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BLFQ calculations of the proton leading twist quark TMDs
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For hadron collisions, transverse-momentum-dependent parton distribution functions (TMD PDFs) are important quantities to connect theo-
retic calculations and experimental cross sections. Recently, basis light-front quantization (BLFQ) has become a powerful tool to investigate
the structures of the bound state. We present the first calculations within the BLFQ framework for the leading twist quark TMDs under a
trivial assumption of the gauge link. We compare our calculations with previous calculations via the PDF limit and evolve our results of the
unpolarized TMDs.
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1. Introduction

Via TMD factorization and evolution [1–3], transverse-
momentum-dependent parton distribution functions (TMD
PDFs) enter the cross-sections of the semi-inclusive deep-
inelastic-scattering (SIDIS) and Drell-Yan process. Being
an important subject, TMDs have been studied in many
models [5, 6, 17] and also lattice simulations [8, 9]. Much
progress has also been made on the experimental side to ex-
tract TMD PDFs from the experiment data, mainly focus-
ing on f1 [10, 11], f⊥1T [12, 13], g1T [14], h1 [13, 15] and
h⊥1T [16]. Our theoretical understandings of the behaviour of
TMDs have also reached a certain level [31,32].

Recently, as a promising non-perturbative framework to
calculate the internal structures of the bound state, basis light-
front quantization (BLFQ) has been employed to investigate
the physical electron [18], positronium [7], meson [19, 20]
and most importantly, hadron [21, 22, 33]. The basic idea of
BLFQ is to simultaneously get the mass spectrum and the
light-front wavefunction (LFWF) of the bound states within
a feasible computation time by diagonalizing the light-front
stationary Schr̈odinger equation.

We follow the study from [21,22] to present the first anal-
ysis of the leading twist quark TMD PDFs of the proton sys-
tem within the BLFQ framework. We also present some dis-
cussions and comparisons concerning our results.

2. BLFQ framework

In this section, we provide a brief introduction to the BLFQ
calculations of the hadron system within the leading, three-
quark, Fock sector truncation. In general, we start from a

certain Hamiltonian, which enters the light-front stationary
Schr̈odinger equation. Via basis function and truncation, we
then transform this equation into a standard matrix problem.
After getting the eigenvector we then reconstruct the light-
front wavefunction (LFWF), based on which we further cal-
culate observables like TMDs.

In this work, we diagonalize the following effective
Hamiltonian [22]

H ′
eff. = Heff. + H ′ , (1)
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HereV conf.
i,j is the confinement potential andV OGE

i,j is the one-
gluon-exchange. TheH ′ term is added here to facilitate the
factorization between the center of mass and intrinsic motion
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Here we use two-dimensional harmonic oscillators (2D
HO) as basis in the transverse direction and plane waves in
the longitudinal direction. As for the truncation, we intro-
duceNmax andK in the transverse and longitudinal direc-
tions respectively [22]. Thus we translate the eigenprob-
lem H ′

eff. |P, Λ〉 = M2 |P, Λ〉 into a standard matrix prob-
lem and finally get the light-front wavefunction (LFWF)
ψΛ

λ1λ2λ3
({xi, p

⊥
i }). HereM is the proton mass.
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3. Transverse-momentum dependent distribu-
tions

Transverse-momentum dependent distributions emerge from
the parameterization [23, 24] of the following TMD correla-
tors

Φ[Γ](P, S;x =
p+

P+
, p⊥) =

1
2

∫
dz−dz⊥

2(2π)3N0
eip·z

× 〈P, S| Ψ̄(0)W(0, z)ΓΨ(z) |P, S〉 |z+=0 , (4)

where color and flavor indexes and summation, if needed, are
implicit. For the leading twist (Γ = γ+, γ+γ5, iσj+γ5), the
parameterizations are

Φ[γ+](x, p⊥; P, S) = fe
1 −

εijpiSj

Me
f⊥e
1T , (5)
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The kinematic conventions we use are the same as those
in [18,25,26]:

P =
(

P+,
M

P+
, 0⊥

)
, (8)

(S+, S−, S⊥) =
(

S3P+

M
,
−S3M

P+
, S1, S2

)
, (9)

(S1, S2, S3) = (sin θ cos ϕ, sin θ sin ϕ, cos θ) , (10)

whereM is the proton mass.

The gauge link,W(0, z), theoretically, is needed to main-
tain the gauge invariance of the TMD correlations, Eq. (4)
[27–29]. In this work, for simplicity, we use the following
approximation

W(0, z) ≈ 1. (11)

This is an assumption commonly used in the theoretical cal-
culations of TMD [30, 35]. Under this approximation, one
would find that all the T-odd TMDs reduce to zero.

With the above assumptions and conventions, we substi-
tute the LFWF from the BLFQ framework into the TMD cor-
relator and get the six non-vanishing TMDs under the trivial
assumption of the gauge link:

FIGURE 1. (Color online) Comparison of the PDF limit of our
TMD and the PDF calculations from [22] at initial scale. Different
panels are comparisons for different truncation parametersNmax

(2D HO truncation) andK (longitudinal planwave truncation). See
§ 2. for detailed discussions ofNmax andK. Solid lines are the
PDF limit of the TMDs we got here and dashed results are PDFs
gotten from [30]. Lines with different markers (colors) are results
for different TMDs.

FIGURE 2. (Color online)f1 at the initial scale,0.195GeV2 [22]
and two higher scales2.4GeV2 and10 GeV2 following evolution
scheme described in§ 4.. Lines with different markers (colors)
representf1 at different scales. Solid lines representu quark distri-
butions and dashed lines representd quark distributions. This plot
shows the distributions atx = (9.5/16.5) ≈ 0.515 in the trans-
verse direction.
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FIGURE 3. 3D plots of BLFQ results for six non-vanishing TMDs of theu quark.

Supl. Rev. Mex. Fis.3 0308101



4 Z. HU, S. XU, C. MONDAL, X. ZHAO AND J. P. VARY
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wherek⊥R = k1 + ik2, and we use the abbreviation

[d123] =
dx1dx2dx3d2p⊥2 d2p⊥2 d2p⊥3

16π3

× δ(x1 + x2 + x3 − 1)

× δ2(k⊥1 + k⊥2 + k⊥3 )δ(x− x1)δ2(p⊥ − p⊥1 ) . (18)

We compute thed2p⊥ integration of the three TMDs
which have a proper PDF limit,f1, g1L, h1, and compare our
calculations with the initial-scale results from [22]. PDFs
in Ref. [22] are calculated by setting the momentum trans-
fer ∆ = 0 for corresponding generalized parton distributions
(GPDs). This comparison is presented in Fig. 1 and we are
pleased to find good consistency for different truncation pa-
rameters. The 3D plots of all the six non-vanishing TMDs
are presented in Fig. 3. It is easy to find that all those results
are in reasonable behaviour. We will present more results in
Ref. [33].

4. TMDs after evolution

The comparison with the previous calculations of the PDFs
also enables us to assign the same initial scaleµ2

0 =
0.195GeV2 to our TMD results. Thus we can implement
TMD evolutions to see how it affects our results. For the
unpolarized TMD,f1, the following evolution scheme from
Refs. [30,34,36] is quite common in the literature

f̃1(x,
∣∣b⊥∣∣ ; µ) = f̃1(x,

∣∣b⊥∣∣ ;µ0)R̃(µ, µ0,
∣∣b⊥∣∣)

× e
−gK(|b⊥|) ln

(
µ

µ0

)
. (19)

Here, f̃1(x,
∣∣b⊥∣∣ ; µ) is the unpolarized TMD in the impact

parameter space,i.e., the two-dimensional Fourier transfor-
mation off1(x,

∣∣p⊥
∣∣ ;µ).

The evolution kernel,̃R, takes the following form

R̃(µ, µ0,
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where µb = C1/b∗, b∗ =
∣∣b⊥

∣∣ /

√
1 + ((b⊥)2/b2

max) are
in charge of the transition between perturbative and non-
perturbative regions [37]. The anomalous dimensions are

γK(µ′) = αs(µ′)
2CF

π
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CF
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3
2
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We also use the same non-perturbative function,gK(
∣∣b⊥∣∣) =

(1/2)g2

(
b⊥

)2
and parameters as in [30].

Evolved BLFQ results off1 are shown in the transverse
direction as Fig. 2. It is easy to observe that in the transverse
direction, with increasing scale, the magnitudes of bothfu

1

andfd
1 decrease and the widths of them increase, which is

quite as expected.

5. Conclusions

In this paper, we present the first investigation of the proton
quark TMDs in the leading twist within the BLFQ frame-
work. We deduce the corresponding formulas for TMDs and
compare the PDF limit of our TMDs with PDFs got in [22].
We find good consistency in this comparison. First, this
strongly signifies that our calculation is self-consistent. Sec-
ond, after DGLAP evolution, PDF calculations in the previ-
ous papers [21, 22] agree well with the experiment data and
thus we choose the same initial scaleµ2

0 = 0.195GeV2 for
our TMDs. Following evolution scheme from Refs. [30, 34,
36], we also evolve our TMDs to higher scales to investi-
gate the effect of scale evolution. We find that with higher
scale we would generally get TMDs with lower magnitude
and larger extension in the transverse direction.
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