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Elastic meson form factors in a unified scheme
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The extraction of elastic form factors for mesons in the context of the contact interaction model is revisited in this manuscript. The dressed
masses of quarks and mesons are determined through the gap and Bethe-Salpeter equations. The generic elastic scattering processMγ → M
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1. Introduction

The correct and precise description of hadron properties from
first principles is a very difficult task. Perturbative quantum
chromodynamics (QCD) helps us understand with great pre-
cision the Standard Model of particle physics in the regime
of asymptotic freedom. However, hadrons are manifestations
of other emergent properties of QCD, namely, the dynamical
chiral symmetry breaking (DCSB) and confinement. A stan-
dard method to investigate the internal structure of hadrons is
by the extraction of their form factors (FF). The prediction of
perturbative QCD for helicity zero meson FF [1], shows that
there existsQ0 > ΛQCD, such that

Q2F0−(Q2)
Q2>Q2

0≈ 16παs(Q2)f2
0−w2

0−(Q2), (1)

wheref0− is the meson’s leptonic decay constant,αs(Q2) is
the leading-order strong running-coupling and

w0−(Q2) =
1
3

1∫

0

dx
1
x

ϕ0−(x;Q2) , (2)

whereϕ0−(x; Q2) is the meson’s dressed-valence-quark par-
ton distribution amplitude. In this work, the elastic scattering
processMγ → M between a mesonM and a photonγ is
analyzed, with the purpose of extracting information on the
internal structure of mesons.

We start by providing the key ingredients for the calcula-
tion of the FF of mesons in the contact interaction (CI) model.

Firstly, the dressed mass of the constituent quarks is calcu-
lated in this model. Then, the solution of the Bethe-Salpeter
equation (BSE) to compute the meson masses is detailed. Fi-
nally, we extract the FF of mesons and determine their charge
radii in this unified scheme.

2. Contact interaction and the gap equation

To study the internal structure of mesons in theMγ → M
process, we first need to determine the dressed mass of the
quarks which constitute the probed meson. In the CI model,
it is calculated through solving the gap equation for the quark
propagator, given by

S(p,Mq)−1 = iγ · p + mq +
∫

d4q

(2π)4
g2Dµν(p− q)

× λa

2
γµS(q, m)

λa

2
Γν(q, p) , (3)

whereS(p,m) = (p2 + m2)−1 is the quark propagator,Mq

is the dressed quark mass,mq is its current value,γµ andλa

are the Dirac and Gell-Mann matrices respectively,Γν is the
quark-gluon vertex andDµν is the gluon propagator. In per-
haps the simplest truncation scheme, we considerΓν ≡ γν .
To solve Eq. (3) analytically, we use the CI model. Hence the
gluon propagator takes the form [2],

g2Dµν(p− q) = δµν
1

m2
G

, (4)
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with mG being the gluon mass parameter. The solution of
Eq. (3) gives dressed masses of the quarks. They are found
by solving the transcendental gap equation,

Mq = mq +
Mq

3π2m2
G

Ciu(M2
q ) , (5)

where Ciu(x)/x ≡ Γ(−1, x τUV) − Γ(−1, x τIR), with
Γ(a, b) the upper incomplete gamma function, andτIR and
τUV parameters that regularize the integral [3,4].

3. Bethe-Salpeter equation

Meson masses are computed through the BSE. This equation,
in the CI model, reads as [5],

Γ(k; P ) = −4
3

1
m2

G

∫
d4

(2π)4
γµχ(q; P )γµ , (6)

whereχ(q;P ) = S(q + P )Γ(q; P )S(q) andΓ(q;P ) is the
Bethe-Salpeter amplitude (BSA),k is the external relative
momentum andP the four momentum of the meson. Eq. (3)
can be represented diagrammatically as Fig. 1.

We remark that the BSAs are necessary for the calculation
of theMγ → M process in our approach. They encode the
interaction properties between the meson and its constituent
quarks. In the context of the CI, the BSA can be decomposed
as,

ΓH(P ) = AH(P )EH(P ) + BH(P )FH(P ) , (7)

with H = S, PS, V, AV, representing the four kinds of
mesons: Scalar (S), Pseudoscalar (PS), Vector (V) and Axial-
Vector (AV).

The coefficientsAH andBH are functions of Dirac ma-
trices, P , and the reduced mass of the constituent quarks,
MR = MqMq̄′/(Mq + Mq̄′). The tensor structure used in
this work is shown in Table 1.

In the case of pseudoscalar mesons the BSE can be writ-
ten in terms ofEPS andFPS as
[

EPS(P )
FPS(P )

]
=

4α̂IR

3π

[ KPS
EE KPS

EF

KPS
FE KPS

FF

] [
EPS(P )
FPS(P )

]
, (8)

TABLE I. BSA for scalar, pseudoscalar, vector and axial-vector
mesons. In here,γT

µ satisfiesγT
µ P µ = 0.

BSA A(P ) B(P )

ΓS i ID –

ΓPS i γ5
1

2MR
γ5(γ · P )

ΓV
µ γT

µ –

ΓAV
µ γ5 γT

µ –

FIGURE 1. Diagrammatic representation of the BSE. Blue (solid)
circles represent dressed quark propagatorsS, red (solid) circle is
the meson BSA and the blue (solid) rectangle is the dressed-quark-
antiquark scattering kernelK.

whereα̂IR = αIR/m2
g = 1/(4πm2

G), with mg = 500 MeV
the mass of the gluon generated dynamically in QCD [6] and,

KPS
EE =

1∫

0

dα
{Ciu(ω1)

+(MqMq̄′ − α(1− α)P 2 − ω1) Ciu

1 (ω1)
}

, (9)

KPS
EF =

P 2

2MR

1∫

0

dα((1− α)Mq̄′ + α Mq)Ciu

1 (ω1), (10)

KPS
FE =

2M2
R

P 2
KPS

EF , (11)

KPS
FF =

1
2

1∫

0

dα((α− 1)M2
q̄′ −MqMq̄′ − αM2

q )

× Ciu

1 (ω1), (12)

whereω1 = M2
q̄′ + αM2

q + α(1 − α)P 2 and Ciu

1 (z) =
Ciu
1 (z)/z = Γ(0, z τUV) − Γ(0, z τIR). Finally, the eigen-

value equation, Eq. (8), has a solution atP 2 = −m2
H . In the

case of vector, axial-vector and scalar mesons, respectively,
the BSE read as

KV(P 2) =
2α̂IR

3π

1∫

0

dαLV(P 2)Ciu

1 (ω1), (13)

KAV(P 2) =
2α̂IR

3π

1∫

0

dα(Ciu
1 (ω1) + LG(P 2)Ciu

1 (ω1)),

(14)

KS(P 2) =
4α̂IR

3π

1∫

0

dα
[
LG(P 2)Ciu

1 (ω1)

−
(
Ciu(ω1)− Ciu

1 (ω1)
)]

, (15)
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where

LV(P 2) = Mq̄′Mq − (1− α)M2
q̄′

− αM2
q − 2α(1− α)P 2, (16)

LG(P 2) = MqMq̄′ + α(1− α)P 2. (17)

The solutions of Eqs. (13)-(15) provide masses of the vector
(mV), axial-vector (mAV) and scalar (mS) mesons when,

1 + (−1)iKj(−m2
j ) = 0, (18)

with i = {0, 1, 0} for j = {S, V,AV}, respectively.
The procedure described above provides good phe-

nomenological results in the case of vector mesons and
flavour non-singlet pseudoscalar meson ground-states [7–
11]. For the parity partners, spin-orbit repulsion has to be
taken into account [12–16]. In the CI, a phenomenological
couplinggSO < 1 is introduced as a multiplicative common
factor to the kernels. The numerical values for mesons with
J = 0+, 1+ are [17],

g0+

SO = 0.32 , g1+

SO = 0.25 . (19)

To conclude this section, it is important to remark that the
solutions of Eq. (8) and Eqs. (13)-(15) constrain the values
of EH andFH . These quantities in turn are crucial in subse-
quently computing the elastic FF of mesons.

4. Elastic form factors of mesons

Elastic meson FF are calculated from the triangle diagram for
Mγ → M , with a quark and an anti-quark circulating in the
loop, see Fig. 2. We point out that in this article the meson is
considered to be made of two differently flavoured quarks.

FIGURE 2. Feynman diagram for theMγM vertex which permits
the extraction of elastic meson FF of all mesons. Labelling of in-
ternal momenta is included in the diagram.

Considering that the photon interacts with the quark while
the anti-quark is a spectator, Feynman rules permit us to write
this process as,

Λ(ν)µ(α) = 2 Nc Tr
[
iΓM

(ν)(−p2)SF (t + p2, Mq)Γµ

× SF (t + p1,Mq)iΓM
(α)(p1)SF (t,Mq̄′)

]
, (20)

whereΓµ ≡ iPT (Q2)γµ is the photon-quark dressed vertex,
PT (Q2) is the dressing function [18], and the subscript be-
tween parentheses indicates that the meson may or may not
have Lorentz indices,i.e. Λµ shall be understood for scalar
and pseudoscalar mesons andΛνµα shall be used for vector
and axial-vector mesons. The dressing function is given by
PT (Q2) = (1 + Kγ(Q2))−1, where

Kγ(Q2) =
1

3π2m2
G

1∫

0

dα α(1− α)Q2C1(ω) , (21)

with ω = M2
q + α(1− α)Q2.

In the case of scalar and pseudoscalar mesons, there is
only one electromagnetic FF,F em

S,PS. On the other hand, vec-
tor and axial-vector mesons have three form factors due to
their tensor structure,F 1,2,3

V,AV [19]. In terms of these FFs, the
electric (GE), magnetic (GM ) and quadrupole (GQ) FFs are

GE = F 1 +
2
3
ηGQ , GM = −F 2 , (22)

GQ = F 1 + F 2 + (1 + η)F 3 , (23)

whereη ≡ Q2/(4m2
H) andmH is the meson mass. After

detailed analytical calculations, all FF can be written as,

F j
i (Q2) =

1∫

0

dα dβ α

×
(
Aj

i C1(ω2) + (Bj
i −Aj

i ω2) C2(ω2)
)

, (24)

with i = {S, PS, V, AV} and j = {em} for the scalar
and pseudoscalar mesons scenario andj = {1, 2, 3} for the
vector and axial-vector mesons case. In addition,C2(z) =(
exp(−z τ2

UV)− exp(−z τ2
IR)

)
/(2z) andω2 = α M2

q +(1−
α)M2

q′−α(1−α)M2
H +α2 β (1−β)Q2. Naturally, the cal-

culation of the FF also yields information of the magnetic
and quadrupole moments for vector and axial-vector mesons,
defined as

Gi
M (Q2 = 0) ≡ µi , Gi

Q(Q2 = 0) ≡ Qi , (25)

with i = {V, AV}, and these results can be also compared
with experimental observation. Note that in the case of
mesons composed of differently flavored quarks, we define
the meson FF,F j

i , as the sum of two contributions since the
photon can interact either with the quark,F j

i , or with the
anti-quark,F̄ j

i . Then [20],

F j
i (Q2) = eqF

j
i (Q2) + eq̄F̄

j
i (Q2) , (26)
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with eq andeq̄ the quark and anti-quark charges respectively.
The procedure described up can readily be adapted for neu-
tral meson with same flavored quarks.

Finally, once the analytic expression of the coefficientsA
andB are obtained, the comparison between the CI model
and the experimental results can also be carried out through
the charge radii of different mesons, computed through the
relation

r2
i ≡

∣∣∣6 d

dQ2
Fi(Q2)

∣∣∣
Q2=0

, i = {S, PS, V,AV} . (27)

This observable can constrain several models for mesons.
The most important feature of the FF is the dependence on
Q2. In Ref. [2], it is pointed out that the behaviour of the
pion electromegnetic FF at largeQ2 tends to a constant value
in the CI. For the rho meson, it turns negative forQ2 ∼ 6
GeV. In this spirit, it would be interesting to delve into the
behaviour of the FF of all kind of mesons in order to under-
stand the predictions of the internal structure through the CI
model.

5. Conclusions

In this document, the extraction of the elastic FF of scalar,
pseudoscalar, vector and axial-vector mesons in the frame-

work of the CI model has been presented in detail. The deter-
mination of the dressed quark and meson masses according to
the gap and BSE helps constrain the parameters of the model.
The study of theMγ → M process is presented in order to
extract the elastic FF of mesons formed with two differently
flavored quarks. Once the general expression is found, the
charge radii of scalar, pseudoscalar, vector and axial-vector
mesons can also be computed and compared with experimen-
tal results. Finally, interesting information such as the mag-
netic and quadrupole moments can also be obtained in order
to establish the extent of validity of the CI model more real-
istically.
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