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Internal structure of pion and kaon: an algebraic model and its implications
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We describe an algebraic approach to address aspects of the structure of pseudo-scalar mesons through their corresponding generalized
parton distributions, from which parton distribution functions and electromagnetic form factors can be derived. A direct relation between
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from the overlap of light-front wave functions.
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1. Introduction

One of the ways to address several aspects of the internal
structure of hadron is by extracting the corresponding gener-
alized parton distrubutions (GPDs) from hard scattering pro-
cesses [1-5]. GPDs provide a three-dimensional picture of
the hadron through their explicit dependence on the momen-
tum fractionx [6] that carries a quark within the hadron, the
longitudinal momentum fraction transfer (ξ) and the momen-
tum transferred to the hadron (t). Thus, a more complete
picture of the mass and momentum distribution within the
hadron can be obtained. Additionally, GPDs are directly re-
lated to the electromagnetic form factors (EFFs) [7] which
are extracted from elastic scattering processes and the parton
distribution functions (PDFs) [3] which are connected to the
deep inelastic scattering processes.

In principle, GPDs can be written in terms of propaga-
tors and amplitudes, obtained within the Schwinger-Dyson
equations (SDEs) formalism [8-10]. However, a fully nu-
merical approach becomes a strenuous task; so, for practi-
cal purposes, models that mimic the numerical solutions of
these equations can be satisfactorily employed instead. In
this work, we present an algebraic model that enables us to
develop several functions of interest in an analytical manner
while preserving close connection with quantum chromody-

namics (QCD). The starting point is the Bethe-Salpeter wave
function (BSWF) expressed by means of theAnsẗazewritten
in terms of this novel algebraic model (AM). Subsequently,
projecting onto the light cone, the light-front wave function
(LFWF) is readily obtained [11]. Its integration on the trans-
verse momentum squared (k⊥) allows us to access the parton
distribution amplitude (PDA) [12]. The GPDs are then de-
rived from the overlap representation [9,10,13]. Our work
is primarily focused on pions and kaons which would be of
central focus in the Electron-Ion Collider. It is augmented
by the fact that we have fairly reliable information of their
PDA, [9,14,15]. Our AM is naturally suited for its extension
to other pseudoscalar mesons such asηc and ηb, and then
hopefully toη andη′.

2. Algebraic Model

The function that describes the bound states of a quark and an
antiquark in QCD is the Bethe-Salpeter (BS) wave function
(WF), which is defined as the BS amplitude (ΓM) sandwiched
between the corresponding quark and antiquark propagators
(Sq,(h̄)) as follows

χM (k−, P ) = Sq(k)ΓM (k−, P )Sh̄ (k − P ) , (1)



2 I. M. HIGUERA, L. ALBINO, K. RAYA AND A. BASHIR

wherek− = k − P/2, P 2 = −m2
M is the mass of a meson

M = |q q̄〉 and the valence quark and antiquark flavors are
denoted by the labelsq andh̄.

The quark propagator and the BS amplitude (BSA) can be
obtained from solutions of the corresponding SDEs. How-
ever, one can construct simpler yet effective models which
capture the important non-perturbative essence of QCD and
at the same time allow for a less cumbersome description of
the internal structure of the mesons of our interest. However,
instead of coining an algebraic model for each individual me-
son, we propose one which has the potential to provide a uni-
fied description of all pseudoscalar mesons:

Sq(h̄)(k) =
[
−iγ · k + Mq(h̄)

]
∆

(
k2,M2

q(h̄)

)
, (2)

nMΓM(k, P ) = iγ5

1∫

−1

dw ρM(w)
[
∆̂

(
k2

w, Λ2
w

)]ν

, (3)

∆(s, t) = (s+ t)−1, ∆̂(s, t) = t∆(s, t), kw = k +(w/2)P .

Here,Mq(h̄) corresponds to the constituent mass of the
quark (antiquark)q(h̄), nM is a normalization constant, and
ρM(w) is the spectral density, whose shape determines the
pointwise behavior of the BSA. Moreover, the parameter
ν > −1 controls the asymptotic behavior of the BSA. And
finally, Λ2

w ≡ Λ2(w) is defined as follows:

Λ2(w) = M2
q −

1
4

(
1− w2

)
m2

M

+
1
2

(1− w)
(
M2

h̄ −M2
q

)
. (4)

The explicit dependence onw on one hand helps us simplify
the algebra and obtain closed expressions between different
key functions, and on the other, introduce a convenient gen-
erality. Using Eqs. (1)-(3), the BSWF becomes

nMχM(k−, P )=Mq,h̄(k, P )

1∫

−1

dw ρ̃ ν
M(w)D ν

q,h̄(k, P ) , (5)

whereMq,h̄(k = p + P, P ) is the tensor structure that char-
acterizesχM (k, P ) and the functionD ν

q,q̄(k, P ) is a product
of quadratic denominators. Without loss of generality,ρ̃ ν

M(w)
has been defined in terms of the spectral density as

ρ̃ ν
M(w) ≡ ρM(w)Λ2ν

w . (6)

Introducing Feynman parameterization in Eq. (5), it is possi-
ble to combine the denominators ofD ν

q,q̄(k, P ). Thanks to an
ingenious change of variables and reorganization of the order
of integration, it is possible to integratek⊥ as well as one of
the Feynman parameters, resulting in the following form of

the BSWF:

nMχM(k−, P ) = Mq,h̄(k, P )
∫

01dαFM(α, σν+2) , (7)

FM(α, σν+2) = 2ν(ν + 1)

[ 1−2α∫

−1

dw

(
α

1− w

)ν

+

1∫

1−2α

dw

(
1− α

1 + w

)ν
]

ρ̃ ν
M(w)
σν+2

, (8)

whereσ = (k−αP )2 +Λ2
1−2α, andα is a Feynman parame-

ter. This expression allows us to obtain key functions directly
and analytically as we will shortly see.

3. Light front wave functions

The leading-twist light-front wave function for a pseu-
doscalar meson is obtained by projecting the BSWF onto the
light front:

ψq
M

(
x, k2

⊥
)

= tr
∫

dk‖

δx
n(kM)γ5γ · n χM(k−, P ) , (9)

whereδx
n(kM) = δ(n · k − xn · P ), n is the light-like four-

vector, so it must satisfy thatn2 = 0 andn · P = −mM . As
usual,x corresponds to the momentum fraction of the quark.
The trace is taken on the color and the Dirac indices. We
employ the notation

∫
dk‖

≡ ∫
d2k‖/π.

On the other hand, the distribution of Mellin moments for
the LFWF allows us to write:

〈xm〉ψq

M
=

1∫

0

dx xm ψq
M

(
x, k2

⊥
)

. (10)

Then, from the Eqs. (7)-(10), one readily arrives at

〈xm〉qψM
= tr

1
n · P

∫

dk‖

[
n · k
n · P

]m

γ5γ · nχM(k−, P )

=

1∫

0

dααm

[
12
nM

YM(α, σν+1
⊥ )

ν + 1

]
, (11)

where

YM(α, σν+1
⊥ ) = FM(α, σν+1

⊥ )(αMh̄ + (1− α)Mq) , (12)

with σ⊥ = k2
⊥ + Λ2

1−2α. Comparing Eqs. (10)-(11) we can
observe the peculiarity that by identifying the Feynman pa-
rameterα with the momentum fractionx, and as a conse-
quence of the uniqueness of the Mellin moments, the LFWF
reads:

ψq
M(x, k2

⊥) =
[

12
nM

YM(x, σν+1
⊥ )

ν + 1

]
. (13)
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The form of this equation will help us in the following alge-
braic manipulations. However, what will allow further devel-
opment and obtaining direct relationship between all distri-
bution functions with the PDAs is the ingenuous dependence
of Λw onw, as we explain in next sections.

4. Parton distribution amplitudes

The immediate connection between the LFWF and PDA is
revealed by integration of thek⊥ degrees of freedom of
ψq

M(x, k⊥), namely

fMφq
M(x) =

1
16π3

∫
d2k⊥ψq

M

(
x, k2

⊥
)

, (14)

wherefM is the leptonic decay constant corresponding to the
mesonM. To calculate the integral overk⊥ we observe that
in the Eqs. (8) and (13), only 1/σν+1

⊥ depends onk⊥.
Integrating and rearranging terms, the following direct re-

lationship between the LFWF and the PDA is obtained:

ψq
M(x, k2

⊥) = 16π2fM
νΛ2ν

1−2x

(k2
⊥ + Λ2

1−2x)ν+1
φq

M(x) , (15)

where, it must be true that
∫ 1

0
dxφq

M(x) = 1. The above
expression is a special merit of the AM that we have put for-
ward. It expresses the fact that given a PDA it is trivial to
obtain its corresponding LFWF, without the need to find or
propose a spectral densitỹρ ν(w).

The LFWF and the PDA depend on an intrinsic mass
scaleζ, where

φq
M(x; ζ) = φh̄

M(1− x; ζ) . (16)

In the next section, we will be able to exploit this result,
Eq. (15), to calculate the GPDs by means of the overlap rep-
resentation of the LFWF.

5. Generalized parton distributions

The valence quark GPD at the hadronic scaleζH , can be cal-
culated through the overlap representation of the LFWF as:

Hq
M(x, ξ, t) =

∫
d2k⊥
16π3

ψq∗
M

(
x−, (k−⊥)2

)
ψq

M

(
x+, (k+

⊥)2
)

,

x± =
x± ξ

1± ξ
,k±⊥ = k⊥ ∓ ∆

2
1− x

1± ξ
, (17)

wherep denotes the initial momentum of the meson, whilep′

the final momentum. Note thatP = (p+p′)/2. The quantity
−t = ∆2 = (pp′)2 is the momentum transferred to the me-
son andξ = [−n ·∆]/[2n ·P ] is the longitudinal momentum
fraction transfer also known as the skewness variable. This
overlap representation is only valid in the DGLAP region,
|x| > ξ. Moreover, this function encodes all the properties of
the meson on aζH scale with the quark and antiquark fully

dressed. Expression (17) can be explicitly evaluated by mak-
ing use of Eq. (15):

Hq
M(x, ξ, t) = (16π2fMν)2φq

M(x+)φq
M(x−)Λ2ν

1−2x+Λ2ν
1−2x−

×
∫

d2k⊥
16π3

1
[((k−⊥)2 + Λ2

1−2x−)((k+
⊥)2 + Λ2

1−2x+)]ν+1
.

(18)

Once more, to integratek⊥ we introduce Feynman parame-
terization and perform a change of variable. Once the inte-
gration is done, the GPD can be rewritten as:

Hq
M(x, ξ, t) = Nφq

M(x+)φq
M(x−)Λ2ν

1−2x+Λ2ν
1−2x−

× Γ(2ν + 2)
Γ2(ν + 1)

1∫

0

du
uν(1− u)ν

[M2(u)]2ν+1
, (19)

whereM2(u) = c2u
2 + c1u + c0, with

c2 =
(1− x)2

(1− ξ2)2
t,

c1 = − (1− x)2

(1− ξ2)2
t + Λ2

1−2x+ − Λ2
1−2x− ,

c0 = Λ2
1−2x− . (20)

The integration overdu in Eq. (19) is doable for values of
ν > −1. Note that if we takeξ = 0, we can obtain an al-
gebraic solution for the GPD by doing an expansion around
−t ≈ 0, which yields

Hq
M(x, 0, t)

t→0≈ N φq2
M

Λ2
1−2x

[
1−c(1)

ν (1−x)2
( −t

Λ2
1−2x

)
+ ...

]
,

c(1)
ν =

(1 + ν)(1 + 2ν)
2(3 + 2ν)

. (21)

These results will be useful for the following sections.

6. Parton distribution functions

The PDF of the valence quark is defined as theforward limit
of the GPD (t = 0, ξ = 0). It is thus the first term of the
expansion in Eq. (21)

qM(x) ≡ Hq
M(x, 0, 0) = N φq2

M (x)
Λ2

1−2x

, (22)

whereN =
(

1∫
0

dx [φ2
M(x)/Λ2

1−2x]
)−1

is the normalization

constant of the PDF. It should be noted that in the chiral limit
on the LFWF, Eq. (15), the dependence onk⊥ andx is fac-
torized. It leads to the following expression for the PDF

qM(x; ζH) =
φq2

M (x; ζH)∫ 1

0
dx φq2

M (x; ζH)
. (23)
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In this way, we observe that the degree of factorizability of
the AM depends entirely onΛ2

1−2x. Moreover, for the case
where there is isospin symmetry,Λ2

1−2x becomes only a con-
stant and we obtain a factorized LFWF that will provide sen-
sible results. However, we focus on the general case.

FIGURE 1. Parton distribution functions corresponding to pion and
kaon. The solid (blue) curve is the PDA of the pion and the dotted
(cyan) line is the PDA of the kaon [12]. The dashed (black) line is
the PDA in the asymptotic limit.

FIGURE 2. Pion and kaon elastic form factors obtained from
Eqs. (19), (24) and (26). In both cases the purple band between
solid lines represents to our results of the AM, wich corresponds to
the pion and kaon respectively, whereMu = 316.8 MeV,Ms/Mu

= 1.813 andν=1 with a 5% of variation around the charge radius
(rπ = 0.659 fm andrK= 0.6 fm). Furthermore, in the upper panel
circles, squars [16] and diamonds are experimental data results and
the dashed (black) line represents SDE results [17], while in the
lower panel diamonds [18] and squars [19] are experimental data
results and the gray band correspond to SDE results [20].

7. Electromagnetic form factor

The EFF corresponding to the quarkq of the meson, is related
to the GPD as follows:

F q
M(t) =

1∫

−1

dx Hq
M(x, ξ, t). (24)

Thus, for the complete meson, the form factor would be

FM(t) = eqF
q
M(t) + eh̄F h̄

M(t) , (25)

whereeq,h̄ are the electric charges of the constituent valence
quarks that are in units of positron charge. On the other hand,
the GPD has polynomial properties that make the EFF inde-
pendent ofξ. We can thus takeξ → 0.

F q
M(t) =

1∫

0

dx Hq
M(x, 0, t) . (26)

Furthermore, in the symmetric limit of isospin,FM(t) =
F q

M(t). Using a Taylor expansion of the EFF, the charge ra-
dius (r2

M) can be expressed as

r2
M = −6

dF (t)
dt

∣∣∣∣
t=0

. (27)

From this expression, and considering Eqs. (21), (25) and
(26), we can get the following expression for the charge ra-
dius:

r2
M=6c(1)

ν

1∫

0

dx

[
eq

qM(x)
Λ2

1−2x

+eh̄

qM(1− x)
Λ2

2x−1

]
(1−x)2 . (28)

As we have mentioned earlier, in the symmetric limit of
isospinΛ2

1−2x becomes a constant. The charge radius would
then be directly related to the PDF and the PDA.

8. Conclusions

We have developed an SDE-inspired algebraic model that in-
genuously allows us to obtain expressions relating the pseu-
doscalar mesons LFWFs with their corresponding PDAs. We
subsequently derive GPDs, PDFs and EFFs in a completely
analytical manner. We use parameterized expressions of the
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PDAs corresponding to the pion and the kaon which are
shown in Fig. 1 to construct GDPs and then extract EFF dis-
played in Fig. 2. We compare our results with the experi-
mental data as well as with results obtained by means of the
SDE [16-20]. One can immediately observe excellent agree-
ment. Within the uncertainty band, our results coincide with
almost all the experimental data as well as with the results
obtained from the full SDE treatment for values oft less than
2 GeV. For higher values oft, it only differs minimally. How-

ever, it has the same behavior, while for the kaon all the ex-
perimental data coincide with our band. The results from the
direct SDE again coincide with ours for small values oft. For
values greater than 1 GeV, it follows the same qualitative be-
havior although it differs slightly as compared to the results
enclosed within our band. Although we have focused entirely
on pion and kaon, our model allows, with prior knowledge of
PDA, to systematically derive GPDs and other functions of
interest for all pseudoscalar mesons.

1. A. V. Radyushkin, Scaling limit of deeply virtual Compton
scattering.Phys. Lett. B, 380(1996) 417.

2. Xiang-Dong Ji. Gauge-Invariant Decomposition of Nucleon
Spin.Phys. Rev. Lett., 78 (1997) 610.

3. M. Burkardt, Impact parameter space interpretation for gener-
alized parton distributions.Int. J. Mod. Phys. A, 18 (2003) 173.

4. M. Diehl, Generalized parton distributions.Phys. Rept.,388
(2003) 41.

5. A. V. Belitsky and A. V. Radyushkin, Unraveling hadron struc-
ture with generalized parton distributions.Phys. Rept.,418
(2005) 1.

6. M. Burkardt, Impact parameter dependent parton distributions
and off forward parton distributions for zeta→ 0. Phys. Rev. D,
62 (2000) 071503, [Erratum:Phys.Rev.D66, (2002) 119903].

7. M. Guidal, M. V. Polyakov, A. V. Radyushkin, and M. Vander-
haeghen, Nucleon form-factors from generalized parton distri-
butions.Phys. Rev. D, 72 (2005) 054013.

8. C. Mezrag, H. Moutarde, J. Rodrı́guez-Quintero, and F.
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