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Testing the molecular nature ofφ(2170)
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In this talk we show our recent results on the decay widths ofφ(2170) to final states formed by an anti-Kaon and a Kaonic resonance, in
particular,K(1460), K1(1270) andK1(1400), considering a molecular description forφ(2170). Branching fraction ratios are obtained and
compared with the recent results found by the BESIII collaboration, finding compatible results.
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The properties ofφ(2170) have been studied by differ-
ent collaborations in the last 14 years since its discovery
in processes likee+e− → K+K−π+(0)π−(0), J/ψ →
ηK+K−π+π−, e+e− → φη′, with its mass and width given
by M = 2160 ± 80 MeV and Γ = 125 ± 65 MeV, re-
spectively [1–4]. During this time, different quark models
have been formulated to understand the nature and proper-
ties of this state, consideringφ(2170) to be an2S+1LJ =
33S1 ss̄ system, a23D1 ss̄ system, ass̄g hybrid system,
or a tetraquark [5–7]. However such descriptions have
difficulties in either finding a compatible mass and width
for the state or in finding decay widths for channels like
K∗(892)K̄∗(892), K∗(1410)K̄, K(1460)K̄, K1(1400)K̄
and K1(1270)K̄ compatible with the recent results of the
BESIII collaboration [8].

One of the interesting facts related toφ(2170) is its large
coupling to aK+K−π+(0)π−(0) final state whereK+K−

comes from the decay ofφ and π+(0)π−(0) from the de-
cay of f0(980) [1, 2]. Indeed, the study of theφKK̄ sys-
tem and coupled channels performed in Ref. [9] showed
the formation of aφ meson with mass and width compati-
ble with those ofφ(2170) when theKK̄ system generates
f0(980). Within such a description, the cross section for
the e+e− → φf0(980) process was reproduced [9, 10]. It
would be then interesting to know the prediction for the de-
cay widths ofφ(2170) to a K̄K system, whereK denotes
a Kaonic resonance, within the above mentioned molecular
nature forφ(2170).

To do this, we require a theoretical description for
K1(1270), K1(1400) andK(1460) too. In case ofK(1460)
we consider it to be generated from the interaction ofKKK̄
and coupled channels when one of theKK̄ pairs generates
f0(980) [11–14]. ForK1(1270) andK1(1400) we have used
different approaches:

• Model A: K1(1270) is considered to be a state gen-
erated from the pseudoscalar-vector interaction [15,
16]. In this case, a two pole structure is found for
K1(1270), with the polesz1 = M − iΓ/2 = 1195 −

i123 MeV andz2 = 1284− i73 MeV. However, no de-
scription forK1(1400) is obtained within this model.

• Model B: K1(1270) andK1(1400) are considered as
states arising from mixing ofK1A andK1B belong-
ing to the axial nonet, where mixing angles between
29− 62◦ seem to be compatible with the experimental
data on their decays [17].

• Model C: We adopt a phenomenological approach,
where the data available on the radiative decays of
K1(1270) andK1(1400) are used to determine their
couplings to the meson-meson channels involved in the
decay ofφ(2170).

In all the preceding models,f0(980) is considered to be
generated from theKK̄ andππ dynamics in isospin 0 [18].
Consideringφ(2170) to be a molecularφf0(980) state, its
decay toK̄K proceeds through triangular loops (see Fig. 1),
involving in this way three vertices: (1) Firstφ(2170) decays
to φ andf0(980), then aK+ (K−) is exchanged between the
φ and thef0(980), producing in this way af0K

+(K−) →
K+(1460)(K−) vertex and aφ → K−K+(K+

1 K−) ver-
tex, respectively. Since the verticesφ(2170) → φf0(980),
f0K

+ → K+(1460), φ → K+
1 K− all involve s-wave inter-

actions, we can describe them through the amplitudes

tφR = gφR→φf0εφR · εφ,

tKR
= gK+

R→K+f0
,

tf0→K+K− = gf0→K+K− ,

tK+
1 →φK+ = gK+

1 →φKεK+
1
· εφ, (1)

wheregi→j represents the coupling for the processi → j and
εk is the corresponding polarization vector for particlek. The
φ → KK̄ vertex is described by the Lagrangian [20]

LV V P = −ig〈V µ[P, ∂µP ]〉, (2)
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FIGURE 1. Triangular loops involved in the processφ(2170) → K̄K. The symbolsφR, KR andK1 have been used to denoteφ(2170),
K(1460) and eitherK1(1270) or K1(1400), respectively. The four-momenta of the particles are written in brackets.

TABLE I. Couplings (in MeV) used for the different vertices involved in Fig. 1.

Model A Model B Model C

z1 z2 S1 S2 S3

K+
1 (1270) → φK+ 2096− i1208 1166− i774 1104± 171 3967± 419 12577± 763 19841± 1177

K+
1 (1400) → φK+ − 3533± 21 8480± 1333

K+(1460) → K+f0(980) 4858± 1337

φ(2170) → φf0(980) 3123± 561

with V µ andP being matrices having as elements the vec-
tor and pseudoscalar meson octet fields, respectively,g =
MV /(2fπ), MV ' Mρ, fπ ' 93 MeV, and〈 〉 indicating
the SU(3) trace.

In case of modelsA and B, the couplings involved in
Eq. (1) are obtained from the theoretical models which de-
scribeφ(2170), K(1460), f0(980) andK1(1270) in terms
of hadron dynamics. In case of modelC, the K1 → φK
coupling is obtained from the radiative decay width ofK1

to γK0 [19]. The latter decay width is calculated consider-
ing the vector meson dominance mechanism, whereγ cou-
ples toρ0, ω andφ, having in this way a two step process:
K0

1 → ρ0K0 + ωK0 + φK0 → γK0. The problem within
this latter approach is that we can only calculate the modulus
of the coupling ofK1 → φK, and the uncertainties in the
available data allow different scenarios for this coupling in
case ofK1(1270) as summarized in Table I.

Using the couplings listed in Table I and the amplitudes
in Eq. (1), we can determine the amplitudes for the pro-
cesses depicted in Fig. 1 and calculate the corresponding de-
cay widths. Indeed, the decay width for the processes shown
in Fig. 1 can be obtained as

Γi→j =
∫

dΩ
|~p CM

i→j |
32π2M2

φ(2170)

∑

pol

|ti→j |2, (3)

where|~p CM
i→j | is the center-of-mass momentum of the parti-

cles in the final state for the processi → j, the symbol
∑
pol

indicates sum over the polarizations of the particles in the ini-
tial and final states, and average over the polarizations of the

particles in the initial state,
∫

dΩ represents the solid angle in-
tegration andti→j is the amplitude for each of the processes
depicted in Fig. 1.

Considering the Feynman rules, and summing over the
polarizations of the internal vector mesons, we can obtain
the amplitudeti→j . In case of the processφ(2170) →
K+(1460)K−, we get

− itφR→K+
RK− = gφR→φf0ggK+

R→K+f0
εµ
φR

(P )

×
[
kµ

(
1− k2

M2
φ

)
I(0) − I(1)

µ

(
1 +

k2

M2
φ

)

+
kµ

M2
φ

I(2) +
I
(3)
µ

M2
φ

]
, (4)

where

I(0); I(1)
µ ; I(2)

µν ; I(2) ≡
∫

d4q

(2π)4
1; qµ; qµqν ; q2

D , (5)

and

D = [(k + q)2 −M2
φ + iε]

× [(P − k − q)2 −M2
f0

+ iε][q2 −M2
K + iε]. (6)

Similarly, for φ(2170) → K+
1 K−,

−itφR→K+
1 K− = gφR→φf0gK+

1 →φK+

× gf0→K+K−εµ
φR

(P )εν
K+

1
(k)

×
[
− gµνI(0) +

kµ

M2
φ

I(1)
ν +

I
(2)
µν

M2
φ

]
, (7)
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whereK+
1 represents eitherK+

1 (1270) orK+
1 (1400). We re-

fer the reader to Ref. [10] for the details related to the calcula-
tion of the integrals in Eq. (5). Here, we would simply like to
state that we are considering an approach in whichφ(2170),
K(1460), f0(980) andK1(1270) are states generated from
hadron dynamics. Thus, a form factor should be associated
with each of the three vertices involved in the diagrams in
Fig. 1. In this way, when regularizing thed3q integration in
Eq. (5)

∫
d3q → (2π)

∞∫

0

d|~q||~q|2
1∫

−1

dcosθ
3∏

i=1

Fi(|~q ∗i |,Λi), (8)

whereθ is the angle between the vectors~q and~k. The in-
dex i = 1, 2, 3 in Eq. (8), for a given decay process (see
Fig. 1), indicates the three vertices involved in the decay
mechanism ofφ(2170), |~q ∗i | represents the modulus of the
center-of-mass momentum related to the vertexi (note that
~q and~q ∗ in Eq. (8) are related through a Lorentz boost) and
Λi are as defined in Refs. [9, 11, 16, 18] (ΛφR→φf0 ∼ 2000
MeV, ΛKR→Kf0 ∼ 1400 MeV, Λf0→KK̄ ∼ 1000 MeV,
ΛK+

1 (1270)→φK+ ∼ 750 MeV). In Eq. (8), Fi is a function
representing the form factor considered for the vertexi. In
case of regularizing thed3q integral with a sharp cut-off, a
HeavisideΘ-function,i.e.,

Fi = Θ(|~q ∗i | − Λi), (9)

is used. A monopole form,i.e.,

Fi =
Λ̄2

i

Λ̄2
i + |~q ∗i |2

, (10)

or an exponential dependence of the type

Fi = e
− |~q

∗
i |

2

2Λ̄2
i , (11)

are also typically used as form factors for the vertices. The
value ofΛ̄i (∼ Λi) is chosen in such a way that the area under
the curve ofF 2

i as a function of the modulus of the momen-
tum is the same, independently of the form factor used [21].

With all these ingredients, we can now determine the de-
cay widths ofφ(2170) → K+(1460)K−, K+

1 (1400)K−

and K+
1 (1270)K−. The results obtained are given in Ta-

bles II-IV, respectively. As can be seen, consideration of
different form factors produces compatible results, thus,
the results are basically independent of the regularization
procedure. In case of the decay width ofφ(2170) →
K+(1460)K− (see Table II) we find a value around0.8 −
2.0 MeV.

In case of the processφ(2170) → K+
1 (1400)K−

(see Table III), the result found for the decay width de-
pends on the model considered to calculate the coupling
of K+

1 (1400) → φK+: within model B, which relates
K1(1400) and K1(1270) through a mixing angle, the de-
cay width obtained forφ(2170) → K+

1 (1400)K− is around
1.5− 3.1 MeV.

TABLE II. Partial decay width (in MeV) ofφ(2170) →
K+(1460)K− with different form factors.

Form factor Decay width

Heaviside-Θ 1.5± 0.5

Monopole 1.3± 0.4

Exponential 1.3± 0.5

TABLE III. Partial decay width (in MeV) ofφ(2170) →
K+

1 (1400)K− considering the different form factors and the mod-
els B and C to describe the properties ofK1(1400).

Form factor Decay width

Model B Model C

Heavise-Θ 2.6± 0.5 15± 4

Monopole 1.9± 0.4 11± 3

Exponential 2.1± 0.4 12± 3

However, if we obtain theK+
1 (1400) → φK+ coupling

considering model C, which uses the data from Ref. [19], the
result found for this decay width is∼ 8 − 19 MeV. Such
a value represents a sizable contribution of the full width
of φ(2170). However, it should be mentioned that the re-
sults on the radiative decays in Ref. [19], and, consequently,
the decay width ofφ(2170) → K+

1 (1400)K− found within
model C, may need to be taken with caution. This is because
the experimental data on the radiative decay ofK+

1 (1270)
and K+

1 (1400) are obtained, through the Primakoff effect,
by assuming them as mixture of states belonging to the ax-
ial nonets. Within model A, whereK1(1270) is generated
from meson-meson interactions [15, 16], the stateK1(1400)
was not found to arise from such dynamics, thus, we cannot
calculate the decay width ofφ(2170) → K1(1400)K̄.

In case of the processφ(2170) → K+
1 (1270)K−, we

find that the decay width (see Table IV) depends on the
model used to calculate the coupling ofK+

1 (1270) → φK+:
within model A, whereK+

1 (1270) is considered as a vector-
pseudoscalar molecular state with a double pole structure,
the decay width obtained is around1 − 2 MeV when tak-
ing into account the superposition of the two poles. As can
be seen in Table IV, the superposition of the two poles pro-
duces non-negligible effects. Note that the mass related to
the polez2 is closer to the value determined from the fit
to the experimental data in Ref. [8], however, the process
K+

1 (1270) → πK∗(892) is considered in Ref. [8], where
the final state couples rather more strongly to the polez1.
Thus, when comparing our results with the experimental in-
formation, it might be more meaningful to consider the decay
widths obtained from the superposition of the two poles. In
any case, if the double pole nature ofK1(1270) is confirmed,
the experimental results in Ref. [8] on the related process may
require an update.

Supl. Rev. Mex. Fis.3 0308071
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TABLE IV. Partial decay width (in MeV) ofφ(2170) → K+
1 (1270)K− by considering different form factors and the models A, B, C to

describe the properties ofK1(1270).

Form factor Decay width

Model A Model B Model C

Polesz1, z2 Polez1 Polez2 SolutionS1 SolutionS2 SolutionS3

Heaviside-Θ 1.5± 0.3 0.6± 0.1 0.22± 0.04 0.12± 0.04 1.6± 0.4 17± 3 41± 9

Monopole 0.8± 0.2 0.3± 0.1 0.12± 0.02 0.07± 0.02 0.9± 0.2 9± 2 23± 5

Exponential 1.0± 0.2 0.4± 0.1 0.15± 0.03 0.09± 0.02 1.1± 0.3 11± 2 28± 6

Next, considering the mixing scheme of model B,
the results obtained for the decay width ofφ(2170) →
K+

1 (1270)K− are similar to those found with model A for
the polez2. Such a result could be in line with the fact
that the mass ofK1(1270) in model B is very similar to
the mass value associated with the polez2 in model A. In
case of the model C, where the experimental data avail-
able in Ref. [19] are being used to estimate the couplings of
K+

1 (1270) andK+
1 (1400) to theφK+ channel, two different

scenarios for the decay width ofφ(2170) → K+
1 (1270)K−

are found. In one of them (solutionS1), the results are
compatible with those obtained in the model A. In the sec-
ond scenario (solutionsS2 or S3), a larger decay width for
φ(2170) → K+

1 (1270)K− is obtained, which would consti-
tute a sizable part of the total width ofφ(2170).

After determining the decay widths ofφ(2170) →
K−K+, with K = K(1460), K1(1400), K1(1270), we can
compare with the experimental results of Ref. [8]. Note, how-
ever, that in the latter reference, the partial decay widths of
φ(2170) → K−K+ were not measured. Instead, the prod-
uctsBrΓe+e−

R , with Γe+e−
R being the partial decay width of

φ(2170) → e+e− andBr the branching fraction for each of
theφ(2170) → K−K+ processes, were extracted. Since the
decay widthΓe+e−

R is not known, we can use the information
provided in Ref. [8] to calculate the ratios

B1 ≡
ΓφR→K+(1460)K−

ΓφR→K+
1 (1400)K−

=
Br[φR → K+(1460)K−]
Br[φR → K+

1 (1400)K−]
, (12)

B2 ≡
ΓφR→K+(1460)K−

ΓφR→K+
1 (1270)K−

=
Br[φR → K+(1460)K−]
Br[φR → K+

1 (1270)K−]
, (13)

B3 ≡
ΓφR→K+

1 (1270)K−

ΓφR→K+
1 (1400)K−

=
Br[φR → K+

1 (1270)K−]
Br[φR → K+

1 (1400)K−]
, (14)

and compare with our results. Note that although the above
ratios do not depend on the couplinggφR→φf0 , the particu-
lar values found for them are related to the nature, not only
of φ(2170), but also to the one ofK(1460), K+

1 (1270) and
K+

1 (1400), through the triangular loop mechanisms depicted
in Fig. 1 and the other vertices involved, which appear as a
consequence of consideringφ(2170) as aφf0(980) state.

In Ref. [8], the values (in eV) for the productsBrΓe+e−
R

are

Br[φR → K+(1460)K−]Γe+e−
R = 3.0± 3.8,

Br[φR → K+
1 (1400)K−]Γe+e−

R

=
{

4.7± 3.3, Solution 1
98.8± 7.8, Solution 2

,

Br[φR → K+
1 (1270)K−]Γe+e−

R

=
{

7.6± 3.7, Solution 1
152.6± 14.2, Solution 2

. (15)

As we can see in the preceding equation, two possible solu-
tions forBrΓe+e−

R from the fits to the data were obtained in
Ref. [8] in case of the processesφ(2170) → K+

1 (1400)K−,
K+

1 (1270)K−. Using Eq. (15), we can determine the ex-
perimental values for theB1, B2 andB3 ratios of Eq. (14),
getting

Bexp
1 =

{
0.64± 0.92, Solution 1,
0.03± 0.04, Solution 2,

Bexp
2 =

{
0.40± 0.54, Solution 1,
0.02± 0.03, Solution 2,

Bexp
3 =

{
1.62± 1.38, Solution 1,
1.55± 0.19, Solution 2.

(16)

Using now the decay widths listed in Tables II-IV, we can
determine the ratios in Eqs. (12), (13), (14). The results are
given in Tables V-VII. Since the decay widths obtained in this
work do not depend much on the form factors considered, the
values presented for the ratios correspond to the average of
the results obtained with different form factors.

Since the ratioB1 (see Eq. (12)) involves the decay width
of φ(2170) → K+

1 (1400)K−, it can be calculated within the

Supl. Rev. Mex. Fis.3 0308071
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TABLE V. Results for the branching ratioB1. The label “Experi-
ment” refers to the values given in Eq. (16).

B1

Our results
Model B 0.62± 0.20

Model C 0.11± 0.04

Experiment
Solution 1 0.64± 0.92

Solution 2 0.03± 0.04

TABLE VI. Results for the ratioB2. The label “Experiment” refers
to the values given in Eq. (16).

B2

Our results

Model A

1.3± 0.4 (Polesz1, z2)

3.6± 1.2 (Polez1)

8.8± 2.8 (Polez2)

Model B 16± 6

Model C

1.2± 0.4 (SolutionS1)

0.12± 0.04 (SolutionS2)

0.05± 0.02 (SolutionS3)

Experiment
Solution 1 0.40± 0.54

Solution 2 0.02± 0.03

TABLE VII. Results for the ratioB3. The label “Experiment”
refers to the values given in Eq. (16).

B3

Our results

Model B 0.04± 0.01

Model C

0.09± 0.02 (SolutionS1)

0.96± 0.16 (SolutionS2)

2.40± 0.40 (SolutionS3)

Experiment
Solution 1 1.62± 1.38

Solution 2 1.55± 0.19

models B and C. In the former case, the results obtained are
compatible with the experimental value related to solution
1, while in the latter case, the results are closer to the ex-
perimental value determined from solution 2. Note that, as
a consequence of the uncertainty present in the experimen-
tal data, the results obtained within the model C can also be
compatible with the value found from solution 1.

The value ofB2, as can be seen from Table VI, depends
on the description considered forK+

1 (1270). Within model
A (in this case,K1(1270) has a double pole structure), and

considering the interference between the two poles, we ob-
tain a value which is closer to the upper limit for this ratio
determined with solution 1 of the BESIII collaboration. In-
terestingly, we find that the contribution from the individual
poles ofK+

1 (1270) produces a larger value forB2, which
is not compatible with the experimental value. Within the
model B, the values determined forB2 are not compatible
with those obtained from the experimental data. In case of
model C, solutionsS2 andS3 produce a value forB2 which
is compatible with solution 2 of Ref. [8] while solutionS1

produces a value compatible with solution 1 of Ref. [8].
In Table VII we find the results for the ratioB3. Note

that this ratio involves the decay width ofφ(2170) →
K+

1 (1400)K−, thus, we can evaluate it within models B and
C. Although, because of the similarity between the decay
width for φ(2170) → K+

1 (1270)K− within model A (con-
sidering the superposition of two poles forK1(1270)) and
solutionS1 of model C, it can be inferred that the ratioB3

(under solutionS1 in Table VII) represents the result for both
cases. It can be said, then, that for solutionS1, as well as
for model A, the results can be considered to be closer to the
lower limit of solution 1 presented in Table VII. SolutionsS2

andS3 of model C are compatible with the data.
In this way, we find that consideringφ(2170) as a

φf0(980) molecular states provides a good description of the
ratiosB1, B2 andB3 found from the experimental data on
BrΓe+e−

R of Ref. [8]. Further experimental data with higher
statistics can be very helpful in drawing more robust conclu-
sions on the properties ofK1(1270) andK1(1400). The par-
tial decay widths provided in the present work can be useful
for future experimental investigations.
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6 A. MARTÍNEZ TORRES, B. B. MALABARBA, X.-L. REN, AND K. P. KHEMCHANDANI

6. G. J. Ding and M. L. Yan,Phys. Lett. B657(2007) 49-54.

7. Z. G. Wang,Nucl. Phys. A791(2007) 106-116.

8. M. Ablikim et al.[BESIII], Phys. Rev. Lett.124(2020) 112001.

9. A. Martinez Torres, K. P. Khemchandani, L. S. Geng, M. Nap-
suciale and E. Oset,Phys. Rev. D78 (2008) 074031.

10. B. B. Malabarba, X. L. Ren, K. P. Khemchandani and A. Mar-
tinez Torres,Phys. Rev. D103(2021) 016018.

11. A. Martinez Torres, D. Jido and Y. Kanada-En’yo,Phys. Rev. C
83 (2011) 065205.

12. M. Albaladejo, J. A. Oller and L. Roca,Phys. Rev. D82 (2010)
094019.

13. I. Filikhin, R. Y. Kezerashvili, V. M. Suslov, S. M. Tsiklauri
and B. Vlahovic,Phys. Rev. D102(2020) 094027.

14. X. Zhang, C. Hanhart, U. G. Meißner and J. J. Xie, Remarks
on non-perturbative three–body dynamics and its application to
theKKK̄ system, [arXiv:2107.03168 [hep-ph]].

15. L. Roca, E. Oset and J. Singh,Phys. Rev. D72 (2005) 014002.

16. L. S. Geng, E. Oset, L. Roca and J. A. Oller,Phys. Rev. D75
(2007) 014017.

17. J. E. Palomar, L. Roca, E. Oset and M. J. Vicente Vacas,Nucl.
Phys. A729(2003) 743-768.

18. J. A. Oller and E. Oset,Nucl. Phys. A620(1997) 438-456, [er-
ratum:Nucl. Phys. A652(1999) 407-409]

19. P. A. Zyla et al. [Particle Data Group],PTEP 2020 (2020
083C01).

20. M. Bando, T. Kugo and K. Yamawaki,Phys. Rept.164 (1988)
217-314.

21. D. Gamermann, J. Nieves, E. Oset and E. Ruiz Arriola,Phys.
Rev. D81 (2010) 014029

Supl. Rev. Mex. Fis.3 0308071


