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Global analysis of NSI in exclusive semileptonic tau decays
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We perform a global analysis of exclusive hadronic tau decays into one and two mesons using the low-energy limit of the Standard Model
Effective Field Theory up to dimension six, assuming left-handed neutrinos. A controlled theoretical input on the Standard Model hadronic
form factors, based on chiral symmetry, dispersion relations, data and asymptotic QCD properties, has allowed us to set bounds on the
New Physics (NP) effective couplings using the present experimental data. Our results highlight the importance of semileptonicτ decays
in complementing the traditional low-energy probes, such nuclearβ decays or semileptonic pion and kaon decays, and the high-energy
measurements at LHC scales. This makes yet another reason for considering hadronic tau decays as golden modes at Belle-II.
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1. Introduction

The present work is based on the article [1] that we have pub-
lished recently. More information can also be found in my
PhD thesis [2].

It is well known that tau physics is a clean low energy
laboratory for QCD and also a powerful tool for precision
electroweak studies. Here, we want to show that in addi-
tion, tau physics is a very useful tool to study potential heavy
NP effects. We follow an EFT approach with the low energy
limit of the Standard Model Effective Field Theory (SMEFT)
[3, 4] as the natural framework. Within this frame we con-
struct the most general charged current effective Lagrangian
with dimension six operators, which are dominant. With this
Lagrangian we calculate several interesting observables for
hadronic tau decays into one and two mesons, namely, the
decay rates for the one-meson processesτ− → P−ντ with
P = π, K, and the partial decay widths for the two-meson
decaysτ− → (PP ′)−ντ . Our work divides naturally in
three sections: an analysis for strangeness-conserving de-
cays(∆S = 0), an analysis for strangeness-changing decays
(|∆S| = 1) and finally a global analysis for both sectors si-
multaneously (relying on the well-motivated and experimen-
tally supported hypothesis of minimal flavor violation in the
last case).

Recently, several works [5–9] have studied non-standard
weak charged current interactions in semileptonic tau decays
and they have indicated that these kinds of decays offer an in-
teresting scenario to study effects of heavy NP. These studies
have opened a new window and have shown the importance
of hadronic tau decays in complementing other traditional
low-energy semileptonic probes such as nuclear beta decays,
purely leptonic lepton, pion and kaon decays, and also hy-
peron decays [10–20]. The idea in this work is to take ad-
vantage from our previous individual analyses of tau decays
into two mesons (plus a neutrino) discussed above [5, 6, 8, 9]
and perform in this case a global analysis in the same spirit as

Ref. [7] but taking into account in this case also strangeness-
changing decays and not only strangeness-conserving de-
cays, and also taking into account purely exclusive hadronic
tau decays and not a combination of exclusive and inclusive
semileptonic tau decays as the authors do in Ref. [7].

We organize this article in the following way: we discuss
the theoretical framework in Sec. 2, where we present the
effective Lagrangian that we use and calculate the analyti-
cal expressions for the important observables in our analysis.
Next, in Secs. 3 and 4, we study the bounds on the NP ef-
fective couplings for the strangeness-conserving(∆S = 0)
and the strangeness-changing(|∆S| = 1) transitions, respec-
tively. Then, a simultaneous global fit to the two sectors
(∆S = 0 and |∆S| = 1), is studied in Sec. 5. We state
our conclusions in Sec. 6.

2. Effective Lagrangian and decay rates

The appropriate effective Lagrangian considering dimension
six operators for the energy scale of interest (O(1 GeV)) is
given by [10,11]

LCC = −GF VuD√
2

[
(1 + ετ

L)τ̄ γµ(1− γ5)ντ · ūγµ(1− γ5)D

+ ετ
Rτ̄ γµ(1− γ5)ντ · ūγµ(1 + γ5)D

+ τ̄(1− γ5)ντ · ū(ετ
S − ετ

P γ5)D

+ ετ
T τ̄σµν(1− γ5)ντ ūσµν(1− γ5)D

]
+ h.c. , (1)

whereGF is the tree-level definition of the Fermi constant,
σµν = i[γµ, γν ]/2, andεi (i = L,R, S, P, T ) are effective
couplings encoding NP. The CKM elementVuD becomesVud

for strangeness-conserving decays andVus for strangeness-
changing decays. It is important to note at this point that the
combinationGF VuD in Eq. (1) will carry a dependence on
εe
L andεe

R since it is determined from superallowed nuclear
Fermiβ decays, this dependence is given by [16]
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GF Ṽ e
uD = GF (1 + εe

L + εe
R) VuD , (2)

note that if we set the coefficientsεi = 0 in Eqs. (1) and (2),
we recover the SM Lagrangian.

We start our analysis with the one-meson decay modes
τ− → P−ντ (P = π,K) since these are the simplest
hadronic tau decays that can be calculated with the effective
Lagrangian of Eq. (1). This simplicity arises from the fact
that these are two-body decays so that the kinematics is fixed
and the form factors become decay constants. The expression
for the decay rate for the processτ− → π−ντ takes the form

Γ(τ− → π−ντ ) =
G2

F |Ṽ e
ud|2f2

πm3
τ

16π

(
1− m2

π

m2
τ

)2

× (1 + δτπ
em + 2∆τπ

+O(ετ
i )2 +O(δτπ

emετ
i )) , (3)

wherefπ is the decay constant of the pioni, the termδτπ
em

takes into account the electromagnetic radiative corrections,
and the quantity∆τπ takes into account the tree-level NP cor-
rections that arise from the effective Lagrangian in Eq. (1)ii

that are not considered iñV e
ud. For the processτ− → K−ντ ,

the decay rate is again given by Eq. (3) but with the replace-
mentsṼ e

ud → Ṽ e
us, fπ → fK , mπ → mK , andδτπ

em and∆τπ

by δτK
em and∆τK , respectively.
Next, we continue our discussion with the two-meson de-

cay modesτ− → (PP ′)−ντ . The partial decay width for
these decays is given by

dΓ
ds

=
G2

F |Ṽ e
uD|2m3

τSEW

384π3s

(
1− s

m2
τ

)2

λ1/2(s,m2
P , m2

P ′)

×
[

(1 + 2(ετ
L − εe

L + ετ
R − εe

R))XV A

+ ετ
SXS + ετ

T XT + (ετ
S)2XS2 + (ετ

T )2XT 2

]
, (4)

where the variables is the invariant mass of the correspond-
ing two-meson system, that is,s = (pP + pP ′)2, and where
we have made the following definitions:

XV A =
1

2s2

{
3

(
CS

PP ′
)2 |FPP ′

0 (s)|2∆2
PP ′

+
(
CV

PP ′
)2 |FPP ′

+ (s)|2
(

1 +
2s

m2
τ

)
λ(s,m2

P ,m2
P ′)

}
,

XS =
3

smτ

(
CS

PP ′
)2 |FPP ′

0 (s)|2 ∆2
PP ′

md −mu
,

XT =
6

smτ
CV

PP ′ Re
[
FPP ′

T (s)
(
FPP ′

+ (s)
)∗]

λ(s,m2
P ,m2

P ′) ,

XS2 =
3

2 m2
τ

(
CS

PP ′
)2 |FPP ′

0 (s)|2 ∆2
PP ′

(md −mu)2
,

XT 2 =
4
s
|FPP ′

T (s)|2
(

1 +
s

2 m2
τ

)
λ(s,m2

P ,m2
P ′) , (5)

where CV
PP ′ and CS

PP ′ are the corresponding Clebsch-
Gordan coefficients for the different channels,λ(x, y, z) =
x2 + y2 + z2 − 2xy− 2xz − 2yz is the Kallen function, and
∆PP ′ = m2

P − m2
P ′ . The form factorsFPP ′

0 (s), FPP ′
+ (s)

and FPP ′
T (s) (scalar, vector and tensor, respectively) in

Eq. (5) are obtained using chiral perturbation theory (ChPT),
dispersion relations, and data. For the vector form factors
we benefit from the previous works [29–35] and for the
scalar form factors we benefit from [36–40] while for the
tensor form factors we use an Omnès dispersive representa-
tion [6,8,9,41,42]:

FPP ′
T (s) = FPP ′

T (0) exp


 s

π

scut∫

sth

ds′

s′
δPP ′
T (s′)

(s′ − s− i0)


 , (6)

wheresth = (mP + mP ′)2 is the two-meson production
threshold for the lightest pair of mesons with the same quan-
tum numbers as the given pairPP ′, and where the normaliza-
tion FPP ′

T (0) is obtained with the help of ChPT with tensor
sources [43] and lattice data [44]. We have studied the nor-
malization of the tensor form factors for the different chan-
nels in our previous works [6,8,9].

3. NP bounds from∆S = 0 decays

Before discussing the global analysis for∆S = 0 decays,
which is the main goal for this section, we will see first
what we can learn from the individual decay modeτ− →
π−ντ . From the decay rate in Eq. (3) and using as in-
put: fπ = 130.2(8) MeV from the latticeiii [45], δτπ

em =
1.92(24)% [46–48], and also the following values taken from
the PDG [49]; |Ṽ e

ud| = 0.97420(21) from nuclearβ de-
cays, the branching ratioBR(τ− → π−ντ ) = 10.82(5)%,
mπ = 0.13957061(24) GeV, mτ = 1.77686(12) GeV,
Γτ = 2.265 × 10−12 GeV, andGF = 1.16637(1) × 10−5

GeV−2, we obtain the following constraint:

ετ
L − εe

L − ετ
R − εe

R −
m2

π

mτ (mu + md)
ετ
P

= (−0.12± 0.68)× 10−2 . (7)

The value shown in Eq. (7) was reported in our pa-
per [1], but recently the radiative corrections have been up-
dated in [50], using the results for the real photon emis-
sion in [51]. Employing also the updatedVud value [52]
(|Vud| = 0.97373± 0.00031), this results in the limit

ετ
L − εe

L − ετ
R − εe

R −
m2

π

mτ (mu + md)
ετ
P

= (−0.15± 0.72)× 10−2 . (8)
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Now, we turn to the global analysis for∆S = 0 decays.
For this task we perform a simultaneous fit to one and two
meson strangeness-conserving exclusive semileptonic decays
of the tau lepton taking into account the following observ-
ables:

• the data forτ− → π−π0ντ reported by the Belle
collaboration [53], including the normalized unfolded
spectrum and also the branching ratio.

• the branching ratio for the processτ− → K−K0ντ .

• the branching ratio forτ− → π−ντ .

The χ2 function that is minimized in this global fit has the
following form

χ2 =
∑

k

(
N̄ th

k − N̄ exp
k

σN̄exp
k

)2

+
(

BRth
ππ −BRexp

ππ

σBRexp
ππ

)2

+

(
BRth

KK−BRexp
KK

σBRexp
KK

)2

+
(

BRth
τπ−BRexp

τπ

σBRexp
τπ

)2

, (9)

where N̄ th
k associates the decay rate of Eq. (4) for τ− →

π−π0ντ with the normalized distribution for the measured
number of events. This relation is given by

1
Nevents

dNevents

ds
=

1
Γ(ετ

i , εe
j)

dΓ(s, ετ
i , εe

j)
ds

∆bin , (10)

whereNevents represents the total number of measured events
and∆bin represents the bin width. Additionally,̄N exp

k and
σN̄exp

k
in Eq. (9) represent, respectively, the experimental

number of events and the corresponding uncertainties in the
k-th bin.

The bounds for the effective couplings characterizing the
NP that result from our global fit are




ετ
L − εe

L + ετ
R − εe

R

ετ
R + m2

π

2mτ (mu+md)ε
τ
P

ετ
S

ετ
T




=




0.5± 0.6+2.3
−1.8

+0.2
−0.1 ± 0.4

0.3± 0.5+1.1
−0.9

+0.1
−0.0 ± 0.2

9.7+0.5
−0.6 ± 21.5 +0.0

−0.1 ± 0.2

−0.1± 0.2+1.1
−1.4

+0.0
−0.1 ± 0.2



× 10−2, (11)

where the first error is the statistical uncertainty of the fit, the
second one –which is the dominant one– comes from the the-
oretical uncertainty associated with the vector form factor of
the pion, and finally the third and fourth errors are system-
atic uncertainties obtained, respectively, from the error of the
quark masses and from the uncertainty of the corresponding
tensor form factors (we have worked in theMS scheme at a
scaleµ = 2GeV in Eq. (11)).

The correlation matrix(ρij) associated to the results of
Eq. (11) is

ρij =




1 0.684 −0.493 −0.545
1 −0.337 −0.372

1 0.463
1


 , (12)

with χ2/d.o.f.∼ 0.6.

4. NP bounds from|∆S| = 1 decays

In this section we perform a global analysis for|∆S| = 1
decays, but before we do so, following the ideas of the pre-
vious section, we will first discuss what we can learn from
the individual decay modeτ− → K−ντ . As we have
pointed out before, this strangeness-changing decay rate has
the same form that the one in Eq. (3), thus, using that for-
mula with the appropriate replacements and using the lattice
calculation offK = 155.7(7) MeV [45], the radiative cor-
rectionsδτK

em = 1.98(31)% [46–48], and the PDG numeri-
cal inputs [49]: |Ṽ e

us| = 0.2231(7), BR(τ− → K−ντ ) =
6.96(10) × 10−3 andmK = 0.493677(16) GeV, we get the
following constraint:

ετ
L − εe

L − ετ
R − εe

R −
m2

K

mτ (mu + ms)
ετ
P

= (−0.41± 0.93)× 10−2 . (13)

The value shown in Eq. (13) was reported in our paper [1].
Taking into account the update in the radiative corrections
that we mentioned in the previous section [50], we find

ετ
L − εe

L − ετ
R − εe

R −
m2

K

mτ (mu + ms)
ετ
P

= (−0.36± 1.18)× 10−2 . (14)

Next, for the global analysis for|∆S| = 1 decays, we pro-
ceed exactly as we did for the∆S = 0 case, that is, we per-
form a simultaneous fit to one and two meson strangeness-
changing exclusive semileptonic decays of the tau lepton tak-
ing into account the following observables:

• the τ− → KSπ−ντ Belle spectrum [54] to-
gether with the measured branching ratio,BRexp

Kπ =
0.404(2)(13)%.

• the branching ratio of the processτ− → K−ηντ

(BRexp
Kη = 1.55(8)× 10−4) [49]iv,v.

• the branching ratio of the processτ− → K−ντ

(BRexp
τK = 6.96(10)× 10−3) [49].
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In this case theχ2 function that is minimized in our fits is
given by

χ2 =
∑

k

(
N̄ th

k − N̄ exp
k

σN̄exp
k

)2

+

(
BRth

Kπ −BRexp
Kπ

σBRexp
Kπ

)2

+

(
BRth

Kη −BRexp
Kη

σBRexp
Kη

)2

+

(
BRth

τK −BRexp
τK

σBRexp
τK

)2

,

(15)

whereN̄ th
k refers to theKSπ− decay mode. The explicit

expression reads

dNevents

d
√

s
=

Nevents

Γ(ετ
i , εe

j)
dΓ(

√
s, ετ

i , εe
j)

d
√

s
∆bin . (16)

The bounds coming from the global fit to the|∆S| = 1 de-
cays are given byvi




ετ
L − εe

L + ετ
R − εe

R

ετ
R + m2

K

2mτ (mu+ms)ε
τ
P

ετ
S

ετ
T


=




0.5± 1.5± 0.3
0.4± 0.9± 0.2
0.8+0.8

−0.9 ± 0.3
0.9± 0.7± 0.4


 ×10−2,

(17)

where the first error is the statistical uncertainty of the fit and
the second error is the systematic uncertainty coming from
the tensor form factor. In contrast with the∆S = 0 case
which is given in Eq. (11), the uncertainty associated with
the vector form factor of the kaon and with the quark masses
is negligible.

The correlation matrix for to the results of Eq. (17) reads

ρij =




1 0.854 −0.147 0.437
1 −0.125 0.373

1 −0.055
1


 , (18)

with χ2/d.o.f.∼ 0.9.
There are two important points to note from Eqs. (17)

and (18), one is that the elementρ12 in Eq. (18) is large (it
was also the largest element in Eq. (12)). This is a result
of the strong correlation between the couplingsετ

R and ετ
P .

The other point is that theετ
S coupling is more competitive

by an order of magnitude than the corresponding one for the
∆S = 0 sector shown in Eq. (11). However, theετ

T coupling
has now increased by about one order of magnitude and has
changed sign which makes it a little less restrictive than in
the∆S = 0 case. In the next section we will see that if we
combine both (∆S = 0 and|∆S| = 1) kinds of decays we
take the advantages of each sector.

5. NP bounds from a global fit to both∆S = 0
and |∆S| = 1 sectors

In this section we take advantage of the previous two and per-
form a global fit to both the strangeness-conserving (∆S =

0) and the strangeness-changing (|∆S| = 1) sectors simul-
taneously. This can only be done under the assumption of
d ↔ s universality (apart from the CKM mixing), which is
quite reasonable as a realization of the celebrated Minimal
Flavor Violation hypothesis [57]. The reason to do this is
that, on the one hand, we will be able to disentangle theετ

R

and theετ
P couplings, and on the other hand, we will benefit

in our bounds forετ
T andετ

S from the strangeness-conserving
sector and the strangeness-changing sector, respectively.

Since the correlation of parameters is important, we will
take the|Vud| and|Vus| elements of the CKM matrix corre-
lated according to [45]

|Vus|
|Vud| = 0.2313(5) . (19)

For the analysis, we use|Vus| = 0.2231(7) [49] and then we
extract|Vud| using Eq. (19).

For our global fit theχ2 function that is minimized in-
cludes all the quantities that we used for the separate analyses
(see Eqs. (9) and (15)). In this case the NP effective couplings
are given by (again in the schemeMS at a scaleµ = 2 GeV)




ετ
L − εe

L + ετ
R − εe

R

ετ
R

ετ
P

ετ
S

ετ
T




= 10−2×




2.9 ±0.6 +1.0
−0.9 ±0.6 ±0.0 ±0.4 +0.2

−0.3

7.1 ±4.9 +0.5
−0.4

+1.3
−1.5

+1.2
−1.3 ±0.2 +40.9

−14.1

−7.6 ±6.3 ±0.0 +1.9
−1.6

+1.7
−1.6 ±0.0 +19.0

−53.6

5.0 +0.7
−0.8

+0.8
−1.3

+0.2
−0.1 ±0.0 ±0.2 +1.1

−0.6

−0.5 ±0.2 +0.8
−1.0 ±0.0 ±0.0 ±0.6 ±0.1




,

(20)

where the first error is the statistical error of the fit, the second
error is due to the uncertainty of the vector form factor of the
pion, the third one comes from the CKM elements|Vud| and
|Vus|, the fourth error comes from the radiative corrections
δτπ
em andδτK

em , the fifth comes from the systematic uncertainty
of the tensor form factor, and the last error, is due to the errors
coming from the quark masses.

The correlation matrix in this case is given by

A =




1 0.055 0.000 −0.279 −0.394
1 −0.997 −0.015 −0.022

1 0.000 0.000
1 0.243

1


 , (21)

whereχ2/d.o.f.∼ 1.38.
As we see from Eq. (21) the price that we pay for dis-

entangling the effective couplingsετ
R andετ

P is that they are
strongly correlated, but otherwise we gain in our capacity to
constrain at the same timeετ

T andετ
S .
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The NP effective couplings can be translated into bounds
for the corresponding NP scale in the following way

Λ ∼ v (VuDεi)
−1/2

, (22)

wherev = (
√

2GF )−1/2 ∼ 246 GeV, thus our bounds can
probe scales ofO(5) TeV.

6. Conclusions

In this article we have studied non-standard interactions by
analizing a charged current effective Lagrangian for semilep-
tonic tau decays constructed with dimension six operators.
We have set bounds on the non-standard effective couplings
by using exclusive hadronic tau decays with one and two
mesons in the final state. Our main results are found in
Eqs. (11), (17) and (20), which represent our bounds for the
NP effective couplings, for the strangeness-conserving sec-
tor, the strangeness-changing sector, and the global case, re-
spectively. Our bounds for the NP effective couplings, are
found competitive, in particular two of them: the combina-
tion ετ

L − εe
L + ετ

R − εe
R andετ

T . The first is in accord with

the analogue constraint presented in Ref. [7], and the second
can compete withK`3 decays (assuming of course lepton fla-
vor universality). From the individual fits to the strangeness-
conserving and the strangeness-changing decays, we see that
we cannot separate the couplingsετ

P andετ
R, however, with

the simultaneous global fit (relying on the well-motivated and
experimentally supported hypothesis of minimal flavor vio-
lation) these can be separated, the price we must pay is of
course the strong correlation between both couplings. Fi-
nally, for ετ

S , we see that it is impossible to compete with
the bounds coming fromK`3 decays. To improve this last
coupling, special attention must be paid to the decay chan-
nel τ− → π−ηντ , we have not included this channel in the
analysis since higher quality data is needed.

With these analyses we want to show the importance of
semileptonic tau decays as low-energy probes of NP. We hope
that our works can serve as a motivation for the experimental
tau physics groups at Belle-II to measure the different observ-
ables we have discussed.

i. We use here, for convenience, the ’electroweak’ decay constant,
∼ 130 MeV, which is

√
2 times larger than its chiral counter-

part∼ 92 MeV.

ii. In Eq. (3) we expanded up to linear order on the NP effective
couplingsετ

i .

iii. We cannot employ the pion decay constant determined from
data since it could be contaminated with NP effects.

iv. The τ− → K−ηντ decay spectrum has been measured by
Belle [55], but unfolding detector effects have not been imple-
mented and for that reason we have decided to include only the
branching ratio in this study.

v. The decayτ− → K−η′ντ has not been detected yet, there
is only an upper limit at the90% confidence level placed by
BaBar [56] and we therefore have decided to not include it in
our analysis.

vi. The bounds are obtained in theMS at a scaleµ = 2GeV just
as was done for the∆S = 0 case.
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