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Dark matter and neutrinos in Left-Right Mirror Model with Z2 symmetry
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We discussed the feasibility of including dark matter in the Left-Right Mirror Model with an additional discreteZ2 symmetry. TheZ2

symmetry helps to prevent any decay of the possible dark matter candidate, that is, guarantees the stability of the dark matter. The dark
matter candidate is proposed as the lightest mirror neutrino. ThisZ2 discrete symmetry not only guarantees the stability of the dark matter
but also controls the free parameters of the model such that they are significantly reduced. Then, mass spectrum of neutrinos is also discussed
in two possible scenarios obtained by assigning charge underZ2 symmetry. For one of the scenarios we obtain the relic density for the dark
matter candidate and the spin independent scattering cross section between dark matter and proton (neutron).

Keywords: Dark matter; models beyond the standard model; neutrino mass and mixing; non-standard neutrinos.

DOI: https://doi.org/10.31349/SuplRevMexFis.3.020725

1. Introduction

Models with Left-Right (LR) symmetry are based on in-
creasing the gauge symmetry by including aSU(2) symme-
try group analogous to theSU(2)L symmetry group [1, 2].
This group named asSU(2)R will assign the chiral right
fermion fields in representation of doublets while the chiral
left fermion fields will be assigned as singlets, that is, an in-
verse assignment for the chiral projections inSU(2)L. We
consider the LR model which includes the same amount of
left fermions as right fermions [3–5]. New fermions are in-
cluded such that the right (left) projections are doublets (sin-
glets) underSU(2)R. These fermions are named as mirror
fermions and the model is known as Left-Right Mirror Model
(LRMM). Note that mirror and ordinary fermions will share
new hypercharge (Y ′) and color interactions. The Table I
shows the field content of the LRMM that we will study in
this work. The circumflex notation (∧ symbol) will be used to
identify the mirror fermions and the latin indices run for the
three generations. The Table I not only shows the fermions
but also shows the content of scalar fields of the model. For
the scalar sector, only two doublets are considered, one (Φ̂)
is responsible to break theSU(2)R while the other one (Φ)
breaks theSU(2)L.

2. Masses and mixing

In this section we will present how neutrinos acquire masses
as well as it is for neutral scalars and gauge bosons. The im-
portance of introducing neutral scalars and gauge bosons lies
in the fact that they will be the main channels for the study
of the annihilation of Dark Matter (DM) and Spin Indepen-
dent (SI) nucleon cross section. We also present the mixing
between neutral fields, for the neutrinos, scalar and gauge
sector. We closely follow the notation and model presented
in Refs. [1–4].

TABLE I. The bold numbers denote the dimensions of representa-
tions of SU(3)C , SU(2)L andSU(2)R. The hyperchargeY is
related withY ′ asY/2 = T3R + Y ′/2.

Field SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)Y ′

`iL (1, 2, 1, −1)

νiR (1, 1, 1, 0)

eiR (1, 1, 1, −2)

ν̂iL (1, 1, 1, 0)

êiL (1, 1, 1, −2)

l̂iR (1, 1, 2, −1)

uiR (3, 1, 1, 4/3)

diR (3, 1, 1, 2/3)

ûiL (3, 1, 1, 4/3)

d̂iL (3, 1, 1, 2/3)

qo
iL (3, 2, 1, 1/3)

q̂iR (3, 1, 2, 1/3)

Φ (1, 2, 1, −1)

Φ̂ (1, 1, 2, −1)

First of all, let us introduce gauge symmetry breaking,
which takes place in two stages. In the first stage theSU(2)R

symmetry is broken through thêΦ. For the second stage the
symmetry breaking is achieved by theΦ, as it happens in the
Standard Model (SM). The spontaneous breaking of symme-
try can be represented as

SU(2)L ⊗ SU(2)R ⊗ U(1)Y ′
〈Φ̂〉−−→

SU(2)L ⊗ U(1)Y
〈Φ〉−−→ U(1)EM, (1)

where the vacuum expectation values (VEV’s) of the Higgs
field are〈Φ〉T =

(
0, v/

√
2
)

and 〈Φ̂〉T =
(
0, v̂/

√
2
)

for
v = 246 GeV and the value for̂v must satisfŷv > v.
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The masses of the scalars are obtained from the scalar po-
tential. If we impose the invariance under gauge and parity
symmetries, then scalar potential can be written as simple as

V = −
(
µ2

1Φ
†Φ + µ2

2Φ̂
†Φ̂

)

+
λ1

2

[(
Φ†Φ

)2
+

(
Φ̂†Φ̂

)2
]

+ λ2

(
Φ†Φ

) (
Φ̂†Φ̂

)
.

In order to respect the parity symmetry we assumeµ1 = µ2.
After the symmetry breaking, the neutral Higgs boson

squared masses are

m2
H,Ĥ

= λ1

(
v2 + v̂2

)∓
√

λ1 (v2 + v̂2)2 + 4λ2v2v̂2. (2)

For neutral scalars their weak and mass eigenstates are re-
lated with the mixing angle, denoted byα, which is given by
tan(2α) = 2λ2vv̂/λ1(v2 − v̂2).

The masses for the gauge bosons are obtained from the
kinetic terms for scalars in the Lagrangian

Lscalar= (DµΦ)† (DµΦ) +
(
D̂µΦ̂

)† (
D̂µΦ̂

)
, (3)

whereDµ andD̂µ denote the covariant derivatives associated
with g2 andĝ2 gauge coupling constants, respectively. After
substituting the VEV’s in the Lagrangian given by Eq. (3) and
change to physical basis with rotation matrix, the expressions
for Z andZ ′ masses are

MZ,Z′ =
1
2

[
v2

(
g2
2 + g2

1

)
+ v̂2

(
ĝ2
2 + g2

1

)]∓ 1
2

√
[v2 (g2

2 + g2
1) + v̂2 (ĝ2

2 + g2
1)]2 − 4v2v̂2 (g2

2g2
1 + g2

2 ĝ2
2 + ĝ2

2g2
1). (4)

For the neutral gauge bosons there are three mixing pa-
rameters in the orthogonal matrix that diagonalizes the mass
matrix. The orthogonal matrix can be written byR =
RZZ′RAZ′RZA, whereRXY , for X, Y = A,Z, Z ′ is a rota-
tion matrix for two different gauge bosons between gauge and
physical states. The details for the diagonalization method
can be found in Refs. [1, 2]. For the charged gauge bosons
their masses areMW = (1/2)vg2 andMW ′ = (1/2)v̂ĝ2.

Now, for fermion fields, the gauge invariant Yukawa cou-
plings for neutral lepton sector are given by

Lν = hij ν̂iLνjR + χijνiR (νjR)c + χ̂ij ν̂iL (ν̂jL)c

+ σij l̄iLΦ̃ (ν̂jL)c + σ̂ij
¯̂
liR

˜̂Φ (νjR)c

+ λij l̄iLΦ̃νjR + λ̂ij
¯̂
liR

˜̂Φν̂jL + h.c. (5)

WhenΦ and Φ̂ acquire VEV’s the neutrino masses are
written in the generic Majorana matrix

(
ΨνL, Ψc

νL

)(
ML MD

MD MR

)(
ΨνR

Ψc
νR

)
, (6)

where

Ψν(L,R) =
(

νi

ν̂i

)

(L,R)

, (7)

ML =

(
0 v√

2
σij

v√
2
σT

ij χ̂ij

)
, (8)

MR =

(
χij

v̂√
2
σ̂ij

v̂√
2
σ̂T

ij 0

)
, (9)

and

MD =

(
v√
2
λij 0

hij
v̂√
2
λ̂ij

)
. (10)

Until now, the charge assignment underZ2 discrete symme-
try for both fermions and scalars has not yet been defined. In
the next section a convenient assignment will be proposed to
allow that a DM candidate emerges from mirror neutrinos.

3. Neutrinos and dark matter

In general the Yukawa couplings do not guarantee the stabil-
ity of a candidate for DM, in the case that one of the mirror
neutrinos is assumed to play the role of DM. One way to
achieve stability for DM candidate is by including an addi-
tional discrete symmetry, for sake of simplicity, we consider
Z2 symmetry. Naturally, underZ2 symmetry all ordinary
leptons are assigned with an even charge (+1) while mirror
leptons are assigned with an odd charge (−1). The selec-
tion of the charge underZ2 symmetry for the doublet scalar
fields can generate different scenarios, for instance, one in
which both doublets are assigned as even and the second one
in which they are assigned with different charges. Let us de-
fine the following scenarios:

• Φ andΦ̂ even. The Yukawa interactions are invariant
underZ2 if hij = σij = σ̂ij = 0.

• Φ is even and̂Φ odd. The Yukawa interactions are in-
variant underZ2 if hij = σij = λ̂ij = 0.

We first consider the scenario in which both doublets are
even. In this case the ordinary neutrinos can be written sepa-
rately from for mirror neutrinos in the matrix (6) as follows

(
νiL, νc

νR

)
(

0 v√
2
λij

v√
2
λT

ij χij

) (
νc

iL

νjR

)
, (11)

(
ν̂iL, ν̂c

νR

)
(

χ̂ij
v̂√
2
λ̂ij

v̂√
2
λ̂T

ij 0

) (
ν̂c

iL

ν̂jR

)
. (12)
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By assuming the natural hierarchy|λij | ¿ |χij | among the
mass terms, the mass matrix in Eq. (11) can approximately
be diagonalized, yielding

(
νiL, νc

νR

)
(

M light
ν 0
0 Mheavy

ν

)(
νc

iL

νjR

)
, (13)

whereM light
ν ≈ (v2/2)λχ−1λT andMheavy

ν ≈ χ. In general,
the M light

ν matrix is not diagonal and it is not written in the
base of physical states. Taking advantage of the fact that all
λij andχij are free parameters, we parameterize these ma-
trices through the matrixS, such thatS = ST , and by the
parametersm, y, yi, such as

λij = ySij , (14)

and
χij = mD−1

ik Skj , (15)

where D = Diagonal[y1, y2, y3]. Details for the
parametrization method can be reviewed in Refs. [3–5]. The
inverse matriz forχ can be found as

χ−1 =
1
m

S−1D . (16)

We substitute Eqs. (14) and (16) to write theM light
ν matrix

in terms of theS andD matrices. Then, the matrix for light
neutrinos is written as

M light
ν =

v2y2

2m
SD. (17)

In order to diagonalizeM light
ν we use the PNMS matrixUν to

obtain the

Diagonal[mν1 ,mν2 ,mν3 ] =
v2y2

2m
D, (18)

wheremνi are the neutrino masses related with the reported
values for neutrino experiment [6]. In Eq. (18) we must as-
sumeUT

ν SUν = I, which allows us to find the values of
the elements of theS matrix. After solving the system, the
numerical values for elements of theS matrix areS11 =
56.837, S12 = 723.087, S13 = −760.42, S22 = 9560.53,
S23 = −10031.1 andS33 = 10527.7.

Now, the order of magnitude for them, y, yi parameters
can be set with previous assumption|λij | ¿ |χij | and from
Eqs. (14), (15) and (18). If the order of parameters is written
asO(x) ∼ 10nx for x = m, y, yi, S, we obtain the following
relations for the orders of the ordinary and mirror neutrino
masses

nν = 18 + 2ny + nyi − nm, (19)

and
nν̂ = nm + nS − nyi , (20)

respectively. Theny + nyi < nm inequality must hold for
ny,yi,m in Z. Based on this analysis, we fixed the numer-
ical values asm = 1 MeV, y = 2.0 × 10−6 and by taking

into account the reported values for∆m2
sol ∼ 7.5×10−5 eV2

and|∆m2
atm| ∼ 2.5 × 10−5 eV2, the masses of the ordinary

neutrinos arem1 = 0.1207 eV, m2 = 0.1210 eV andm3 =
0.1307 eV for normal hierarchy, meanwhilem3 = 0.1104 eV
for the inverted hierarchy. The heavy neutrinos are directly
proportional to theχ matrix, whose elements were fixed as
parameters of the order of10 ∼ 103 TeV. In the case of mir-
ror neutrinos, we have the mass matrix given in Eq. (12). This
matrix has a structure similar to the structure of the matrix
Eq. (11) but with the difference that the zero matrix is in the
lower part of the diagonal. In this work, for the sake of sim-
plicity, we consider only one generation of mirror neutrinos
which could play the role of DM candidate.

We obtain the relic abundance density and the SI scat-
tering cross section to compare with the reported experimen-
tal values. We implement a routine in micrOMEGAs pack-
age [7] to obtain the relic density for several values ofZ ′ and
Ĥ masses, shown in Fig. 1. The LanHEP package [8] gener-
ates the necessary files associated with LRMM. For the relic
abundance density the reported value is given by PLANCK

FIGURE 1. Relic density for lightest mirror neutrino as dark matter.
The horizontal blue line represents the current reported value from
PLANCK collaboration,Ωch

2 = 0.1200±0.00121 (68 %, Planck
TT,TE,EE+lowE+lensing).

FIGURE 2. Spin independent cross section for the scattering be-
tween dark matter and some nucleon. Yellow region represents the
excluded region reported by XENON1T collaboration.
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collaboration,Ωch
2 = 0.1200 ± 0.00121 [9]. We also take

into account the current reported values from XENON1T col-
laboration [10] in order to find allowed regions by SI scat-
tering cross section. These reported limits depend on the
DM mass, thus we take in good agreement an approxima-
tion shown in Fig. 2. The minimum value forZ ′ mass in the
LR models is of the order of1.3 TeV [6]. We explore mass
values above the minimum value. For theĤ mass, a range of
representative values is considered in Figs. 1 and 2.

4. Conclusions

We research the viability to include both neutrino masses
and DM in LRMM. The masses for neutrino are introduced
through See-Saw mechanism of the type I. The model param-
eters are constrained to explore a benchmark for DM relic
density and SI cross section. The collider constraints for this
model can be review in Ref. [11]. We consider the value
for no baryonic relic density reported by Planck collabora-
tion and XENON1T collaboration limit for SI cross section
to obtain allowed values for the DM candidate mass. We as-
sume that a DM candidate arise from the mirror neutrinos,
in this work only consider one generation. Under reported

values from PLANCK and XENON1T collaborations, we
find that DM masses are viable formZ′ = 1.35 TeV and
mĤ = 0.5, 1.0 TeV. WhenmĤ = 0.5 TeV we obtain two
possible values for the mass of dark matter∼ 230 GeV or
∼ 260 GeV, while formĤ = 1.0 TeV the mass of dark mat-
ter are∼ 480 GeV or∼ 500 GeV, as Fig. 1 shows. The value
for the DM mass of the order of∼ 1000 GeV is excluded by
the Fig. 2.
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