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Leading isospin breaking effects in nucleon and∆ masses
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We present a lattice calculation of the leading corrections to the masses of nucleons and∆ resonances. These are obtained in QCD+QED at
1st order in the Isospin Breaking parametersαEM , the electromagnetic coupling, and(m̂d − m̂u)/ΛQCD, coming from the mass difference
betweenu andd quarks.
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1. Introduction

In this work the Leading Isospin Breaking Effects (LIBEs)
in the spectrum of nucleons and∆(1232) resonances are
investigated using the RM123 method [1-3]. Our calcula-
tion is done on the lattice, using a mixed action approach
with the twisted mass QCD (tmQCD) regularization over the
Nf = 2 + 1 + 1 European Twisted Mass Collaboration
(ETMC) gauge configurations [4]. A purely hadronic scheme
is adopted in order to set the scale, tune the counterterms and
extrapolate to the physical point. The results found in this
work are the following. The uncertainties are only statistical
and obtained using the jackknife resampling technique. We
obtain

Mn −Mp = 1.73(69) MeV,

and the Isospin Breaking (IB) mass splittings in the∆(1232)
quadruplet (see Table II).i

TABLE I. Our results for the masses of the4 lightest∆ resonances.

M (GeV)

∆− 1.251(40)

∆0 1.247(39)

∆+ 1.245(39)

∆++ 1.244(39)

TABLE II. Our results for the∆(1232) mass splittings.

∆M (GeV)

∆++ −∆+ -0.48(26)

∆++ −∆0 -2.06(38)

∆++ −∆− -4.76(55)

∆+ −∆0 -1.59(18)

∆+ −∆− -4.41(50)

∆− −∆0 2.85(35)

(∆+++∆−)−(∆++∆0) 2.41(51)

We also get a prediction for the masses of nucleons,

Mn = 0.961(20) GeV ,

Mp = 0.959(20) GeV ,

and of the∆ resonances (see Table I).
The paper is organized as follows. In Sec. 2 we review the

RM123 method and set our notation for the Isospin Breaking
Effects (IBEs). In Sec. 3 we discuss the systematic effects,
the tuning of counterterms and the extrapolations over the en-
sembles. Finally, in Sec. 4 we give our conclusions.

2. Leading IB effects on the lattice

At LO in IB we expand the path integral in the IB parameters
∆mud = (md − mu)/2 ande2, taking into accountO(e2)
counterterms from QED diagrams divergences [5]ii. In our
twisted mass Lattice QCD (tmLQCD) approach [3], we have
counterterms for both the physical and critical masses. The
Leading Isospin Breaking correction to the mass of an hadron
H is then:

∆MH =

(
e2∆̄ EM

+
∑

f

a∆mcr
f ∆̄C

f +
∑

f

a∆mf ∆̄M
f

)
MH , (1)

where the∆̄EM and∆̄x
f (x = C, M) (for a flavorf ) are the

slopes induced by the couplings in front of them: EM→ e2,
C → (critical mass), M→ (physical mass). At1st order
these are evaluated in isoQCD from the corrections∆̄x in the
euclidean correlators whose isoQCD ground state has mass
M

(0)
H . The mass slope’s effective curve is [3]iii :

∆̄xMH(t) = −∂t

[
∆̄xCH(t)/C

(0)
H (t)

]
, (2)

where∂tf(t) = f(t+1)−f(t) (in lattice units). In this work
we extract the mass slopes fitting these curves to a constant
in their plateaus.
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We can then write the LIBEs in terms of Feynman diagrams reading [3] for mesons and easily extending [1] for baryons.
For the latter we set a shorthand notation for the slopes∆̄xC

(i)
H ,iv wherex corresponds to the current insertion(s) andi =

1, 2, 3 is the quark propagator index. Whenx = M, C we insert the scalar or pseudoscalar current respectively on thei-th
quark leg, whilex = self comes from its electromagnetic self-energy. Whenx = exch we exchange a photon between
the 2 quarks different from thei-th one. We define the ratiosRH

x
i = −∂t[∆̄xC

(i)
H /C

(0)
H ] for x ∈ {M, C, self, exch} and

RH
loop
if = −∂t[∆̄xC

(if)
H /C

(0)
H ], where the latter comes from the exchange of a photon between thei-th quark with a quark

loop of flavorf (from the sea).
The LIBEs for nucleons then assume the following form:

∆Mn = −∆muRN
M
1 −∆mdRN

M
2 −∆mdRN

M
3 + ∆m(cr)

u RN
C
1 + ∆m

(cr)
d RN

C
2 + ∆m

(cr)
d RN

C
3

+ q2
uRN

self
1 + q2

dRN
self
2 + q2

dRN
self
3 + quqdRN

exch
3 + quqdRN

exch
2 + q2

dRN
exch
1

+
∑

f∈(sea)

qf

[
quRN

loop
1f + qdRN

loop
2f + qdRN

loop
3f

]
+ [isosymm. vac. pol. diag.], (3)

and∆Mp is found via the exchange symmetryu ↔ d. For the∆s we have:

∆M∆++ = −∆mu[R∆
M
1 +R∆

M
2 +R∆

M
3 ] + ∆m(cr)

u [R∆
C
1 +R∆

C
2 +R∆

C
3 ]

+ q2
u[R∆

self
1 +R∆

self
2 +R∆

self
3 +R∆

exch
3 +R∆

exch
2 +R∆

exch
1 ]

+
∑

f∈(sea)

qfqu

[
R∆

loop
1f +R∆

loop
2f +R∆

loop
3f

]
+ [isosymm. vac. pol. diag.] , (4)

3∆M∆+ = −∆mdR∆
M
1 −∆muR∆

M
2 −∆muR∆

M
3 + ∆m

(cr)
d R∆

C
1 + ∆m(cr)

u R∆
C
2

+ ∆m(cr)
u R∆

C
3 + q2

dR∆
self
1 + q2

uR∆
self
2 + q2

uR∆
self
3 + qdquR∆

exch
3 + qdquR∆

exch
2 + q2

uR∆
exch
1

+
∑

f∈(sea)

qf

[
qdR∆

loop
1f + quR∆

loop
2f + quR∆

loop
3f

]
+ [isosymm. vac. pol. diag.]

+ {(d, u, u) → (u, d, u)} + {(d, u, u) → (u, u, d)}, (5)

∆M∆− and∆M∆0 have the same form of∆M∆++ and∆M∆+ respectively, found via the flavor exchangeu ↔ d. It’s easy
to verify that at LO only2 of the4 ∆ mass splittings are independent. The IB correction toMΩ− is like ∆M∆++ , obtained
replacingu → s (and the∆ interpolator with theΩ’s).

3. Systematics, tuning and extrapolations

In this work we neglect the disconnected isosymmetric vac-
uum polarization diagrams [10]. We also work in the elec-
troquenched approximation [11], so that all the diagrams
with photons attached to quark loops vanish. We introduce
QED in a non-compact way [12], with the QEDL regulariza-
tion for the photon propagator [13]. The universal QED Fi-
nite Volume Effects (FVEs) in the hadronic spectrum [14-17]
are corrected for each ensemble, leaving only the structure-
dependent FVEs starting fromO(1/L3).

In tmQCD the presence of IB leads to counterterms to
both the critical and physical masses. Analogously to [3],
the former are tuned using the PCAC Ward Identity requir-
ing to preserve the maximal twist in isoQCD [18] also at
O(e2). For an observableO, the quarks masses physi-
cal point in isoQCD and QCD+QED is defined by the ra-
tios rs = [2(M2

K+ + M2
K0)− (M2

π+ + M2
π0)]/2M2

Ω− , r` =
(M2

π+ + M2
π0)/2M2

Ω− and rp = M2
K+/M2

Ω− , requiring
them to match their experimental values. As a consequence,
at the physical point their total IB corrections vanishes. We

impose the latter condition at fixed ensemble in order to
tune the countertermsa∆mf . This allows to evaluate (in the
full theory and for each ensemble) any observableO, whose
physical point is reached by contruction after the aforemen-
tioned extrapolation. The latter is done in separate steps, on
the slicers = r

(exp)
s of the hyper-surfaceO(rs, r`, L, a).

We extrapolate to the physical point,L → ∞, and
a → 0 v with global fits among the ensembles using phe-
nomenological ans̈atze inspired by LO ChPT [19-21]. The
previously mentioned massesMi are fitted among the ensem-
bles using the following functional forms:

Mi(L, r`, a) = Ai

(
1 + αEM

c
(i)
3

L3

+ c(i)
a a2 + c

(i)
` r` + c

(i)
3/2r

3/2
`

)
, (7)
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while for the IB mass splittings∆Mi we use a simple poly-
nomial ansatz:

∆Mi(L, r`, a)=Di

(
1+αEM

c
(i)
3

L3
+d(i)

a a2+d
(i)
` r`

)
. (8)

The coefficientsAi, c
(i)
a , ... andDi, d

(a)
i , ... are left as free

parameters of the fits. Given the maximal twist (and hence
theO(a) improvement), discretization effects start atO(a2),
while the∼ 1/L3 term accounts for the residual structure-
dependent QED FVEs in thea∆mf and the masses them-
selves. Higher orders in1/L and QCD FVEs are found to be
numerically negligible at our level of precision.

4. Conclusion

In this work we have computed on the lattice the LIBEs in the
spectrum of mesons and baryons, getting a prediction for the
masses and IB mass splittings of nucleons and the∆(1232)
resonances. In particular, we note that the full spectrum of
the∆(1232) quadruplet is not completely determined exper-
imentally yet, motivating its investigation. The values we
found are compatible within at most1.5σ with the exper-
imental predictions. This is so despite the approximations
introduced in the calculation, indicating that at our level of
precision the neglected diagrams are physically suppressed
as expected. Their neglection introduce nevertheless system-
atic effects which can be known only by direct evaluation,
and which we aim to include in a future work.

i. As we shall see, at Leading Order (LO) in IB the knowledge of
only 2 of them is sufficient to determine the others.

ii. Note that the fine structure constantα̂EM renormalizes at
higher orders [2], so that we can safely use the valueαEM =
e2/(4π) = 1/137.035999084 from [6].

iii. This formula holds in absence of backward signals, namely for
baryonic correlators with given parity [7,8], while for mesons
it gets slightly modified [3]

iv. The baryonic correlatorsCH are built from the interpolators of
[9].

v. In this work the lattice spacingsaβ(i) (β = 1.90, 1.95, 2.10,
see [4]) are set by theΩ− mass, extrapolatingaMΩ− among
the ensembles with the polynomial ansatz:

(aMΩ)i(L, r`) = aβ(i) M
(exp)
Ω

×
(
1 + cL

αEM

L3
+ c` r` + c

(2)
` r2

`

)
, (6)

and setting the extrapolated values equal toaβ(i)M
exp.
Ω− . The co-

efficientsaβ(i), cL, ... are free parameters of the fit.
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