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Proton generalized parton distributions from lattice QCD
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Momentum and spatial distributions of quarks and gluons inside hadrons are typically encoded in the so-called generalized parton distri-
butions (GPDs). GPDs are multi-dimensional quantities that are very challenging to extract, both experimentally and within lattice QCD.
We present the first lattice results on thex-dependence of isovector unpolarized, helicity and transversity GPDs of the proton, obtained
from lattice QCD using an ensemble ofNf = 2 + 1 + 1 maximally twisted mass fermions, with pion massMπ = 260 MeV and lattice
spacinga ' 0.093 fm. Our calculations use the quasi-distribution formalism and the final distributions are presented in theMS scheme at a
renormalization scale of 2 GeV.
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1. Introduction

The inner structure of hadrons is governed by the highly non-
trivial dynamics of the strong interactions among quarks and
gluons, which are collectively called partons. Interactions
among partons are studied, among others, through general-
ized parton distributions (GPDs) [1–4], that are more general
functions with respect to form factors (FFs) and parton distri-
bution functions (PDFs). In fact, GPDs parametrize nonfor-
ward matrix elements〈P ′| . . . |P 〉 of non-local operators and
as such, they depend on three variables:x - the longitudi-
nal momentum fraction of a given parton with respect to the
hadron’s momentum,t - the square of the four-momentum
transferred to the target,i.e. (P ′ − P )2, and the skewnessξ
- the change in the longitudinal momentum fraction induced
by the momentum transfer. While atξ 6= 0 no simple prob-
abilistic interpretation exists, atξ = 0 GPDs describe the
probability to find a parton with a longitudinal momentum
fractionx and at a given distance from the center of the mo-
mentum of the hadron [5]. In addition, att = 0 andξ = 0
GPDs reduce to PDFs and then = 0 Mellin moments, at a
given t, are the elastic FFs. Thus, GPDs provide a unified
picture of the inner structure of hadrons.

A standard way to access GPDs (and many other partonic
functions) relies on analyses of high-energy scattering exper-
iments. This is possible due to the asymptotic freedom of
the strong interactions at large energies, that allows to for-
mulate factorization theorems for a large class of scattering
processes, separating short distance interactions from non-
perturbative dynamics (encoded ine.g. the GPDs). It is ex-
pected that, in the near future, GPDs will be extracted with

unprecedented accuracy by experimental efforts that include
the planned Electron-Ion-Collider (EIC) [6] and the 12 GeV
upgrade program at Jefferson Lab [7].

A complementary approach to experiments relies on the
lattice formulation of Quantum Chromodynamics (QCD).
However, accessing GPDs within lattice QCD is not straight-
forward because the relevant matrix elements receive contri-
butions only along the light-cone and light-cone separations
do not exist on a Euclidean lattice. The seminal work by
X. Ji on the quasi-distributions [8] has opened new perspec-
tives in this field, showing that purely spatial correlations at
finite hadron boost can be factorized into the desired distri-
butions through a perturbative matching coefficient, within
Large Momentum Effective Theory (LaMET) [9, 10]. Since
its introduction, in 2013, the quasi-distribution formalism has
been extensively studied both theoretically and on the lattice.
Meanwhile, a number of other approaches have also been
proposed, such as the good “lattice cross sections” [11–13],
the pseudo-PDFs [14–16] and the “OPE without OPE” [17].
In the last decade all these methods have been applied in par-
ticular to PDFs, leading to very encouraging lattice results
that can be qualitatively compared with global QCD analy-
ses. For a summary of these approaches and of the lattice
results obtained by different collaborations we refer to the
reviews [10, 18–20]. For GPDs, however, lattice studies are
at an exploratory stage because the multi-dimensionality of
these objects brings a higher level of complexity.

In this manuscript, we report on our first calculation of the
proton (twist-2) GPDs using the twisted-mass formulation of
QCD. To simplify the lattice calculation, we focus on the
u−d isovector flavor structure for which the disconnected di-
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agrams cancel. Results are presented for selected GPDs and
for additional results and details we refer to Refs. [21–23].

2. Quasi-GPDs from lattice QCD

Quasi-GPDs are extracted from matrix elements in which the
quark-bilinear operator has a space-like separation, namely

hO(Pf , Pi, z, µ)

= 〈N(Pf )|ψ̄(0)OW (0, z)ψ(z)|N(Pi)〉µ0 , (1)

where the Wilson lineW is in the same direction as the av-
erage momentum boost,~P = (~Pi + ~Pf )/2. O gives ac-
cess to a specific GPD and we useγ0 and γ5γ3 for un-
polarized and helicity, andσ31, σ32 for transversity GPDs,
having chosen~P = (0, 0, P3). Throughout the calcula-
tion we employ the Breit frame, in which GPDs are defined,
and thus~Pf = ~P + (~∆/2) and ~Pi = ~P − (~∆/2), being
~∆ = ~Pf − ~Pi. The nucleon boost and the momentum trans-
fer are related to each other by the skewness parameter, de-
fined asξ = −∆3/2P3. The matrix elements of Eq. (1), here
renormalized non-perturbatively in the RI-MOM scheme at a
scaleµ0, are related to the GPDs through continuum decom-
positions. In Euclidean space and for the vector operatorγµ

we have

〈N(Pf )|Oγµ |N(Pi)〉 = 〈〈γµ〉〉FH(z, P3, t, ξ)

− i
〈〈σµν〉〉
2mN

∆µFE(z, P3, t, ξ), (2)

where〈〈Γ〉〉 ≡ ūN (Pf , S′)ΓuN (Pi, S), mN is the nucleon
mass andFH , FE are the matrix elements ofH,E GPDs in
coordinate space. The corresponding decompositions for the
helicity and transversity GPDs can be found in Refs. [21,22].

Thex-dependence of the GPDs is recovered in two steps.
First, we extract the quasi-GPDs by a Fourier-transform of
FG (whereG = H, E, ...) to momentum space

G̃(x, ξ, t, µ0, P3) =

+∞∫

−∞
dz e−iP3xz FG(z, ξ, t, P3, µ0). (3)

Since FG are obtained at intervals of the lattice spacing,
z/a ∈ Z, the reconstruction of the continuum distribution
in x is an ill-posed inverse problem, that does not have a
unique solution. To avoid a model-dependent assumption on
the light-cone GPDs, we adopt the Backus-Gilbert method
proposed for PDFs in Ref. [24]. In this work, we follow the
implementation described in Refs. [21–23]. Finally, given
that quasi- and light-cone GPDs only differ in the ultravio-
let region [25, 26], one can match quasi-GPDs to light-cone
GPDs via a coefficient determined in perturbation theory. For
the matching coefficient,CG, we use the one-loop expres-
sions derived in Ref. [27], which bring the quasi-GPDs in the
RI-MOM scheme to the physical-GPDs in theMS scheme.
CG depends on the particular GPD, on the renormalization

scaleµ in theMS scheme and has a more complicated struc-
ture for nonzero skewness. Atξ = 0 it reduces to the ker-
nel of PDFs. The leading perturbative corrections (nucleon
mass and higher-twist corrections) between quasi- and light-

cone GPDs contribute asO
(

m2
N

P 2
3

, t
P 2

3
,

Λ2
QCD

(xP3)2

)
and therefore

a very large value of the nucleon boost is desirable. In prac-
tice, the value of the boost is limited by an exponential in-
crease of the noise-to-signal ratio and it determines one of the
most important systematic uncertainties in the current lattice
QCD calculations.

3. Lattice setup and matrix elements

We use a gauge ensemble of maximally twisted mass
fermions [28] with two degenerate light, a strange and
a charm quark(Nf = 2 + 1 + 1), with pion mass
Mπ = 260 MeV, lattice spacinga ' 0.093 fm and volume
V = 323× 64. The matrix elements of Eq. (1) are extracted
through appropriate ratios of two- and three-point functions
that cancel overlap factors between interpolating fields and
nucleon states [21–23]. The correlators are produced by us-
ing the momentum smearing technique [40] and optimizing
the signal for given{Pi, Pf}. Together with the fact that the
Breit frame must be used, for each kinematic setup{Pi, Pf}
we use a different set of quark propagators. The all-to-all
propagators, from the sink positions to insertion points, are
computed via the sequential method with the fixed sink ap-
proach. The most computationally demanding component of
the calculation is depicted by the diagram in Fig. 1.

The source-sink separation is set toTsink = 12a '
1.13 fm, for which excited states are within10% of the sta-
tistical uncertainties at similar nucleon boosts than the ones
used in this work [41].

For this first lattice calculation of GPDs we restrict our-
selves to one value of the momentum transfer for both zero
and nonzero skewness. In particular we have data for{t =
−0.69 GeV2, ξ = 0} and{t = −1.02 GeV2, |ξ| = 1/3}.
At ξ = 0, we study the momentum dependence of the GPDs
using P3 = 0.83, 1.25, 1.67 GeV and atP3 = 1.25 GeV
we test the effect of a nonzeroξ. In Table I, we report the
corresponding classes of momenta and the statistics for all
operators.

FIGURE 1. Schematic representation of the (connected) three-point
diagram. The initial (source) and final (sink) nucleon states are in-
dicated byN(Pi; 0) andN(Pf ; Tsink).
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FIGURE 2. a)FH (squares),FH̃ (diamonds) andFHT (circles). b)FE (squares),FET (diamonds),FẼT
(circles),FH̃T

(triangles). Results
for the matrix elements of the GPDs as functions ofz/a. The data are in the RI-MOM scheme at(aµ0)

2 ≈ 2.57, P3 = 1.67 GeV and
ξ = 0. Top: real part; bottom: imaginary part.

TABLE II. Statistics at eachP3, ~∆ andξ. Nconfs andNmeas are
the number of analyzed configurations and the total measurements,
respectively.

P3 [GeV] ~∆ [ 2π
L

] −t [GeV2] ξ Nconfs Nmeas

0.83 (0,2,0) 0.69 0 519 4152

1.25 (0,2,0) 0.69 0 1315 42080

1.67 (0,2,0) 0.69 0 1753 112192

1.25 (0,2,2) 1.02 1/3 417 40032

1.25 (0,2,-2) 1.02 -1/3 417 40032

With this setup we compute two independent matrix ele-
ments having a vector and axial-vector insertion operator and
we apply a decomposition of the type2 to find the functions
FH , FE andFH̃ , FẼ , for the unpolarized and helicity case,
respectively. For the transversity GPDs we need four addi-
tional matrix elements that have a tensor structure in the in-
sertion, since there are four functions,FHT , FET , FH̃T

, FẼT

to be disentangled.
In Fig. 2, panel(a), we showFH , FH̃ andFHT , that are

the matrix elements of the GPDs with a nonzero value in the
forward limit, atξ = 0. The momentum isP3 = 1.67 GeV.
At this value ofP3, we find that the real and imaginary parts
decay to zero asz/a increases; this is not always guaranteed
for the lowest momentum considered here (see [21–23]). We
also observe thatFH has the best signal quality and its imag-
inary part is smaller in magnitude. Atξ = 0, we also find
that the remaining GPDs are in general affected by increased
statistical uncertainties, because of their kinematic. The de-
composed functions in coordinate space are shown in Fig. 2,
panel(b). The real and imaginary parts ofFẼT

are found to
be compatible with zero, in agreement with̃ET expected to

be odd under replacementξ → −ξ [29, 30]. We also note
that at,ξ = 0, FẼ is not accessible by decompositions of the
form 2 because its kinematic factor vanishes and therefore
here it is not presented.

It is important to notice that atz = 0 the functionsFG re-
duce to the elastic FFs, that in lattice QCD are usually com-
puted using local matrix elements in the rest frame of the
final nucleon state. In fact, we find thatFE , FH̃ andFHT

are
compatible with the FFsF1, gA andAT10 computed using
a twisted mass ensemble with a similar pion mass [31, 32].
This serves as an important check of our calculation.

4. x-dependence of the GPDs

To obtain the GPDs as a function ofx, we perform the Fourier
transform of the matrix elementsFG to momentum space and
apply the matching coefficient of Ref. [27]. The final distri-
butions are in theMS scheme at a scaleµ = 2 GeV. The
P3-dependence atξ = 0 for H, H̃ and HT is shown in
Fig. 3, in which the error bands include only statistical un-
certainties. At this accuracy we find that the distributions
are in agreement for the three nucleon boosts and this holds
both for the antiquark(x < 0) and quark(x > 0) regions.
Thus, we decide to focus on the intermediate momentum,
P3 = 1.25 GeV, to study the effect of a nonzero skewness
on the lattice GPDs.

The GPDs atξ 6= 0 are obtained using a non-vanishing
component of the momentum transfer in the boost direction.
The value ofξ enters explicitly the matching equations [27]
that have a different form in the DGLAP [33–36](x > |ξ|)
and in the ERBL [37, 38](x < |ξ|) regions. For the ensem-
ble considered in this work the smallestt-value withξ 6= 0 is
−t = 1.02 GeV2; this can be obtained either forξ = +1/3
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FIGURE 3. Momentum dependence of theu − d isovectorH, H̃ andHT GPDs atµ = 2 GeV in theMS scheme. Results are shown for
0.83 GeV (yellow),1.25 GeV (red) and1.67 GeV (blue). The bands refer only to the statistical uncertainties.

FIGURE 4. Comparison between PDFs and GPDs atP3 = 1.25 GeV,ξ = 0 and|ξ| = 1/3 for the unpolarized (top), helicity (bottom left) and
transversity (bottom right) case. The PDFs are shown in red, while GPDs at{ξ = 0,−t = 0.69 GeV2} and{|ξ| = 1/3,−t = 1.39 GeV2}
are in orange and cyan, respectively. The discontinuities atx = ξ are due to uncontrolled higher-twist contaminations that cannot be treated
at the present stage.

or ξ = −1/3. To reduce lattice artifacts we average over
these two possibilities. Results forH, E, H̃ and HT are
shown in Fig. 4. The focus is only on the quark region
(x > 0) because it is less susceptible to systematic er-
rors [39]. We note, once again, that systematic uncertainties
are not included yet in the error budget.

From Fig. 4 we observe a clear distinction between
DGLAP and ERBL regions (cyan bands) atξ 6= 0. In fact,
at x = ξ, these regions are separated by discontinuities that
are however non-physical, as twist-2 GPDs are expected to
be continuous functions at the boundaries [42, 43]. This ef-
fect arises from higher-twist contributions not yet computed

in the matching procedure, that contains the leading twist-2
terms. Beside that, we find that GPDs decrease in magni-
tude as−t increases, as expected from the usual suppression
of the elastic FFs with the increase of the momentum trans-
fer. Moreover, such suppression is stronger in the ERBL than
in the DGLAP region. When comparing GPDs with PDFs
(computed on the same gauge ensemble) we find that the
PDFs are dominant for most values ofx, as expected from
the relationsf1(x) = H(x, 0, 0), g1(x) = H̃(x, 0, 0) and
h1(x) = HT (x, 0, 0). At largex the t-dependence seems to
vanish especially for the unpolarized case, and in the future
it would be interesting to study this effect in relation to the
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work of Ref. [44], where forH it was found an asymptotic
behavior(1−x)3/(1−ξ2)2 through power counting analysis.

As a final cross-check, we verify that the integral inx
of the GPDs in[−1,+1] is in agreement with the matrix ele-
mentsFG atz = 0 and with the FFs of the work [31,32]. This
result is highly non-trivial, as the reconstruction of thex-
dependence involves many delicate steps with different sys-
tematics, such as the Fourier-transform to momentum space
and the matching procedure to light-cone GPDs.

5. Conclusions and future work

In this manuscript we report on our first effort to comput-
ing the isovector GPDs of the proton from lattice QCD. We
use a single ensemble of twisted mass fermions with pion
massMπ = 260 MeV and study the momentum dependence
of the GPDs using a nucleon boost up to 1.67 GeV. Conver-
gence is seen betweenP3 = 1.25 and1.67 GeV, for the un-
polarized and the polarized GPDs (see also Refs. [21–23]).
The GPDs are extracted at−t = 0.69 GeV2, ξ = 0 and
−t = 1.02 GeV2, |ξ| = 1/3 and they show the expected
behavior,i.e. they are suppressed as the momentum transfer
increases. In addition,H, H̃ andHT have statistical uncer-
tainties that are similar to the corresponding PDFs. In the fu-
ture, we plan to include additional values of the momentum
transfer, for which larger volume ensembles will be crucial.
The final goal is to extract, among others, the impact param-
eter distributions via a Fourier-transform in thet-space and
the quark orbital angular momentum directly from the GPDs.
Eventually, as for any lattice calculation, dedicated studies
are necessary to estimate various systematic uncertainties due
to the pion mass, lattice spacing and finite volume effects.
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25. X. Ji, A. Scḧafer, X. Xiong and J. H. Zhang,Phys.
Rev. D92 (2015) 014039,https://doi.org/10.1103/
PhysRevD.92.014039 .

26. X. Xiong and J. H. Zhang, Phys. Rev. D92 (2015)
054037,https://doi.org/10.1103/PhysRevD.92.
054037 .

27. Y. S. Liu et al., Phys. Rev. D100 (2019) 034006,https:
//doi.org/10.1103/PhysRevD.100.034006 .

28. C. Alexandrouet al., [Extended Twisted Mass],Phys. Rev.
D 104 (2021) 074515, https://doi.org/10.1103/
PhysRevD.104.074515 .

29. S. Meissner, A. Metz and K. Goeke,Phys. Rev. D76 (2007)
034002,https://doi.org/10.1103/PhysRevD.76.
034002 .

30. M. Diehl, Phys. Rept.388 (2003) 41,https://doi.org/
10.1016/j.physrep.2003.08.002 .

31. C. Alexandrouet al., Phys. Rev. D88 (2013) 014509,https:
//doi.org/10.1103/PhysRevD.88.014509 .

32. C. Alexandrou, M. Constantinou, K. Jansen, G. Koutsou and
H. Panagopoulos,PoSLATTICE2013 (2014) 294,https:
//doi.org/10.22323/1.187.0294 .

33. Y. L. Dokshitzer,Sov. Phys. JETP46 (1977) 641-653.

34. V. N. Gribov and L. N. Lipatov,Sov. J. Nucl. Phys.15 (1972)
438-450. IPTI-381-71.

35. L. N. Lipatov,Yad. Fiz.20 (1974) 181-198.

36. G. Altarelli and G. Parisi,Nucl. Phys. B126 (1977) 298,
https://doi.org/10.1016/0550-3213(77)
90384-4 .

37. A. V. Efremov and A. V. Radyushkin,Phys. Lett. B94 (1980)
245, https://doi.org/10.1016/0370-2693(80)
90869-2 .

38. G. P. Lepage and S. J. Brodsky,Phys. Rev. D22 (1980) 2157,
https://doi.org/10.1103/PhysRevD.22.2157 .

39. C. Alexandrouet al., Phys. Rev. D103(2021) 094512,https:
//doi.org/10.1103/PhysRevD.103.094512 .

40. G. S. Bali, B. Lang, B. U. Musch and A. Schäfer, Phys.
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