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Theory and phenomenology of the three-gluon vertex
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The three-gluon vertex is a fundamental ingredient of the intricate QCD dynamics, being inextricably connected to key nonperturbative phe-
nomena, such as the emergence of a mass scale in the gauge sector of the theory. In this presentation we review the main theoretical properties
of the three-gluon vertex in the Landau gauge, obtained from the fruitful synergy between functional methods and lattice simulations. We
pay particular attention to the manifestation and origin of the infrared suppression of its main form factors and the associated zero crossing.
In addition, we discuss certain characteristic phenomenological applications that require this special vertex as input.
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1. Introduction

The three-gluon vertex plays a pivotal role in the structure
and dynamics of Yang-Mills theories, reflecting their non-
Abelian nature in the form of the gauge boson self-interaction
that it induces [1-3]. In fact, the most preeminent perturbative
property of these theories, namely asymptotic freedom [4,5],
is intimately linked to the action of this vertex.

In recent years, the QCD community has been gradu-
ally unveiling the rich infrared facets of this vertex, which
are instrumental to a wide array of nonperturbative phenom-
ena; for a representative set of references, see [6-30]. Sev-
eral of these works have underscored the subtle interplay of
the three-gluon vertex with the two-point sector of the the-
ory, and in particular the mass-generating patterns associated
with the gluon and ghost propagators [7-15,31-35]. As a
result, the three-gluon vertex provides an outstanding test-
ing ground for a variety of physical ideas and field-theoretic
mechanisms [36-41]. In this presentation we provide a syn-
opsis of some of the most important findings of this explo-
ration.

The outline of this contribution is as follows. In Sec. 2 we
introduce the notation and comment on the general properties
of the three-gluon vertex, give one of its standard tensorial
decompositions, and report the Slavnov-Taylor identity (STI)
that it satisfies. In Sec. 3 we discuss the three main nonper-
turbative approaches used in the scrutiny of the three-gluon
vertex, namely functional methods, lattice simulations and
STI-based constructions. Next, in Sec. 4 we analyse in some
detail one of the most exceptional nonperturbative features
of the three-gluon vertex, namely the suppression of its pre-

dominant form factors for Euclidean momenta comparable
to the fundamental QCD scale, and the associated logarith-
mic infrared divergence at the origin. In Sec. 5 we discuss
two phenomenological applications of the three-gluon ver-
tex, namely (a) the effective charge obtained from it, and (b)
its impact on the computation of the mass of the pseudoscalar
glueball. Finally, in Sec. 6 we summarize our conclusions.

2. General properties

We work in the Landau gauge, where the gluon propagator,
∆ab

µν (q) = −iδab∆µν(q), is fully transverse,i.e.

∆µν (q) = Pµν(q)∆(q2) , ∆(q2) = Z(q2)/q2 , (1)

wherePµν(q) := gµν − qµqν/q2 is the usual transverse pro-
jector, and∆(q2) the scalar component of the gluon propaga-
tor. In addition, we have defined the gluon dressing function,
denoted byZ(q2).

It is also convenient to introduce the ghost propaga-
tor, Dab(q2) = iδabD(q2), related to its dressing function,
F (q2), by

D(q2) = F (q2)/q2 . (2)

The full three-gluon vertex will be denoted by
IΓabc

αµν(q, r, p) = gfabcIΓαµν(q, r, p), and is represented in
Fig. 1, withq + p + r = 0, andg the gauge coupling.

It is convenient to decomposeΓαµν(q, r, p) into two dis-
tinct pieces [2,3,21],

IΓαµν(q, r, p) = Γαµν
L (q, r, p) + Γαµν

T (q, r, p) , (3)
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FIGURE 1. The diagrammatic representations of the three-
gluon vertex,IΓabc

αµν(q, r, p), and the ghost-gluon scattering kernel,
Hνα(q, r, p), with the respective conventions of momenta and in-
dices.

where Γαµν
L (q, r, p) and Γαµν

T (q, r, p) are the “longitu-
dinal” and “transverse” parts of the three-gluon ver-
tex, respectively. While the former saturates the cor-
responding STIs [see Eq. (8)], the latter is automati-
cally conserved when contracted byqα, rµ, and pν , i.e.,
qαΓαµν

T = rµΓαµν
T = pνΓαµν

T = 0.
The tensorial decompositions ofΓαµν

L (q, r, p) and
Γαµν

T (q, r, p) reads

Γαµν
L (q, r, p) =

10∑

i=1

Xi(q, r, p)`αµν
i ,

Γαµν
T (q, r, p) =

4∑

i=1

Yi(q, r, p)tαµν
i , (4)

where the explicit expressions of the basis elements`αµν
i and

tαµν
i are given in Eqs. (3.4) and (3.6) of [19], respectively.

Another familiar quantity introduced in the studies of
the three-gluon vertex is thetransversally projected vertex,
Γαµν(q, r, p), defined as [11,18]

IΓαµν(q, r, p)=IΓα′µ′ν′(q, r, p)Pα′α(q)Pµ′µ(r)Pν′ν(p) . (5)

In addition, we define the tree-level counterpart of
Eq. (5),

Γαµν(q, r, p) = Γα′µ′ν′
0 (q, r, p)Pα′α(q)Pµ′µ(r)Pν′ν(p), (6)

where Γα′µ′ν′
0 (q, r, p) is the standard tree-level expression,

given by

Γαµν
0 = (q − r)νgαµ + (r − p)αgµν + (p− q)µgαν ; (7)

it may be obtained from Eq. (3) by setting
X1 = X4 = X7 = 1, and zero for all other form-factors.

The STI satisfied byIΓαµν(q, r, p) reads

pνIΓαµν(q, r, p) = F (p2)[Tµα(r, p, q)− Tαµ(q, p, r)] , (8)

with

Tµα(r, p, q) := ∆−1(r2)P σ
µ (r)Hσα(r, p, q) , (9)

whereHνµ(q, p, q) denotes the ghost-gluon scattering ker-
nel, represented diagrammatically in the panel (b) of Fig. 1.
Its tensorial decomposition is given by [2,3,42]

Hνµ(q, p, r) = gνµA1 + qµqνA2 + rµrνA3

+ qµrνA4 + rµqνA5 , (10)

where we use the compact notationAi := Ai(q, p, r).

FIGURE 2. The SDE of the three-gluon vertex. The white (gray)
circles (ellipses) indicate fully dressed propagators (kernels), while
the dots indicate the omitted terms.

3. Nonperturbative methods

The rich kinematic structure of the three-gluon vertex makes
its nonperturbative study particularly challenging. There
are three main frameworks for dealing with this problem:
(i) Functional methods, such as the Schwinger-Dyson equa-
tions (SDEs) [7,10,11,13,43-46] and the functional renor-
malization group [15,16,47]; (ii ) large-volume lattice simu-
lations [17,20,24-30,48]; and (iii ) STI-based reconstructions
of the longitudinal part,Γαµν

L (q, r, p), in the spirit of the
“gauge-technique” [49-52].

(i) Functional methods: The diagrammatic representa-
tion of the SDE that governs the evolution of the three-gluon
vertex is shown in Fig. 2. The self-consistent treatment of this
equation is particularly complicated, and entails its coupling
to additional related equations, such as the SDEs of the gluon
and ghost propagators. In practice, this task is considerably
simplified by using as inputs the lattice results for∆(q2) and
F (q2).

(ii ) Lattice simulations: In this case the three-gluon ver-
tex is accessed through the functional averaging of the quan-
tity 〈Ãa

α(q)Ãb
µ(r)Ãc

ν(p)〉, whereÃa
α(q) denotes the SU(3)

gauge field. Specifically, the connected three-point function,
Gαµν(q, r, p), defined as

Gαµν(q, r, p) = gIΓαµν(q, r, p)∆(q2)∆(r2)∆(p2) , (11)

is given by 〈Ãa
α(q)Ãb

µ(r)Ãc
ν(p)〉 = fabcGαµν(q, r, p).

IΓαµν(q, r, p) is finally obtained after an appropriate am-
putation of the gluon propagators.

The typical structure of lattice “observables” is

L(q, p, r) =
Wαµν(q, r, p)IΓαµν(q, r, p)

Wαµν(q, r, p)Wαµν(q, r, p)
, (12)

where theWαµν(q, r, p) are appropriately chosen projec-
tors [17,28,29]. In what follows we will focus our attention
on two special kinematic limits involving a single momentum
variable.

(a) Soft limit, corresponding to the kinematic choice

q → 0 , p = −r , θ := p̂r = π , (13)

Supl. Rev. Mex. Fis.3 0308112
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FIGURE 3. A representative case of the three-gluon form factorX1(r
2, p2, θ) (left panel) and for|p||r|X3(r

2, p2, θ) (right panel) for a fixed
value of the angle,θ := p̂r = π.

obtained by settingWαµν(q, r, p) → 2rαPµν(r), namely

Lsg(r2) =
Γαµν

0 (q, r, p)IΓαµν(q, r, p)

Γαµν
0 (q, r, p)Γαµν(q, r, p)

∣∣∣∣∣ q→0
p→−r

. (14)

(b) Totally symmetriclimit,

q2 = p2 = r2 := s2 , θ := q̂r = q̂p = r̂p = 2π/3 ; (15)

the correspondingWαµν(q, r, p) and the expression for
Lsym(s2) may be found in Eqs. (2.18) and (2.19) of [20].

(iii ) STI: As was first shown in [2], the STI of Eq. (8),
together with its cyclic permutation, determines the form fac-
torsXi(q, r, p) in terms of the kinetic part of the gluon prop-
agator, to be denoted byJ(q2), the ghost dressing function,
and three form factors of the ghost-gluon kernel.

Specifically,

X1 =
1
4
[(q2 − r2)(brpq + bpqr − bqpr − bprq)]

+2(apqr+aprq)+p2(bqrp+brqp)

+2( q · p dprq+ r · p dpqr)] ,

X2 =
1
4
[2(aprq − apqr)− (q2 − r2)(bqrp + brqp)

+ 2( q · p dprq − r · p dpqr)

+ p2(bprq − bpqr + bqpr − brpq)] ,

X3 =
1

q2 − r2
[arpq − aqpr + r · p dqpr − q · p drpq] ,

X10 = −1
2
[bqrp + brpq + bpqr − bqpr − brqp − bprq], (16)

where we introduced the following compact notation

aqrp :=F (r)J(p)A1(p, r, q) ,

bqrp :=F (r)J(p)A3(p, r, q) ,

dqrp :=F (r)J(p)[A4(p, r, q)−A3(p, r, q)] . (17)

Due to the Bose symmetry of the three-gluon vertex, the re-
maining sixXi may be computed by permuting the argu-
ments appropriately (see Eq. (3.8) of [19]).

It is important to emphasize that in the original work
of [2] the kinetic term of the gluon propagator was de-
fined as ∆−1(q2) = q2J(q2), while in the nonper-
turbative generalization presented in Ref. [19] we have
∆−1(q2) = q2J(q2) + m2(q2), wherem2(q2) is the running
gluon mass [31,34,53,54].

Two representative results for the form factors
X1(r2, p2, θ) and|q||r|X3(r2, p2, θ), obtained with Eq. (16),
are shown on Fig. 3. In this figure we present both form
factors as a function of the two momentap2 andr2 when the
angle between these two momenta is fixed at the valueθ = π.

Clearly, one can see thatX1(r2, p2, θ) has a completely
nontrivial structure, which persists for general values of the
angle. Evidently, the most striking feature of this result is
the reduction of the size ofX1(r2, p2, θ) with respect to its
tree-level value (unity); this effect is known in the literature
as “infrared suppression” [9,14,16-19,28].

Let us also point out that the projection of the three gluon
vertex in the totally symmetric limit, defined in Eq. (15), can
be written as [19]

Lsym(s2) = X1(s2)− s2

2
X3(s2)

+
s4

4
Y1(s2)− s2

2
Y4(s2) . (18)

On other hand, for the case of the soft limit configuration
of Eq. (13), the expression forLsg(r2) is given by

Lsg(r2) = X1(r2, r2, π)− r2X3(r2, r2, π) , (19)

note that the result is free of transverse form factorsYi.

Supl. Rev. Mex. Fis.3 0308112
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FIGURE 4. The projection of the three-gluon vertex in the soft gluon,Lsg(r2) (left) and in the symmetric,Lsym(s2), (right) kinematic
configurations obtained from lattice QCD of [17,28,48] (solid circles) and from the SDE-STIs approach (magenta continuous curve) [48].

FIGURE 5. Left panel: The unquenchedLsg(r2) (left) andLsym(s2) (right) obtained from lattice QCD withNf = 2 + 1 dynamical
quarks [20], and from the SDE-STI approach (magenta continuous curve).

Notice that the soft gluon kinematic limit ofX1 andX3

corresponds to the curves that lie on the diagonal “slice” of
the 3D plots of Fig. 3 wherep2 = r2. In the left panel of
Fig. 4 we show a comparison of theLsg(r2) computed us-
ing the SDE-STI approach (magenta continuous curve) and
a combination of the lattice data of [17,28,48] (solid circles),
for the case of quenched QCD. It is clear that both meth-
ods corroborate the infrared suppression of the three-gluon
vertex. In the right panel we show the results forLsym(s2),
obtained when we setYi = 0 in Eq. (18). Once again the co-
incidence with the lattice data is rather notable, and the pres-
ence of the steep decline in the infrared is visible in both ap-
proaches. In addition, the same pattern (suppression and zero
crossing) persists qualitatively unaltered whenNf = 2 + 1
dynamical quarks are added [20], as can be clearly seen in
Fig. 5.

4. Infrared suppression

One of the most remarkable nonperturbative features of the
three-gluon vertex in the Landau gauge is its infrared sup-

pression, as established clearly in the results of the previous
section. Thus, form factors such asX1, X4, andX7, which,
due to renormalization, acquire their tree level value (unity)
at 4.3 GeV, reduce their size to half at around1 GeV. This
tendency culminates with a characteristic reversal of the sign,
known as “zero crossing” [9-11,17,28,35], followed by a log-
arithmic divergence of the corresponding form factor at the
origin.

This type of behavior is in sharp contradistinction to what
happens with the other vertices of the theory that have been
explored so far, such as the quark-gluon or the ghost-gluon
vertex. Indeed, as one can see in Fig. 6, the analogous form
factors display a clear enhancement for the same range of in-
termediate and infrared momenta.

From the theoretical point of view, this particular feature
of the three-gluon vertex hinges on the subtle interplay be-
tween dynamical effects originating from the two-point sec-
tor of the theory [55-60]. This may be understood at the level
of the one-loop dressed version of the SDE in Fig. 2, which
is shown in Fig. 7. The crucial theoretical ingredient is that,
whereas the gluon acquires dynamically an effective mass,
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FIGURE 6. The behavior of the form factors,Lsg
1 (q2), Bsg

1 (q2),
andLsg(q2) associated with the classical tensor structures of the
quark-gluon (green dotted), ghost-gluon (blue dashed) and three-
gluon (magenta continuous) vertices, respectively, in the soft gluon
limit.

FIGURE 7. The SDE of the three-gluon vertex at the one-loop
dressed level. The white (red and blue) circles indicate fully
dressed propagators (vertices). The diagrams(d1) and(d2) are the
gluon and the ghost triangle contributions entering in the skeleton
expansion of three-gluon vertex.

the ghost remains massless even nonperturbatively. As a re-
sult, the loops of the three-gluon vertex containing gluons
(such as the (d1) in Fig. 7) give rise to “protected” logarithms,
because the effective gluon massm acts as an infrared reg-
ulator. Instead, loops containing ghosts (such as the (d2) in
Fig. 7) produce “unprotected” logarithms, which diverge at
the origin [9].

In the simplified kinematic circumstances where only
a single representative momentumq2 is considered, a ba-
sic model describing qualitatively the resulting dynamics is
given by

L(q2) = b0 + bgl ln
(

q2 + m2

Λ2

)
+ bgh ln

(
q2

Λ2

)
, (20)

whereL(q2) denotes the particular combination of form fac-
tors, such that, at tree-level,L0(q2) = 1, andb0, bgl, andbgh

are positive constants.
It is clear that, asq → 0, the term with the unpro-

tected logarithm will dominate over the others, forcing
L(q2) to reverse its sign (zero crossing), and finally diverge,
L(0) → −∞. Because, in practice,bgl is about one order
of magnitude larger thanbgh, the point where the unpro-
tected logarithm overtakes the protected one is rather deep

in the infrared, and the location of the zero-crossing is at
about120 MeV. Thus, in the intermediate region of momenta,
which is typically relevant for the onset of nonperturbative
dynamics, we haveL(q2) < 1; this effect is known as the
infrared suppression of the three-gluon vertex.

5. Phenomenology

In this section we discuss two representative phenomenolog-
ical applications, where the infrared suppression of the corre-
sponding form factors plays a crucial role.

5.1. Effective couplings

A typical quantity employed in a variety of phenomenolog-
ical applications is the effective charge, defined as a special
renormalization-group invariantcombination of propagators
and vertex form factors. In the case of the three-gluon ver-
tex in the soft-gluon limit, the corresponding charge, to be
denoted byα3g(q2), is defined as [6,28,57,61,62]

α3g(q2) = αs(µ2)L2
sg(q

2)Z3(q2) , (21)

with Z(q2) defined in Eq. (1).
It is natural to expect that the infrared suppression of

L2
sg(q2) will affect the shape and size ofα3g(q2). In order to

meaningfully quantify this suppression, we compareα3g(q2)
with the corresponding quantity defined from the ghost-gluon
vertex, to be denotedαcg(q2), namely (see,e.g., [6,57,63])

αcg(q2) = αs(µ2)B2
1 sg(q

2)F 2(q2)Z(q2) , (22)

whereB1 sg(q2) is the ghost-gluon form factor introduced in
Fig. 6.

It is important to mention that both effective cou-
plings are computed in the same renormalization scheme,
namely the Taylor scheme [64-66] where we have fixed that
αs(µ) = 0.244, atµ = 4.3 GeV (for more details see [62]).

FIGURE 8. The comparison of the effective couplings,αcg(q
2)

(blue dashed line) andα3g(q
2) (magenta continuous curve).
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FIGURE 9. The diagrammatic representation of the Bethe-Salpeter
equation for the pseudoscalar glueball with total momentumP , and
`± := P/2± `, for ` = k, q.

The comparison of the two effective charges is displayed
in Fig. 8. One clearly sees that, as the momentumq decreases,
α3g(q2) (magenta continuous) becomes considerably smaller
thanαcg(q2) (blue dashed line). The suppression ofα3g(q2),
located in the region below2 GeV is consistent with previ-
ous finding [10,15,44,47,67,68], and its origin is exclusively
associated with the suppression of theLsg(q2).

5.2. Pseudoscalar glueball

The dynamical generation of a mass gap in pure-gauge QCD
is intimately connected with the attendant appearance of
glueball bound-states [31]. The rich glueball spectrum, and
related fundamental properties, has been obtained by means
of detailed lattice simulations, seee.g., [69-73]. Evidently,
these results serve as valuable benchmarks in the ongoing ef-
fort of continuum bound-state methods to reach an intuitive
understanding of the underlying dynamics [39-41,74].

In this context, theJPC = 0−+ glueball represents the
simplest case, because the pertinent Bethe-Salpeter equation
possesses a single dynamical kernel, which essentially de-
scribes the four-gluon scattering process. The lowest-order
contribution of this kernel is shown in Fig. 9; evidently,
the three-gluon vertex constitutes one of its central ingredi-
ents [40].

Moreover, the corresponding amplitude involves only one
scalar function, namely

χµν(k+, k−) = εµναβkαP βF(k; P ) , (23)

simplifying considerably the treatment of this problem.
It turns out that the infrared suppression of the three-

gluon vertex, and the overall attenuation of the interaction
strength that it induces is instrumental for the formation of
the pseudoscalar glueball state, with a mass compatible with
that obtained from the lattice [40].

Let us finally mention that the need for a considerable
suppression has also been established in studies of hybrid
states by means of Faddeev equations [75].

6. Conclusions

In this presentation we have reviewed some of the most char-
acteristic nonpertubative features of the three-gluon vertex,

unraveled by the ongoing synergy of a multitude of tech-
niques and approaches, such as functional methods, lattice
simulations, and STI-based constructions.

We have focused on the interplay between the dynam-
ics of the three-gluon vertex and the Landau-gauge two-point
sector of the theory. In particular, as has been argued in
Sec. 4, the characteristic infrared suppression displayed by
the main form factors of the three-gluon vertex is tightly in-
terlocked with the mass generating pattern established in the
gauge sector of QCD.

There is an additional key aspect of the three-gluon ver-
tex, which is worth mentioning, albeit in passing. In partic-
ular, the three-gluon vertex developslongitudinally coupled
bound state massless poles, which trigger the well-known
Schwinger mechanism [76,77], endowing the gluons with
a dynamical mass scale [34,53]. Due to their special kine-
matic properties, these poles decouple from the transversally
projected vertexΓαµν(q, r, p) [see Eq. (5)], which enters in
the lattice quantities defined according to Eq. (12). Conse-
quently, these dynamically produced poles do not induce di-
vergences in the results displayed in Fig. 4 and 5. Nonethe-
less, as has been recently demonstrated in Ref. [36], the mass-
less poles leave smoking-gun signals of their presence, by
inducing finite displacements to the non-Abelian Ward iden-
tity satisfied by the pole-free part of the three-gluon ver-
tex. Quite interestingly, this displacement is identical to the
Bethe-Salpeter amplitude that controls the dynamical forma-
tion of the massless poles [78-81], thus establishing a pow-
erful constraint on the entire mass generating mechanism put
forth in a series of works (see [36] and references therein).

It would be clearly important to continue the research ac-
tivity surrounding the three-gluon vertex in the future. In this
context, a major challenge for functional methods is the ex-
tension of the results for this vertex from space-like to time-
like momenta. Such information will be particularly impor-
tant, both from the theoretical as well as the phenomenolog-
ical point of view. The methods and techniques developed
in Refs. [82-85] may be decisive for making progress with
this demanding endeavor.
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