cross sections data. Moreover, thenk are normalization co-
efficients for the various data sets (labeled by the integerk
and only used in the fits to the differential cross section data
in the spacelike region), whileσi andνi are their statistical
and systematical errors, respectively. The covariance matrix
is Vij = σiσjδij + νiνj . In practice,χ2

2 is used for those ex-
perimental data where statistical and systematical errors are
given separately, otherwiseχ2

1 is taken. As done in Ref. [6,7]
the various constraints on the form factors are imposed in a
soft way. Theoretical errors will be calculated on the one
hand using the bootstrap method. On the other hand theoret-
ical errors are estimated by varying the number of effective
vector meson poles in the spectral functions. The first error
thus gives the uncertainty due to the fitting procedure and the
data while the second one reflects the accuracy of the spectral
functions underlying the dispersion-theoretical analysis (see
Ref. [6] for more details).

We are now in the position to analyze the full experimen-
tal data. To be specific, for the proton we fit to the cross sec-
tion data from PRad [5] and from MAMI-C [8] as well as to
the polarization transfer data on the FFs ratio from Jefferson

TABLE I. Data base used in the fits.

Data type range ofQ2 [GeV2] # of data

σ(E, θ), PRad 0.000215− 0.058 71

σ(E, θ), MAMI 0.00384− 0.977 1422

µP Gp
E/Gp

M , JLab 1.18− 8.49 16

Gn
E , world 0.14− 1.47 25

Gn
M , world 0.071− 10.0 23

Lab aboveQ2 = 1 GeV2, while only the FFs world data
are fitted for the neutron. The size of the data base and the
Q2-ranges we are fitting are listed in Tabla I. All references
for these data can be found in Ref. [6].

3. Results

As a first test of our parametrization of nucleon FFs, we only
fit to the latest PRad data [5]. In this fit, we vary the num-
ber of effective vector meson poles from two isoscalar plus
two isovector poles (2s+2v) to 5s+5v. Note that 2s+2v means
that it containsω and φ meson in isoscalar spectral func-
tions and two additional vector mesons in the isovector spec-
tral functions except those two-body continuum mentioned
above. We only fulfill two normalizations related to the pro-
ton in Eq. (4) and do not constrain the squared neutron charge
radius. It is found that the best fit is given by the configura-
tion of 2s+2v, and all other configurations that contain more
poles make the totalχ2 unchanged but the reducedχ2

increase.
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FIGURE 2. Best fit (solid red line) to theep cross section data from
PRad (upper panel) and MAMI (lower panel) including the two-
photon corrections. The red bands give the uncertainty due to the
bootstrap procedure. Systematical uncertainties are not shown.

FIGURE 3. Best fit to the proton form factor ratio data from JLab.
Note that the blue data (also shown forQ2 < 0.7 GeV2 in the inset)
are not fitted. For notations, see Fig. 2.

FIGURE 4. Best fit to the neutron electric form factor data. For
notations, see Fig. 2.

χ2/dof = 1.33 for our best fit, which is completely consis-
tent with the reducedχ2 obtained in Ref. [5]. The proton
radii calculated with that best FFs are given by

rE = (0.829± 0.012± 0.001) fm ,

rM = (0.843± 0.007+0.018
−0.012) fm , (12)

also consistent with the value,rE = (0.831 ± 0.007stat ±
0.012syst) fm, reported by Ref. [5]. For further discussion on
the comparison see Ref. [7].

Next, we move to the combined analysis of all space-like
data as listed in Table I. We search the best fit by varying the
configuration of spectral functions from 3s+3v to 8s+8v. The
best solution is found to be the 6s+4v configuration where
it contains 4 additional effective poles besidesω andφ me-
son in isoscalar sector and 4 effective poles in isovector sec-
tor. Also, all two-body continua are kept in the nucleon FFs.
The comparison between our best fit and experimental data
is shown in Fig. 2 for the cross section data from PRad and
MAMI, Fig. 3 for the proton FFs ratio from Jefferson Lab
(only data aboveQ2 = 1 GeV2 are fitted), Figs. 4 and 5
for the neutron electric and magnetic FFs word data together
with the error bands estimated from bootstrap sampling, re-
spectively. All these space-like data are described quite well
with the error bands of fits and error bar of data considered.

FIGURE 5. Best fit to the neutron magnetic form factor data. For
notations, see Fig. 2.
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FIGURE 6. Comparison of the proton radii extracted in this work
and other previous dispersion-theoretical extraction. Left y-axis
represents the date and author of the corresponding work, see
Ref. [6] for the relevant papers. The orange band shows the lat-
est radius extraction from the muonic hydrogen [14].

Now, it is time to consider the proton radius. We extract
the electric and magnetic radii of the proton from these fits,

rE = (0.839± 0.002+0.002
−0.003) fm ,

rM = (0.846± 0.001+0.001
−0.005) fm , (13)

where the first errors are estimated through the bootstrap
procedure and the second ones are obtained by the varia-
tion of spectral functions from 3s+3v to 8s+8v. In Fig. 6,
we compare our result with various dispersion-theoretical
extractions. Note that here we only list those dispersion-
theoretical analyses that include the two-pion continuum ex-
plicitly in their spectral functions. What can be clearly seen
in this figure is the agreement on the proton charge radius
among all these dispersion-theoretical determinations with
the uncertainties considered. They are in agreement with the
value measured from muonic hydrogen [14]. It is shown that
from the earliest analysis in 1976 to this work in 2021, the
dispersion-theoretical parametrization of nucleon FFs pro-
vides a consistent and robust proton charge radius and it gave
the small radius even before the muonic hydrogen measure-
ment.

FIGURE 7. Comparison of the proton radii extracted in this work and other recent papers. Lefty-axis represents the process from which the
proton radius is extracted and righty-axis shows the corresponding reference.

In Fig. 7, we compare our determination with recent ex-
perimental measurements.

Our results agree quite well with the current CODATA
value,rE = 0.8414(19) fm [15] (listed as the purple point).
One can find that both the latest measurements fromep scat-
tering and electronic hydrogen give the small proton charge
radius and are consistent with that from muonic hydrogen
within the margin of errors. Then, one can expect a consis-
tent picture for the proton charge radius appears to emerge as

claimed in Ref. [3].

4. Summary

In this work, we have presented the latest dispersion-
theoretical analysis of the proton form factors triggered by
the newep scattering measurement at very lowQ2 from the
PRad collaboration [5]. With the improved spectral functions
worked out in Refs. [6,7], we have analyzed these new data as
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well as the combination of the PRad and other recent space-
like data. Together with a detailed investigation on the theo-
retical uncertainties, we achieved a determination of the pro-
ton’s electric and magnetic radius with unprecedented pre-
cision, as given in Eq. (13). Our results show a consistent
value for the proton charge radius with the muonic hydrogen
measurements and are also in agreement with various earlier
dispersion-theoretical extractions.
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