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We provide an overview over Transverse Momentum Dependent (TMD) Parton Distribution Functions (PDFs). While we will also comment
on TMD PDFs in general, we will focus on their use for the description of hadronic reactions in the so-called lowx limit. Herex = M2/s

andM is the hard scale of the process, while
√

s is the center of mass energy of the reaction. We will explain why this are interesting
quantities whose exploration serves a manifold purpose. In particular we will explain why these are interesting quantities both for the
accurate description of LHC data and why exploration of such quantities is a central goal of the future Electron Ion Collider. In a second part
of this talk we will then discuss how perturbative QCD allows us to formulate and solve differential equations, which describe the dependence
of this TMD PDFs on various kinematic variables.
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1. Introduction

Understanding the physics of dense systems provides a
plethora of challenges to physicists. This is mainly due since
their description intrinsically requires to deal with many-
particle states and is obviously further complicated if the in-
teraction between particles is not weak. A scenario where
this is realized are dense systems subject to the strong nuclear
force with a prominent collider physics example provided by
heavy ion collisions. The latter serve to a large extend for
the study of the Quark Gluon Plasma (QGP), a state of mat-
ter which is believed to have existed the last time in the early
universe. While some of the QGP properties are well under-
stood, the initial state leading to its formation poses still open
questions [1, 2]. A closely related question is the formation
of an over occupied system of gluons, which eventually leads
to saturation of gluon densities [3]. Such high gluon densi-
ties have been argued to lead to the emergence of semi-hard
scale, the so-called saturation scaleQs [4, 5], which can be
interpreted as the inverse correlation length of color charges
in the dense medium. This saturation scale has an interesting
dependence on the center of mass energy of the collision, or
to be more precise on the variablex which denotes the ratio
x = M2/s whereM is a certain characteristic (hard) scale of
the process and

√
s the center of mass energy. Since particles

fluctuations are time dilated at high center of mass energies
or low x, such fluctuations can generate themselves new par-
ticles and they therefore drive the system into a high density
regime. This is particularly true for the case of a non-Abelian
gauge theory – such as Quantum Chromodynamics (QCD) –
where gluons can emit further gluons. One therefore finds
a correlation length which is shrinking with center of mass
energy and correspondingly a saturation scaleQs(x), which
is growing with center of mass energy. If densities are high

enough, this saturation scale can eventually reach values of a
few GeV andQs(x) À ΛQCD with ΛQCD the QCD character-
istic scale of the order of a few hundred MeV and the problem
might be possibly studied using weak coupling techniques,
albeit in the presence of high gluon densities. Understand-
ing the emergence of this saturation scale and characterizing
its growth with energy as well as its relevance for the deter-
mination of the value of the QCD strong coupling constant
αs is one of the central physics goals of the future Electron
Ion Collider [6]. The latter constitutes a new collider project,
which is foreseen to be constructed within the next 10 years
at Brookhaven National Laboratory (USA) as a successor to
the Relativistic Heavy Ion Collider (RHIC). In such electron
ion collisions, the high energy ion provides an ensemble of
dense color charges, which – in the electron rest frame – are
further concentrated due to Lorentz contraction. The electron
provides on the other hand – through the emission of photons
which then interact with the colored states of matter – a dilute
and point-like probe. The point-like nature is here of partic-
ular interest, since the electron possesses no substructure; it
therefore does not break up in the collision with the ion. In-
stead it can be observed in the final state and allows for a
precise reconstruction of the kinematics of a certain event.

A process of particular interest for the exploration of
these high density effects is given by the almost back-to-back
production of two hadrons,e.g.pions, where both pions carry
large transverse momentum with respect to the collision axis.
At high center of mass energies, an intuitive understanding
can be gained through the process depicted in Fig. 1. This
process is characterized by the presence of a certain hierar-
chy of scales. The transverse momentapi, i = q, q̄ of the pro-
duced hadrons constitute in this case the hard scale (which al-
lows to make use of QCD weak coupling techniques), which
is much bigger than the momentum imbalanceq of both
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FIGURE 1. A virtual photon, emitted from an electron, interacts with dense gluonic field of the target,i.e. the ion. While in terms of Feynman
diagrams, this gluonic field is correctly thought of as multiple gluon exchange, the actual interaction rather takes place with classical field,
as appropriate for high occupation numbers. To probe the saturation scale generated by the dense gluonic field, one considers the scenario
when both hadrons (here quarks) part away in opposite (transverse) directions. The sum of both transverse momentapi, i = q, q̄ therefore
adds up to almost zero, with a small imbalanceq = pq + pq̄. This momentumq is then sensitive to potential presence of a dynamically
generated saturation scale; in particular the resulting momentum distribution is expected to peak at this scaleQs.

hadrons,q = pq + pq̄, |pi| À |q| ∼ Qs, see also the dis-
cussion of Fig. 1. As a consequence one expects important
corrections to this observables due to evolution from an ini-
tial renormalization scaleµi (of the order of|q|) up toµf (of
the order of the hadron transverse momentum). These effects
have been studied first in Ref. [7], based on a framework de-
veloped in Ref. [8]. While the authors of [7] conclude that a
study of the saturation scale at the EIC will be possible, us-
ing the observable of di-hadron de-correlation, they also find
that the above mentioned evolution – encoded in a so-called
Sudakov form factor – provide an important correction to the
precise description and analysis of this observable. While [7]
only include a resummation of double-logarithms at fixed
running coupling, more refined frameworks, have been pre-
sented in Refs. [9,10]. They are all based in the discussion of
so-called Transverse Momentum Dependent (TMD) Parton
Distribution Functions (PDFs); in particular the TMD gluon
distribution. The latter is then studied in the presence of a
dense gluonic field, where coupling to the field is treated
within the framework of high energy factorization. While
the framework of [9,10] is able to include important running
coupling corrections, their anomalous dimension – which de-
scribes the evolution of the TMD PDF operator – misses an
important contribution related to the resummation of single
logarithms. Such a contribution has been found in a study
based on collinear factorization [11]. Since this resumma-
tion relies on the renormalization of ultra-violet divergences
of the previously mentioned TMD PDF operator, the corre-
sponding anomalous dimension must be universal and cannot
depend on the use of collinear vs. high energy factorization.
In Ref. [12] this calculation has been repeated but using a
different framework for the calculation of high energy fac-
torized matrix elements at next-to-leading order in the strong
coupling constant,i.e. Lipatov’s high energy effective action
has employed for that purpose, [13,14], see also [15] for a

recent review. Unlike [10], our calculation does not address
the complete dense limit, but is instead restricted to the dilute
approximation where the gluon field is not dense. Neverthe-
less we find that within this framework it is possible to obtain
the correct anomalous dimension also within high energy fac-
torization and therefore the consistency of this framework. In
the following we will summarize a few aspects of this work.
For full details we refer the interested reader to [12].

2. The gluon TMD within high energy factor-
ization

To be specific we consider scattering of two hadrons with
light-like momentapA andpB which serve to define the light-
cone directions

(n±)µ =
2√
s
pµ

A,B , s = 2pA · pB , (1)

which yields the following Sudakov decomposition of a
generic four-momentum,

k = k+ n−

2
+ k−

n+

2
+ kT ,

k± = k · n±, n± · kT = 0. (2)

Here, kT is the embedding of the Euclidean vectork into
Minkowski space, sok2

T = −k2. Following [11, 16] the
TMD PDFΓij , i, j = 1, 2 is then given by

Γij
g/B(xB , ζB ;q, µ) = −δij

2
fg/B(xB , ζB ;qb, µ)

+
(

δij

2
+

qiqj

q2

)
hg/B(xB , ζB ;qb, µ). (3)

In terms of QCD fields [11,17]:
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xΓij
g/B(xB , ζB ;q, µ) = lim

σ,yn→∞

∫
dξ+d2ξ

2(2π)3p−B
ei(xBp−Bξ+/2−q·ξ) S̃(2yc, σ;µ, ξ)

×
〈

h(pB)
∣∣∣∣Tr

[(
Wn(σ)

ξ G−i(ξ)
)†
Wn(σ)

0 G−j(0)
]∣∣∣∣ h(pB)

〉∣∣∣∣
ξ−=0

. (4)

HereS̃(2yc, σ; µ, ξ) denotes the soft factor andn(σ) ' n−, with σ →∞ a suitable regulator whose precise implementation
can be found in Ref. [12]. Gauge links are in general given as a combination of a longitudinal and a transverse gauge link [18],
where the transverse gauge link is placed at light-cone infinity. Working in covariant gauge, the gauge field at infinity vanishes
and the transverse gauge link therefore equals one. We will therefore in the following not consider the transverse gauge link.
The longitudinal gauge link is on the other hand given by

Wn
ξ = P exp


−g

2

0∫

−∞
dλn · v(λn + ξ)


 , (5)

wherevµ(x) = −itava
µ(x) denotes the gluonic field and

Dµ = ∂µ + gvµ, Gµν =
1
g

[Dµ, Dν ] = −itaGµν
a . (6)

For the soft factor there exists various prescriptions in the literature; in Ref. [12] the most general soft factor introduced in
Ref. [18] has been used,

S̃(2yc, σ; µ, ξ) =

√
S̃(2yc, 2yn; ξ)

S̃(σ,−2yc, ; ξ)S̃(σ, 2yn; ξ)
, (7)

with

S̃(y1, y2; ξ) =
1

N2
c − 1

〈
0

∣∣∣(Wn1(y1)
ξ )†Wn2(y2)

ξ (Wn2(y2)
ξ )†Wn1(y1)

ξ

∣∣∣ 0
〉

, (8)

wheren1,2(y1,2) are tilted Wilson lines such thatn1 is placed at rapidityy1/2 and n2 at rapidity−y2/2. For a precise
definition of the light-cone directions see [12]. Within high energy factorization, we then aim at the determination of the
following coefficientsCgg∗ , implicitly defined through

fg(ηa, ηb, yc, ζB ,q, µ) =
∫

d2k
π

Cf
gg∗(ζB , yc, ηa,q,k, µ)G(∆ηab, ηb;k),

hg(ηa, ηb, yc, ζB ,q, µ) =
∫

d2k
π

Ch
gg∗(ζB , yc, ηa,q,k, µ)G(∆ηab, ηb;k), (9)

whereG(∆ηab, ηb;k) denotes the unintegrated gluon distribution of high energy factorization, where∆ab denotes the evolution
parameter andk the transverse momentum of the high energy factorized gluon, see [12,19] for details. At leading order in the
strong coupling constant we find

C
f,(0)
gg∗ (q,k) = C

h,(0)
gg∗ (q,k) = δ(2)(q− k), (10)

and the TMD gluon distributions agrees up to an overall factor with the unintegrated gluon density. At next-to-leading order, the
result is far more complicated: it requires both application of the soft-factor Eq. (7), subtraction and application of a transition
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function to remove high energy factorized contributions as well as ultraviolet renormalization. The final results reads

Ĉ
(1)f
gg∗ (ζB , yc, ηa,q,k, µ, f̄ (1)) =

αsCA

2π

{
δ(2)(l)

[
ln

q2

µ2

(
ln

ζB

µ2
− β0

2CA

)
− 1

2
ln2 q2

µ2
+

67
18
− 5nf

9CA
− π2

3

]

+ 2(yc − ηa)
1
π

[
1
l2

]

+

+
1
π

1∫

0

dz

[
z(1− z)(l2 − q2)2

[zl2 + (1− z)q2]2 k2

+
1
l2

k2 − 3(q− k)2 − q2

[z(q− k)2 + (1− z)q2]

]}
+ f̄ (1)(q,k) +O(ε), (11)

Ĉ
(1)h
gg∗ (ζB , yc, ηa,q,k, µ, f̄ (1)) =

αsCA

2π

{
δ(2)(l)

[
ln

q2

µ2

[
ln

ζB

µ2
− β0

2CA

]
− 1

2
ln2 q2

µ2
+

67
18
− 5nf

9CA
− π2

3

]

+ 2(yc − ηa)
1
π

[
1
l2

]

+

+
(

yc + ln
q−

|l|
)

4
(
(l · q)2 − l2q2

)

πl2q2k2

+
1
π

1∫

0

dz
(q2 − l2)2k · l

[zl2 + (1− z)q2] l2k2

}
+ f̄ (1)(q,k) +O(ε). (12)

Hereζ,B = (xBp−B)2e2yc denotes a scale related to the
evolution of the TMD distribution, withp−B the dominant
component of the hadron momentum andxB the momentum
fraction carried on by the gluon.yc is a parameter related
to the subtraction of soft gluons, whileηa andf̄ is a param-
eter and function of high energy factorization, see [12];µ
finally denotes the renormalization scale. The corresponding
renormalization constant is identical for both unpolarized and
linearly polarized gluons and is obtained as

ZG=1−αsCA

2π

[
1
ε2

+
1
ε

(
ln

(q−)2e2yc

µ2
− β0

2CA

)]
, (13)

which gives rise to the following anomalous dimension

γG =
d lnZG

d ln µ
=

αs

2π

[
β0 + 2CA ln

µ2

(q−)2e2yc

]
, (14)

where we useddαs/d ln µ = 2εαs. Note that the above
anomalous dimension agrees with the corresponding result
obtained within a treatment based on collinear factoriza-
tion [11]. This is indeed to be expected since it arises due
to the renormalization of ultraviolet divergences, which are
naturally independent of the non-zero transverse momentum
of the initial state gluon. We however stress again that
linearly polarized TMD gluon distribution does not give rise
to the above anomalous dimension within collinear factoriza-
tion. Again this is natural, since the corresponding distribu-

tion vanishes within collinear factorization at tree-level, and
the 1-loop result is therefore not renormalized.

3. Conclusions

In this short contributions, we gave a few details on the 1-loop
calculation of the Transverse Momentum Dependent Gluon
distribution in the high energy or lowx limit. The result is
of interest, since it demonstrates that the anomalous dimen-
sion - which governs the renormalization group evolution of
this distribution – is indeed universal, as one would expect
on general grounds. Future work must focus on both the nu-
merical implementation of this results, its extension to high
gluon densities (as needed for EIC phenomenology) as well
as to the combination with actual observables. While the fi-
nal goal would be the description of EIC processes such as
di-hadron production, an easier intermediate step is given by
the study of a colorless final state,e.g.a Higgs boson, as done
in Ref. [19].
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