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The structure of cosmic strings of a U(1) gauge field for the conservation ofB − L
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We consider an extension of the Standard Model, where the difference between the baryon numberB and the lepton numberL is gauged
with an Abelian gauge field, in order to explain the exact conservation ofB − L. To avoid a gauge anomaly, we add a right-handed neutrino
νR to each fermion generation. Here it is not sterile, so the usual Majorana term is excluded by gauge invariance. We provide a mass term for
νR by adding a non-standard 1-component Higgs field, thus arriving at a consistent extension of the Standard Model, where the conservation
of B − L is natural, with a modest number of additional fields. We study the possible formation of cosmic strings by solving the coupled
field equations of the two Higgs fields and the non-standard U(1) gauge field. Numerical methods provide the corresponding string profiles,
depending on the Higgs winding numbers, such that the appropriate boundary conditions in the string center and far from it are fulfilled.
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1. A modest extension of the Standard Model

The Standard Model of particle physics is a major scientific
achievement of the 20th century, and of all times — many of
its predictions have been confirmed to an enormous precision.
Still there are some reservations about it, which often refer to
the missing inclusion of gravity and Dark Matter. Here we
take a different point of departure to motivate a possible ex-
tension beyond the Standard Model.

Since the 20th century, symmetries are a central concept
of physics. They can be divided into global and local symme-
tries. We consider the latter equivalent to gauge symmetries,
which must be exact based on the foundation of gauge invari-
ance. This property strongly constrains the options of consis-
tent extensions beyond the Standard Model, because one has
to assure that the gauge anomalies still cancel.

On the other hand, there is no compelling reason for
global symmetries to be exact. Indeed, they are usually just
approximately valid in some energy regime, where symme-
try breaking terms are hardly manifest, although they exist at
a higher energy scale. An exception is Lorentz invariance,
which — along with locality — also implies CPT invariance,
but if we invoke gravity (as described by General Relativity),
it turns into a local symmetry, which is naturally exact.

Another exception, which does not have such a plausibil-
ity argument, is the difference between the baryon numberB
and the lepton numberL. Experimentally no violation ofB
or L has ever been observed, but the Standard Model allows
for transitions, which turn quarks into leptons or vice versa.
They are based on topological windings of the Yang-Mills
gauge field SU(2)L, which affect both the left-handed quark-
and lepton-doublets. However, this simultaneous effect still
keeps the differenceB − L invariant. This is manifest from
the fact that the divergences of the baryon currentJB

µ and the
lepton currentJL

µ coincide,

∂µJB
µ = ∂µJL

µ = − Ng

32π2
Tr [WµνW̃µν ] , (1)

where Wµν is the SU(2)L field strength tensor,
W̃µν=εµνρσW ρσ and Ng is the number of fermion gener-
ations.

B − L invariance is not a paradox, but it appears strange
that this global symmetry should be “accidentally” exact.
This is the conceptually unsatisfactory point that we try to
overcome by going a step beyond the Standard Model. How-
ever, we do so in an economic way, by essentially introducing
just the minimum of additional ingredients which are neces-
sary to render consistency and some natural features.

Our economic approach proceeds in three steps, which
we first describe in words.

• We promote theB − L invariance to a gauge symme-
try, which corresponds to an Abelian Lie group U(1)Y ′ ,
and we denote its gauge field asAµ. Thus the gauge
group structure of the Standard Model is extended to
SU(3)c⊗SU(2)L⊗U(1)Y ⊗U(1)Y ′ , with dimension
13 and rank 5.Aµ could couple just toB − L, or to a
linear combination of the chargesY andB−L, which
are both conserved. We write it as

Y ′ = 2hY +
h′

2
(B − L), (2)

whereh andh′ are coupling constants (the factors of
2 and 1/2 will be convenient later). It will become
massive (see below), which leads to a heavyZ ′-boson,
while SU(2)L⊗U(1)Y gives rise to the standard gauge
bosonsW±, Z andγ, as usual.

• With this additional field, and the quarks and leptons
of the (traditional) Standard Model, a gauge anomaly
emerges. This can easily be seen from a fermionic tri-
angular diagram, with a gauge coupling to the charge
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B − L at each vertex, as illustrated in Fig. 1. In each
fermion generation, we have 2 quark flavors, with a
left- and right-handed quark and 3 colors, and baryon
numberB = 1/3, which sums up toB = 4. In the
lepton sector we have one lepton with both chiralities,
but only a left-handed neutrino, all with lepton num-
ber L = 1, which amounts toL = 3. Cancellation
can be achieved by adding another lepton to each gen-
eration, and the obvious scenario is the inclusion of a
right-handed neutrinoνR.

It is well-known that this neutrino is “sterile” in the
sense that it does not couple to gauge fields of the Stan-
dard Model. So it does not affect the anomaly cancella-
tions with respect to the Standard Model gauge fields.
It is also welcome in other respects: it provides the pos-
sibility to include a neutrino mass, while maintaining
renormalizability, and it is even a candidate for Dark
Matter.

• With νR included in each generation, we can build
Dirac mass terms for the neutrinos, with the same
structure as for the quark flavorsu, c and t, by a
Yukawa coupling ofνL andνR to the standard Higgs
doublet fieldΦ.

OnceνR is present, it is natural for it to have also a
Majorana-type mass term, which is independent ofνL.
However, in this scenario the usual Majorana term can-
not be added to the Lagrangian: it is built solely from
two factors ofνR, hence it hasL = 2. In other sce-
narios this is allowed, but in our case this term is not
U(1)Y ′ gauge invariant.

In order to be able to construct a Majorana-type (purely
right-handed) neutrino mass term, we still add a non-
standard Higgs fieldχ. In the framework of our eco-
nomic approach, we assume a 1-component complex
scalar field,χ ∈ CI . Now we can add a Majorana-
Yukawa term∝ χνT

RνR + c.c. in each generation, and
gauge invariance holds ifχ carries the quantum num-
berB − L = 2 (B andL do not need to be specified
separately).

Like the standard Higgs fieldΦ ∈ CI 2, χ can be ap-
plied to give mass toνR in all fermion generations, and
it has a quartic (renormalizable) potential. This poten-
tial gives rise to spontaneous symmetry breaking, with
a large vacuum expectation value (VEV)v′, which ar-
ranges for a heavyZ ′-boson.

Finally, it is also natural to include a mixed Higgs term
∝ Φ†Φχ∗χ.

So we have designed a modest extension of the Standard
Model, with one additional Abelian gauge fieldAµ, a right-
handed neutrinoνR in each fermion generation, plus a 1-
component non-standard Higgs fieldχ. Each of these fields is
hypothetical, but they have a clear motivation, as we pointed
out above.

FIGURE 1. A fermionic triangle diagram, wheref runs over all
fermions involved. Their couplings to the external legsAµ, Aν ,
Aρ depend on the quantum numberB − L.

If we want to embed this model into a Grand Unified The-
ory (GUT), we cannot use the unified gauge group SU(5),
which only has rank 4, so the simplest and obvious choice is
SO(10) [1]. In this framework, the non-standard hypercharge
Y ′ takes the specific form [2]

Y ′ = Y − 5
4
(B − L) , (3)

which we will consider below. This form fulfills the orthonor-
mality conditions

∑
f YfY ′

f = 0,
∑

f Y 2
f = 2/3

∑
f Y ′ 2

f =
(10/3)Ng, where the sums run over all fermions [2].

A fully-fledged quantum field analysis of this model is
beyond the scope of this work. We are going to discuss nu-
merical solutions to the coupled field equations of the two
Higgs fields and the U(1)Y ′ gauge field (without including
fermions and standard gauge fields; fermionic contributions
to cosmic strings are discussede.g.in Ref. [3]). In this semi-
classical analysis, we are interested in the possible formation
of cosmic strings due to topological defects, where the two
Higgs fields may have arbitrary (integer) winding numbers.
Before explicitly addressing the corresponding field equa-
tions, we insert some general remarks about cosmic strings.

2. Topological defects and cosmic strings

Topological defects are relevant in a variety of condensed
matter systems, as reviewede.g. in Ref. [4]. They appear
for instance in type II superconductors [5], and in some cases
their percolation is related to a phase transition.

The possibility of the mathematically analogous forma-
tion of cosmic strings was first considered by Kibble in 1976
[6]. This scenario has attracted attention ever since, although
there is no evidence so far for the physical existence of cos-
mic strings (bounds on the string tension are obtained in par-
ticular from the Cosmic Microwave Background [7]). The
recent search for evidence of cosmic strings focuses on the
detection of gravitational waves [8].
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FIGURE 2. A prototype profile functionf(r) of a cosmic string,
with a topological defect atr = 0, andf(r → ∞) = v (in cylin-
drical coordinates).

Regarding the early Universe, there are attempts to re-
late cosmic strings with the electroweak phase transition (the
electroweak symmetry remains unbroken in the core) [9].
For a stability discussion of electroweak strings, seee.g.
Ref. [10].

Cosmic strings could also be superconducting [11],
which would establish a direct link to condensed matter
physics.

Here we briefly sketch the basic idea; for extensive re-
views we refer to Refs. [12, 13]. As a toy model, we con-
sider a 1-component complex scalar fieldφ(x), with the well-
known Lagrangian

L(φ, ∂µφ) = ∂µφ∂µφ− µ2
0φ
∗φ− λ0(φ∗φ)2 . (4)

Forµ2
0 < 0 we obtain a continuous set of classical vacua,

φ = v eiα , v =
√
−µ2

0/2λ0 , (5)

with an arbitrary phaseα ∈ (−π, π]. It can be generalized to
static solutions with non-minimal energy, for which we write
— in cylindrical coordinates — the ansatz

φ(r, ϕ, z) = f(r)einϕ , (6)

wheren ∈ Z is the winding number. Forn 6= 0 this rep-
resents a topological defect, and the profile functionf(r)
should vanish atr = 0 (this avoids a phase ambiguity). Far
from this defect we requiref(r → ∞) = v. These are the
boundary conditions for the field equation

d2f

dr2
+

1
r

df

dr
=

(n2

r2
+ µ2

0 + 2λ0

)
f . (7)

The shape of a typical solution is depicted in Fig. 2.

3. Field equations for the extended gauge-
Higgs sector

According to the description in Section 1, we consider the
gauge-Higgs Lagrangian

L = DµΦ†DµΦ + dµχ∗dµχ

− 1
4
FµνFµν − V (Φ, χ),

Fµν = ∂µAν − ∂νAµ,

V (Φ, χ) = µ2Φ†Φ + λ(Φ†Φ)2 + µ′ 2χ∗χ

+ λ′(χ∗χ)2 − κΦ†Φχ∗χ . (8)

The potential must be bounded from below, which requires
λ, λ′ > 0, andκ < 2

√
λλ′. Spontaneous symmetry breaking

of both Higgs fields, with VEVsv, v′ > 0, further requires

µ2, µ′ 2 < 0 , κ > max
(
− 2µ2λ′

µ′ 2
,−2µ′ 2λ

µ2

)
. (9)

Together this impliesκ2 < 4λλ′.
Φ andχ are the standard and non-standard Higgs fields,

with the chargesYΦ = 1/2, (B − L)χ = 2, hence (ignoring
the SU(2)L and U(1)Y gauge fields) the covariant derivatives
take the form

DµΦ = ∂µΦ + ihAµΦ , dµχ = ∂µχ + ih′AµΦ , (10)

where we refer to our convention (2).
Following the lines of Sec. 2, we make an ansatz for static

solutions in terms of cylindrical coordinates,

Φ =
(

0
1

)
φ(r)einϕ , χ = ξ(r)ein′ϕ , Aµ =

a(r)
r

ϕ̂ ,

whereφ, ξ, a ∈ R are the radial profile functions of the field
configurations,n, n′ ∈ Z are the winding numbers of the two
Higgs fields, and̂ϕ is the tangential unit vector.

In these terms, the Euler-Lagrange field equations read
[4,14]

d2φ

dr2
+

1
r

dφ

dr
=

[ (n + ha)2

r2
+ µ2 + 2λφ2 − κξ2

]
φ,

d2ξ

dr2
+

1
r

dξ

dr
=

[ (n′ + h′a)2

r2
+ µ′ 2 + 2λ′ξ2 − κφ2

]
ξ,

d2a

dr2
− 1

r

da

dr
= 2hφ2(n + ha) + 2h′ξ2(n′ + h′a) . (11)

The boundary conditions in the core and asymptotically
far from it — where the Higgs profile functions become con-
stant — are summarized in the following table.

r = 0 r →∞
φ(r) 0 (if n 6= 0) v =

√
−µ2/2λ

χ(r) 0 (if n′ 6= 0) v′ =
√
−µ′ 2/2λ′

a(r) 0 −n/h = −n′/h′

(if n 6= 0 andn′ 6= 0)
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4. Profiles of U(1)Y ′ cosmic strings

In the following we are going to show a set of solutions to the
system of coupled second order differential equations given
in Eq. (11). They are based on Refs. [4,14], and obtained with
the Python functionscipy.integrate.solve bvp ,
which applies the damped Newton method. Consistency tests
show that the errors occur mostly close tor = 0 (where we
have to deal with removable singularities), but even there they
attain at mostO(10−3), and forr ≥ O(1) they decrease by
several orders of magnitude. The solutions have also been
reproduced with the Relaxation method and with the Runge-
Kutta 4-point method, although the latter has difficulties in
attaining stable plateaux at larger.

A solution is uniquely specified when we fix the Higgs
self-couplingsλ andλ′, the Higgs field winding numbersn
andn′ and the asymptotic large-r values of the three fields.
We choose them by fixing directlyv andv′, as well as the
gauge couplingsh andh′, with the constraintn/h = n′/h′,
which is given in the table of Sec. 3, and which is obvious
from the last line in Eq. (11).

In Figs. 3 to 5 we choose the parameters of the Higgs
potentials as

v = 0.5 , v′ = 1 , λ = λ′ = 1 , κ ∈ [−1, 1] . (12)

Thus the non-standard Higgs field has a larger VEV than the
one of the Standard Model (in physical units:v ' 246GeV),
hence theZ ′-boson tends to be heavy, although this also de-
pends on its coupling constantsh andh′. The parameterκ is
in the range, which is allowed by the condition for the poten-
tial to be bounded from below,κ < 2.

If we take the value ofv as a reference to convert all quan-
tities to physical units, then the length unit ofr corresponds
to 0.0008 fm, so our cosmic string solutions have radii of
O(10−3) fm, as the following figures show, while other the-
oretical scenarios arrive at larger radii up toO(1) fm.

Figure 3 shows the case whereAµ only couples to the
chargeB − L, henceφ(r = 0) does not need to vanish. We

FIGURE 3. Solutions for the cosmic string profile functions, with
static fieldsΦ, χ andAµ, in cylindrical coordinates, for the param-
eter setv = 0.5, v′ = 1; λ = λ′ = 1; n = 0, n′ = 1; h = 0,
h′ = 1.

FIGURE 4. Solutions for the cosmic string profile functions, with
static fieldsΦ, χ, in the absence (above) or presence (below) of a
(static) U(1)Y ′ gauge fieldAµ. These plots refer to the parameter
setv = 0.5, v′ = 1; λ = λ′ = 1; n = n′ = 1; h = h′ = 1.

see that it deviates only mildly fromφ(r → ∞) = v, but
only for φ(r . 4) the value ofκ is relevant. Herea(r →∞)
is fixed by choosing theχ-winding numbern′ = 1, and the
couplingh′ = 1. The profile functionsξ(r) anda(r) move
from 0 to their large-r values in a manner, which is qualita-
tively compatible with the feature of the prototype in Fig. 2.

In Fig. 4 we proceed to the winding numbersn = n′ = 1.
This requires the same couplings, which we choose ash =
h′ = 1. Here we show the cases without or with the presence
of theAµ gauge field,i.e. B − L conservation is a global
or a local symmetry, respectively. The behavior ofξ(r) and
φ(r) is similar in these two cases, but the U(1)Y ′ gauge sym-
metry causes a faster convergence to the large-r limit as r
increases,i.e. it reduces the characteristic string radius, and it
suppresses theκ-dependence.

In Fig. 5 we consider a higher winding number of the
χ-field, n′ = 2, again for the cases of a global and local
B−L-symmetry. (We recall that the conservation of the weak
hyperchargeY is local in any case due to the gauge group
U(1)Y , which is always present, although it is not included in
our field equation analysis.) The impact of the U(1)Y ′ gauge
group is consistent with Fig. 4; it accelerates the convergence
of ξ(r) andφ(r) to their plateau values asr increases, and it
reduces to impact of theΦ-χ-mixing term,i.e. of the param-
eterκ.

Supl. Rev. Mex. Fis.3 020713
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FIGURE 5. Solutions for the cosmic string profile functions, with
static fieldsΦ, χ, in the absence (above) or presence (below) of a
(static) U(1)Y ′ gauge fieldAµ. These plots refer to the parameter
setv = 0.5, v′ = 1; λ = λ′ = 1; n = 1, n′ = 2; h = 1, h′ = 2.

In the global symmetry case, the latter is most relevant
aroundr ≈ 2, where we observe an interesting phenomenon:
the standard Higgs profile canovershoot, i.e.exceed the value
of v at a moderate radiusr. In addition, we see at small
r ∈ O(0.1) thatn′ = 2 keepsξ(r) small, in particular in the
absence ofAµ, before it turns to the regime of maximal slope
at r ∈ O(1). We will come back to this point.

Figures 6 and 7 go beyond the parameter set (12) by en-
hancing the ratiov′/v and assuming different Higgs field
self-couplings,

v = 0.5 , v′ = 1.5 , λ = 0.5 , λ′ = 1 , κ ∈ [−1, 1] .
(13)

Figure 6 refers to the casen = n′ = 1, but we also
modify the couplings compared to Fig. 4. The condition
is only that they have to coincide, so we now set them to
h = h′ = 0.5. The qualitative features agree with Figs. 3 to
5, in particular in the presence of the gauge fieldAµ, which
shows that these features are quite robust against parameter
modifications.

Figure 7 returns to the case of the double winding of the
χ-field, with n = 1, n′ = 2; h = 0.5, h′ = 1. This plot
shows in particular that the overshooting effect of the profile
φ(r) can also occur in the presence of the U(1)Y ′ gauge field,
which strengthens the relevance of this observation.

FIGURE 6. Solutions for the cosmic string profile functions, with
static fieldsΦ, χ andAµ, for the parameter setv = 0.5, v′ = 1.5;
λ = 0.5, λ′ = 1; n = n′ = 1; h = h′ = 0.5.

FIGURE 7. Solutions for the cosmic string profile functions, with
static fieldsΦ, χ andAµ, for the parameter setv = 0.5, v′ = 1.5;
λ = 0.5, λ′ = 1; n = 1, n′ = 2; h = 0.5, h′ = 1.

At r ∈ O(0.1) we observe again a suppression ofξ(r),
similar to the lower plot in Fig. 5 (which also refersn′ = 2
in the presence ofAµ). We will probe this property further at
even larger values of|n′|.

Let us finally return to the aforementioned scenario where
we consider this model as a subset of the SO(10) GUT. In this
case, the couplingsh andh′ are fixed by Eq. (3), which also
implies a specific ratio between the winding numbers,

n′ = −5n . (14)

(There are other conventions in the literature, whereY ′ dif-
fers by a constant factor, but relation (14) does not depend on
it.) This relation also takes us to examples of a large winding
number, which we have not addressed so far.

Figures 8 and 9 refer to the parameters

v = 0.5 , v′ = 1, λ = 1, λ′ = 1,

h = 0.5, h′ = −2.5 . (15)

Figure 8 assumes the winding numbersn = 1, n′ = −5,
while Fig. 9 addresses the even more exotic casen = −2,

Supl. Rev. Mex. Fis.3 020713
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FIGURE 8. Solutions for the cosmic string profile functions, for
static fieldsΦ, χ andAµ, for the parameter setv = 0.5, v′ = 1;
λ = 1, λ′ = 1; n = 1, n′ = −5; h = 0.5, h′ = −2.5.

FIGURE 9. Solutions for the cosmic string profile functions, for
static fieldsΦ, χ andAµ, for the parameter setv = 0.5, v′ = 1;
λ = 1, λ′ = 1; n = −2, n′ = 10; h = 0.5, h′ = −2.5.

n′ = 10 (which is certainly unstable under quantum fluctu-
ations). This entails larger absolute values ofa(r) than in
the previous plots, witha(r →∞) = −2 and4, respectively.
We did not encounter any conceptual or numerical difficulties
in dealing with these extraordinary cases.

These scenarios of strong windings of theχ-field confirm
previous observations, now in an amplified form. At small
r, theχ-profile functionξ(r) is kept close to zero, in a range
which grows monotonically with|n′|; for |n′| = 10 this range
extends up tor & 1.

Moreover, these plots further confirm that the overshoot-
ing effect of φ(r) can also occur in the case with U(1)Y ′

gauge symmetry. The comparison with Fig. 7 shows that also
this effect is enhanced by an increasing value of|n′|.

Part of the plots in this section include some curves,
which do not fulfill the conditions (9), in particularµ2 or µ′ 2

may turn positive, but we do not observe discontinuities in
the set of profile functions when this happens.

5. Summary and conclusions

We have studied an extension of the Standard Model, where
the exactB−L conservation is explained by a U(1)Y ′ gauge
symmetry. Gauge anomalies are avoided by adding a right-
handed neutrinoνR to each generation.νR obtains an in-
dividual mass term when we add a 1-component additional
Higgs field χ, with quantum number(B − L)χ = 2, and
use it to build a Majorana-Yukawa term∝ χνT

RνR. For the
standard Higgs fieldΦ and for χ we assume (renormaliz-
able) quartic potentials — with negative quadratic terms that
imply spontaneous symmetry breaking — as well as a term
−κΦ†Φχ∗χ.

We then studied the coupled field equations ofΦ and
χ and the U(1)Y ′ gauge fieldAµ. In particular, we made
an ansatz for cosmic string solutions, and applied numerical
methods to obtain the radial profile functions with a variety of
winding numbers. This analysis also includes the case where
this model is considered part of the SO(10) GUT, such that
the winding numbers ofΦ andχ, n andn′, are related as
n′ = −5n. Sincen, n′ ∈ Z, this requires a large value of
|n′|.

Taking the VEV ofΦ as a reference to fix the energy scale
suggests that the cosmic strings that we obtain are very thin,
typically with radii r ∈ O(10−3) fm. The solutions that we
found do not lead to any objection against the possible exis-
tence of such (hypothetical) cosmic strings.

In some cases we compared the Higgs field profiles in the
presence and absence of theAµ gauge field. The difference
tends to be modest, but involvingAµ further reduces the radii
of the cosmic strings.

Also the Φ-χ coupling constantκ has only a mild in-
fluence on the solutions. Its impact is most manifest in the
regime of about half of the cosmic string radius, where the
profile functions have their maximal slopes, and it mainly af-
fects theΦ-profile.

Increasing winding numbers, in particular the increase of
|n′|, keeps the profile function ofχ close to zero at very small
r. This effect was systematically observed:n′ 6= 0 implies
χ(r = 0) = 0, and increasing|n′| keeps|χ| small next to the
core of a cosmic string.

Originally we were interested in the possibility of “co-
axial cosmic strings”, where the profile functions ofΦ or χ
would be negative in some range inside the cosmic string.
This would have been a novelty in the literature, but an ex-
tensive search did not lead to any solution of this kind.

We did, however, find the opposite behavior: in some
cases, the standard Higgs profile “overshoots”,i.e. inside the
string it can take a value, which is larger than its VEV far
from the cosmic string.
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IG100219, “Exploracíon téorica y experimental del diagrama
de fase de la cromodinámica cúantica”, and by the Consejo
Nacional de Ciencia y Tecnologı́a (CONACYT).

1. H. Fritzsch and P. Minkowski, Unified interactions of lep-
tons and hadrons,Ann. Phys.(NY) 93 (1975) 193,https:
//doi.org/10.1016/0003-4916(75)90211-0 .

2. W. Buchm̈uller, C. Greub and P. Minkowski, Neutrino masses,
neutral vector bosons and the scale ofB − L breaking,Phys.
Lett. B 267 (1991) 395,https://doi.org/10.1016/
0370-2693(91)90952-M .

3. H. Weigel, M. Quandt and N. Graham, Stable charged cos-
mic strings, Phys. Rev. Lett.106 (2011) 101601,https:
//doi.org/10.1103/PhysRevLett.106.101601 .
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