Suplemento de la Revista Mexicana dsi€a3 0308073 (2022) 1-5

Three-pion scattering in chiral perturbation theory
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We present the results on the relativistic six-pion scattering amplitude at low energy, calcui@ted jawithin the framework of the massive

O(NV) nonlinear sigma model extended to the next-to-leading order in the chiral countindy. £08, this approach corresponds to the two(-
quark)-flavor Chiral Perturbation Theory. We also present the expressions for the pion mass, pion decay constant and the four-pion amplitude
in the case ofV (meson) flavors ab(p*).
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1. Introduction l;. These carry both ultraviolet (UV)-divergent and conver-
gent parts, the latter of which are free parameters in the the-

To study interactions of hadrons perturbatively in the low-qry and need to be extracted from experiment or lattice QCD.
energy region, we cannot directly employ Quantum Chromoye \write

dynamics (QCD), the fundamental theory of strong interac-

tions. This is due to confinement, stemming from the un- I = —k 7il +I. k= 1
derlying non-abelian structure of QCD. Instead, we are left 2¢ 1672’ @)
with using alternative approaches, for instance, Chiral Per- 1 1

turbation Theory (ChPT) [1, 2]. Many observables have been ¢ ~— ¢
calculated applying this very successful effective field theory

to a high loop order. However, this is not the case for the six- N€ divérgent parts are uniquely fixed from studying the pion

pion amplitude, which has been until now only known at tregMaSS, decay constant and four-pion amplitude at NLO. We

level [3-5]. Since it has been recently estimated using IatticéInd

— e+ logdr —logp®+1, e=2-4d/2.

QCD [6-13], it seems interesting and complementary to pro- N 7 N
vide a consistent NLO calculation of the six-pion amplitude Mm=35 " B=1l-3, ©))
at one-loop level in ChPT [14]. 9

2=3 ya=N-1. (4)

2. Theoretical settin
g To work with the Lagrangiarilj), one needs to expand it

For the calculation which follows, we used a simple generalin terms of pion fields;. This can be done with the use of
ization of two(-quark)-flavor ChPT — the massive/0¢-  a particular parameterization for fields the whole class of
1)/O(NV) nonlinear sigma model extended to the next-to-which can be written in general as

leading order (NLO) in the chiral counting, taking thus into

. . . T
accountN meson (pion) flavors — the results of which it - 5~ o7
reproduces folV = 3: ¢ = L= f2(e), f(e) r) )

L= 52 0,070"® 4+ F2\ T Above,p = ¢Td/F?, with T = (¢, ..., ¢J\f) being a regl
2 vector of N components (flavors), anfi(«) is any analyti-
T (3M¢Tauq,) (3V‘I>T5”<I>) cal function satisfyingf(0) = 1. For a practical calculation,
it is convenient to employ more than one parameterization,
+15(0,270,®) (0" ) utilizing, as a neat cross-check, the fact that the physical am-

Yl (XT@)Q n l4f9ﬂxT8“<I> . (1) plitudes should be parameterization-independent.
Above,® is a real vector ofV 4-1 components which satisfies
®Td =1, andy’ = (M?, 6). At the leading order (LO),
we have two parameters: pion decay const@rand mass We start with the four-pion amplitude which turns out to be an
M; at NLO, four additional monomials relevant for our ap- important ingredient for the six-pion amplitude. As is fairly
plications show up, accompanied with low-energy constantsvell-known, the four-pion amplitude can be written, due to

Four-pion amplitude
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its invariance under rotation in the isospin space and crossind.  Six-pion amplitude

symmetry, as (all pion four-momengaincoming, flavorsf;)

Aur(p1, f1,p2, f2,03, f3, f4)
=07, 075 £, A(P1, P25 P3)
+ 0420724 A(P3, P1, P2)
(6)

separating thus the flavor structure from the momentum
dependent part given in terms of a single (four-pion) sub
amplitude A(s,t,u) = A(p1,p2,p3). In the last expres-
sion, we introduced the standard Mandelstam variables
(p1 +p2)? t = (p1 + p3)?, u = (p2 + p3)?, which satisfy
the on-shell relatios + ¢ + u = 4M?2.

At LO, the amplitude stems from a single tree-level
Feynman diagram with the text-book resuit) (s, ¢, u)
(s — M2) /F2Z. AtNLO, we have two topologies of in total

+ 07,1507 1, A(P2,P3,01)

four loop diagrams and a counter-term. These, together wit ! ) !
dude, while the second part is the remainder.

the wave-function renormalization and the NLO expression
for the pion mass and decay constant,

M 1
2 _ 2 s
M M,ng[ngJrQ(NQ)L],
1 1 M2 1 7)
o {0 [0 el b

give us the final expression for the parameterization
independent and UV-finite four-pion amplitude:
1
> k—=1L

1
= iyl
367672 2)

N 1
>n+(1—2>L+255+2l’Q]

m+< )L—815+2z;}

FAAW (s, t,u) = (t — u)? (

|

+ M2s

™

11 N

12 2

(

N1
3

20 N 8 N
+M,ﬁ‘[<92)/€+(32)L+8l'1+21§2l4
_ N N
+ J(s) {(2 — 1>52 + (3= N)M32s + (2 - 2)M;§}
1 -
+{GJ(t)[2t2—10M§t—4M§s+st+14M;§]
+(t<—>u)}. (8)

It depends explicitly on the number of meson flavdys

and it is consistent with the previous results found in liter-
ature [2,15-17]. This exact form will be used later on and
it is a generalization of the results shown in Refs. [18, 19]

beyondN = 3. Above, we have used

2

Lzﬁlog%;. 9)
i
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Compared to the four-pion amplitude, the combinatorics be-
comes significantly more involved in the case of the six-pion
amplitude. In the preceding section and considering four pi-
ons, we had only three channels (permutations) or ways how
to distribute four pions in two pairs. The six-pion amplitude,
already at LO (see Fig. 1), is represented by two topologies
of Feynman diagrams, which are related to two sets of per-
mutations: There are ten ways how to distribute six pions in
two groups of three®; relevant for one-particle-reducible
(1PR) topologies) and fifteen ways to distribute them in three
pairs (P;5; relevant for the six-pion subamplitude discussed
later). It becomes natural that we write the complete six-pion
amplitude as a sum of two pieces:

Agr = AL™ + A8 (10)

fhe first piece can be written in terms of the four-pion ampli-

a) 1x b) 10x

FIGURE 1. Six-pion amplitude at the leading order. The multiplic-
ities of the respective topologies based on all the possible permuta-
tions of the external legs are quoted.

N
ZON

e

(a) I x (b) 1x (c) I5%
(d) 10x (e) 10x () 15x
2) 20x (h) 20 % (i) 60x

FIGURE 2. Six-pion-amplitude topologies at the next-to-leading
order. We again quote the multiplicities of the respective diagrams.
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This pattern also holds at NLO (see Fig. 2). We haveThe pieces listed in the last row are related to tensor trian-
tadpole [2b)], bubble [2c)] and triangle [2f)] diagrams con- gle one-loop integrals; the reduction to the scalar one-loop
tributing together with the counter-term contributions [2a)] integrals would lead to enormous expressions given the num-
to the one-particle-irreducible (1PI) part, and then pole diaber of kinematic invariants that are present. We have instead
grams [2d), e), g)-i)], which, when studied in detail, combinechosen a specific redundant basis of integrals that have good
together into two NLO four-pion amplitudes connected with symmetry properties and allow us to present the results in a
an off-shell leg (flavorf,): rather compact way. All the subparts of the six-pion subam-

(47) plitude from Eg.14) then have the correct symmetry proper-
Ag = " Aux(pi, fispgs £ P8y Fr fo) ties. The expressions for these can be found in Ref. [14].
Pio, fo

(=1
p?jk - M2

The four-pion amplitude can be decomposed in the sam@o present numerical results, we need to adopt a particular
way as before in terms of one momentum-dependent subarkinematical setting to reduce the number of relevant vari-
plitude A(s,t,u), where now the Mandelstam variables sat-ables. We choose a symmetsie- 3 scattering configuration
isfy the off-shell relations + ¢t + v = 3M2 + pfjk, with in which all the pions have the same momentum (modp)us
Pijk = Di + Dj + D and consequently the energ@y, = /M2 + p2. The suitable

The residue of the expression in Efil) is unique: When four-momenta are then
the propagator goes on-shell, the four-pion amplitudes also

X A47r(pl,fl7pm,7frmpn7fmfo) . (11) 5. Results

become on-shell. And we already know that those are unique.
We are then left with freedom for the off-shell extrapolation,
while the choice-dependent remainder is deferred to the 1PI

p1 = (Epap7070)7
1 V3
p2 = <Ep7 —zb, 5D, O) )

part of the six-pion amplitude. For our expressions, we chose 202
to use the particular form of the four-pion subamplitude given
in Eq. 8). p3 = | Ep, —lp, —ﬁp,o )
The 1PI part of the six-pion amplitude can be written as 2 2
Aéi—ﬂ—) Ezéfifjéfkfléfnzfn p4: (_Ep70707p),
P
15 \/g 1
XA(piapjvpk7pl7pm7pn)7 (12) b5 = 7Ep’ 7]970,7527 ’

separating thus again the flavor structure from a sin-

gle momentum-dependent subamplitude denoted above as D6 = <—Ep, _ﬁp’O, _1p> _ (15)
A(p1,p2, 3,4, D5, D6). Since the pole structure is already 2 2
reproduced by the 1PR part, the real part of the six-pion sub-
amplitude does not contain any poles; however, the imagi¥Ve use the following numerical inputs [20-22]:
nary part of the triangle one-loop integrals can contain poles. _
A(pt1, p2, 3, pa, s, p6) IS a function of three pairs of mo- M = 0.139570 GeV, lh=-04,
menta_, being fully symmetric under the_z ir_lterchange_ of any of F, = 0.0927 GeV, Iy = 4.3,
the pairs as well as of the momenta within each pair.
At LO, we have a simple expression uw=0.77GeV, I3 =341,
A(Q) = A(Q)(plap27p37p4vp5vp6) N = 3, ly =4.51. (16)

= % (2p1 - p2 + 2p3 - pa + 2ps - p + 3M2), (13) In Fig. 3, we show the s'ubamplitudeﬁm and A™ for
W the three-pion scattering with respect to the momentum
the form of which, regarding the dependence on momenta, ig/e can compare in size the leading-order and the next-to-
the only one consistent with the symmetries stated above dtading-order contributions together with the constituents of
the given order. Finally, our main result is the NLO six-pion the latter put together in several groups. The endpoints of the
subamplitude. We write it in terms of many parts: plotted lines p = 0.1 GeV) are consistent with the values
shown in Table I. There we can see that significant cancel-
FIA® = FIA® (p1, pa, p3, pa, ps. o) lations take place. In particular, some of the contributions
_AM (2) related to the triangle integrals are sizable but cancel against
= A AT T At ALt A each other to a negligible total contribution to the subampli-
+ Ac, + A(C}gl + A(C?l + Aoy, + A + 4D 4 4B tude. The dominant contribution then stems from the polyno-
(14)  mial parts @A,, Ay, A;) and the pieces that can be expressed
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L : : : We see that, at least in this kinematical setting, the LO of the
A®) (py Pp) e Acy six-pion subamplitude is roughly half the size of the NLO
24 | AW (py, .. pe) Acy + X, AY . contribution of its pole counterpart. On the other hand, the
VO Ry np— 44;931 4 42,%3] NLO contribution of the six-pion sgb_amplitude is rathgr sjz—
2 L A0 4@ i i able compared to LO. However, this is still acceptable in view
= - of the whole six-pion amplitudd,e. considering the domi-
- | nance of the 1PR part. Moreover, it is important to realize

that at the three-pion threshold we happen to be at the edge

i of the applicability of ChPT.
fﬁ Finally, we can find very simple analytical expressions in
& the limit p — 0:
M2
2 2 _ s
FT(A( )|p~>0 - 5?7
Lo s iz - B - - M4 1
2 4 _ s
L ) ) | F“RQA()|p—>0F;‘L{(33+22N)I€9H
1
A , , , ‘ — 6(14+75N)L+ (161} + 5615
0 0.02 0.04 0.06 0.08 0.1

p[GeV]

FIGURE 3. The scattering of three pions in the kinematic config-
uration of Eq. [15). We plot the LO resultd® (p, po, . ..
,pe) of Eq. (14).

Moreover, we show several groups of the individual constituents of

of Eq. (13) and the NLO resultd (p, po, . . .

AW,

,D6)

+ 6l + 201;)} . (17)

The contribution of the triangle integrals alone amounts to
only (x/2)(9N — 26) and is thus negligible folV = 3.

6. Summary

We presented the NLO result for the four-pion and, most

TABLE |. The 1PR and 1PI parts of the three-pion scattering ampli-.m ortantly. six-nion amolitudes. calculated in the massive
tude, using four-momenta from E@5), with p = 0.1 GeV. The imp Y, SIX-pl phitu ’ u : IV

amplitudes are all taken in the flavor-stripped form analogous too(N + 1)/O(N). nonlinear.sigma model, the relevant !_a-
Eq. 12). As in Eq. 14), A® is the sum of the results we quote 9rangian of which shown in Eql)leads to results consis-
in the bottom part of the table. To obtain dimensionless quantities,tent with two-flavor ChPT. Our main result is the six-pion

the amplitudes are multiplied by a fitting power Bf.

amplitude, which we split into 1PR and 1PI parts. The 1PR
part in Eq. [01) employs the form for the four-pion ampli-

2
P x Re tude B) generalizing (beyondv = 3) the results given in
AL (LO) —319.00 A® 15.99 Refs. [18,19]. The 1PI parfilp) of the six-pion amplitude —
A% (NLO) _98.54 A@ 11.16 represented by the six-pion subamplitudl¢) from Eq. (L4)
— can be written in terms of a large number of subparts, each
F2 x Re A/F¢ of which satisfies the expected permutation symmetries. Due
to a nontrivial but suitable choice of the symmetrical basis for
Acy 0.002 AP 1.917 the tensor triangle one-loop integrals, the final expressions
A(C}z)l —0.948 AR 1.835 can be written fairly compactly and can be found in Ref. [14].
A<c22)1 0.682 A —92.488 Numerically, the NLO correction is sizable with respect to
Ac,, 0.090 AL 8.985 the LO of the six-pion subamplitude, which is, however, sup-
A<C1> 0,026 A, 1.209 pressed compared to the 1PR part.
A 0.890
A®) 0.984 Acknowledgments

in terms of the one-loop two-point functio(‘nAf,l), Af)). We

can also compare the 1PI part to the 1PR one.
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