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We assume that the neutrino mass matrixMν , in the model-independent context, is diagonalized by the Tri-Bi-Maximal (TBM) pattern.
In the following, we explore the TBM mixing pattern deviation by considering different textures for the charged lepton matrix, which are
classified into equivalence classes that allow us to reproduce the experimental data on neutrino oscillation. Our target is on the charged
lepton matrix with the minimum number of free parameters,i.e., the maximum number of zeros of the texture that allows us to correctly
reproduce the value of the reactor mixing angleθ13. We show a deviation from the TBM pattern in terms of the charged leptonic masses,
which provides a prediction value for the phase factors in the charged lepton mass matrices. These are related to the “Dirac-like” CP and
“Majorana-like” phase factors. For the last type of phase, we show its phenomenological implications through effective Majorana mass in
the neutrinoless double-beta decay.
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1. Introduction

The discovery of masses and flavor mixing of the neutrino
can be regarded as one of the biggest breakthroughs in the un-
derstanding of particle physics. However, this fact provides
the first evidence of a beyond the Standard Model physics
(BSM) [1]. The experimental discovery of a nonzero reactor
mixing angle [2] marked the beginning of a new era in parti-
cle physics [3–5]. These experimental results have expanded
the flavor structure in the lepton sector by providing us the
first indication for a new CP violation source [6]. Relevant
works on lepton sector analysis are Refs. [7–12], as Ref. [13].

Nevertheless, neutrino oscillation experiments do not re-
solve the question of whether neutrinos are Majorana o Dirac
particles, or give some information about the absolute neu-
trino mass scale, or about Majorana phase factors, neither.
Majorana phases enter in decay amplitudes that violate the
leptonic number, such as neutrinoless double beta decay [14].
Hence, an experimental observation of neutrinoless double-
beta decay can test the absolute scale of neutrinos masses
and the nature of the neutrino mass term, that is, the neutri-
nos would be Majorana particles. Now, it is well known that
neutrinos have a small value for their masses, less than eV,
which naturally can be explained by considering neutrinos as
Majorana particles [15].

The TBM pattern [16] considers a maximal atmospheric
mixing angle θ = 45o and solar angleθ12 = 35.26o,
while the reactor angle is postulated as zero. Also, in the
TBM framework, the charged lepton mass matrix is consid-
ered a diagonal matrix. The TBM flavor pattern was ruled

out by the experimental measurement of the reactor angle,
which reports a reactor mixing angle of the order of eight
degrees [3, 5, 17]. However, all is not lost with respect to the
TBM pattern, if we remember that the leptonic mixing matrix
UPMNS , arises from the mismatch between diagonalization
of the mass matrices of charged leptons and the left-handed
neutrinos. Realistic TBM-like neutrino mixing matrix can be
reviewed in Refs. [18,19].

A generalization can be proposed in which the unitary
matrix that diagonalizes the neutrino mass matrix is repre-
sented by the TBM flavor pattern, while the unitary matrix
that diagonalizes the charged lepton mass matrix corresponds
to corrections to the reactor, solar and atmospheric mixing
angles.

If neutrinos are considered as Majorana particles, the low
energy neutrino oscillation phenomenon in the base of flavor
eigenstates is given by the Lagrangian

L = − g√
2
`LγµνLWµ

− 1
2
νc

R MννL − `RM``L + H. c.. (1)

TheMν is the neutrino mass matrix. TheM` is the charged
lepton mass matrix. These mass matrices can be rotated to
the mass eigenstates basis by means of the unitary transfor-
mations.

The mass matrices can be rotated to the mass eigenstates
basis by means of the unitary transformations

Mν = U∗
ν∆νU†

ν and M` = V`∆`U
†
`. (2)
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Here,

∆ν = diag (mν1,mν2,mν3) ,

∆` = diag (me,mµ, mτ ) .

The charged currents term takes the form

Lcc = − g√
2
`LγµνLWµ,

L′cc = − g√
2
`′LγµUPMNSν′LWµ, (3)

with `′L = U``L andν′L = UννL. TheUPMNS matrix is the leptonic flavor mixing matrix and governs the neutrinos and
charged lepton couplings

UPMNS = U†
`Uν =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 . (4)

In the symmetric parametrization,UPMNS can be write down as



c12c13 s12c13e
−iφ12 s13e

−iφ13

−s12c23e
iφ12 − c12s13s23e

−i(φ23−φ13) c23c12 − s23s12s13e
−i(φ12+φ23−φ13) c13s23e

−iφ23

s12s23e
i(φ12+φ23) − c12s13c23e

iφ13 −c12s23e
iφ23 − s12s13c23e

−i(φ12−φ13) c13c23


 , (5)

wherecij ≡ cos θij , sij ≡ sin θij , andφ12, φ13, φ23 are the
physical phases.

The mixing angles in terms of theUPMNS matrix entries
are

sin2 θ12 =
|Ue2|2

1− |Ue3|2 , sin2 θ23 =
|Uµ3|2

1− |Ue3|2 ,

sin2 θ13 = |Ue3|2. (6)

Whereas, the phase factors associated with the CP violation
phases are:

sin δCP =
JCP

(
1− |Ue3|2

)

|Ue1||Ue2||Ue3||Uµ3||Uτ3| ,

sin (−2φ12) =
I1

|Ue1|2|Ue2|2 ,

sin (−2φ13) =
I2

|Ue1|2|Ue3|2 . (7)

JCP = Im
{
Ue3U

∗
µ3U

∗
e1Uµ1

}
is the Jarlskog invariant,

which is associated with the Dirac-like CP violation phase,

I1 = Im
{|Ue1|2|Ue2|2

}
and I2 = Im

{|Ue1|2|Ue3|2
}

,

which are the invariants associated with the CP violation
phase factors Majorana-like.

2. The TBM leptonic flavor pattern

In the theoretical framework of TBM flavor mixing
pattern, the charged lepton mass matrix has a diagonal form

diag(me, mµ,mτ ), while, the solar, atmospheric and reactor
mixing angles have the values

sin2 θ12 =
1
2
, θ23 =

π

4
, θ13 = 0. (8)

The CP symmetry is preserved, this means that phase factors
are null.

The unitary matrixU` is equal to identity matrix, and
UTBM = UPMNS = Uν is expressed as

UTBM =




√
2
3

1√
3

0
− 1√

6
1√
3

1√
2

1√
6

− 1√
3

1√
2


 . (9)

So, the neutrino mass matrix has the form

Mν =




bν aν −aν

aν bν + dν bν + cν

−aν bν + cν bν + dν


 , (10)

where

aν =
1
3

(mν2 −mν1) , cν =
1
2

(
mν3 − 4

3
mν2 − 5

3
mν1

)
,

bν =
1
3

(2mν1 + mν2) , dν =
1
2

(mν3 −mν1) .

Unfortunately, the TBM leptonic flavor pattern does not work
to describe the nature, since the reactor mixing angle is non
null, by according with the current experimental data on neu-
trino oscillations [6]:
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sin2 θ12

(
10−1

)
=3.18± 0.16, 2.71−3.69,

sin2 θ23

(
10−1

)
=

{
5.74± 0.14, 4.34−6.10, for NH ,
5.78+0.10

−0.17, 4.33−6.08, for IH ,

sin2 θ13

(
10−2

)
=

{
2.200+0.069

−0.062, 2.000−2.405 for NH ,
2.225+0.064

−0.070, 2.018−2.424 for IH .

3. Deviations from the TBM flavor pattern

A possible modification to the TBM flavor pattern may come
from the charged lepton sector considering a non-diagonal
leptonic mass matrixM`.

In order to fix the form of the charged lepton mass ma-
trix, we propose several equivalence classes whose elements
are Hermitian matrices with two texture zeros given by

Mi
` = Ui

`∆`U
i†
` . (11)

Here,

Ui
` = TiP

†
`O`, i = 0, ..., 5 , (12)

where theTi are the elements ofS3 real representation,P`

is the diagonal matrix of phase factors, andO` is a real or-
thogonal matrix (see Appendix A in Ref. [20]). The PMNS
mixing matrix takes the form

Ui
PMNS = Ui†

` Uν = O>
` P`TiUTBM. (13)

The explicit form of theO` andP` matrices depends on the
equivalence class.

3.1. Equivalent classes with two texture zeros

The rule under which texture zeros in a matrix are counted
is; one texture-zero on the diagonal counts as one, while two
off-diagonal counts as one texture zero. Then, we shown the
four equivalent class kinds with two texture zeros.

Hermitian matrices Type-I

M0
` =




0 a` 0
a∗` b` c`

0 c∗` d`


 , M1

` =




b` a∗` c`

a` 0 0
c∗` 0 d`


 , M2

` =




d` c∗` 0
c` b` a∗`
0 a` 0


 ,

M3
` =




0 0 a`

0 d` c∗`
a∗` c` b`


 , M4

` =




d` 0 c∗`
0 0 a`

c` a∗` b`


 , M5

` =




b` c` a∗`
c∗` d` 0
a` 0 0


 ,

(14)

Hermitian matrices Type-II

M0
` =




f` a` 0
a∗` 0 c`

0 c∗` d`


 , M1

` =




0 a∗` c`

a` f` 0
c∗` 0 d`


 , M2

` =




d` c∗` 0
c` 0 a∗`
0 a` f`


 ,

M3
` =




f` 0 a`

0 d` c∗`
a∗` c` 0


 , M4

` =




d` 0 c∗`
0 f` a`

c` a∗` 0


 , M5

` =




0 c` a∗`
c∗` d` 0
a` 0 f`


 ,

(15)

Hermitian matrices Type-III

M0
` =




0 a` e`

a∗` 0 c`

e∗` c∗` d`


 , M1

` =




0 a∗` c`

a` 0 e`

c∗` e∗` d`


 , M2

` =




d` c∗` e∗`
c` 0 a∗`
e` a` 0


 ,

M3
` =




0 e` a`

e∗` d` c∗`
a∗` c` 0


 , M4

` =




d` e∗` c∗`
e` 0 a`

c` a∗` 0


 , M5

` =




0 c` a∗`
c∗` d` e∗`
a` e` 0


 ,

(16)
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Hermitian matrices Type-IV

M0
` =




f` a` 0
a∗` b` 0
0 0 d`


 , M1

` =




b` a` 0
a∗` f` 0
0 0 d`


 , M2

` =




d` 0 0
0 b` a∗`
0 a` f`


 ,

M3
` =




f` 0 a`

0 d` 0
a∗` 0 b`


 , M4

` =




d` 0 0
0 f` a`

0 a∗` b`


 , M5

` =




b` 0 a∗`
0 d` 0
a` 0 f`


 ,

(17)

In this paper, to analyze the feasibility of the textures, and
one of the equivalent class, here we only present the analysis
for the equivalence class with two zeroes texture type-I. The
others are developed in Ref. [13].

4. Equivalent class with two texture zeros
type-I

To analyze the deviation from the TBM pattern, we focus on
the Hermitian matrices with two texture zeros type-I Eq. (14).
By considering Eq. (14) and using the matrix invariants

Tr
{
Mi

`

}
, Det

{
Mi

`

}
,

χ
{
Mi

`

}
=

1
2

(
Tr

{
Mi2

`

}− Tr
{
Mi

`

}2
)

,

the mass matrices elements in terms of charged lepton
masses,δ`, φa andφc parameters have the formd` = 1− δ`,

a` =

√
m̃em̃µ

1− δ`
eiφa ,

b` = (s3 − 1) + s1m̃e + s2m̃µ + δ`,

c` =
√

f`1f`2f`3

1− δ`
eiφc ,

beingδ` such that0 < δ` < 1, with

f`1 = 1− s1m̃e − δ`,

f`2 = s3 (1− s2m̃µ − δ`) ,

f`3 = 1 + s3 (δ` − 1) .

m̃e = me/mτ , andm̃µ = mµ/mτ ; φa = arg {a`}, and
φc = arg {c`} are related to the CP violation and are defined
in the interval(−π, π]. sk = sign (m`k) with k = 1, 2, 3.
For charged lepton fields the sign of the mass is irrelevant
since the sign can be changed by means of the chiral trans-
formations,

`R → `′R = eiγ5
π
2 `R, and `L → `′L = eiγ5

π
2 `L.

These transformations change the sign of the eigenvalues,
however, the rest of the Lagrangian keeps invariant.

The parameterδ` must satisfy the following conditions:

A. 0 < δ` < 1− m̃µ, for me=− | me | .
B.0 < δ` < 1− m̃e, δ` 6= m̃µ − m̃e, for mµ=− | mµ | .
C.1− m̃µ < δ` < 1− m̃e, for mτ=− | mτ | .
In the above, the minus sign means which chiral rotation we
apply. Considering the previous results, the PMNS matrix
takes the formUi

PMNS = O>
` P`TiUTBM, where

O`=




s1

√
m̃µf`1
D`1

s2

√
m̃ef`2
D`2

s3

√
m̃em̃µf`3

D`3

√
m̃e(1−δ`)f`1

D`1

√
m̃µ(1−δ`)f`2

D`2

√
(1−δ`)f`3

D`3

−
√

m̃ef`2f`3
D`1

s1s2

√
m̃µf`1f`3

D`2
s3

√
f`1f`2
D`3




,

where

D`1 = (1− δ`) (m̃µ + s3m̃e) (1 + s2m̃e) ,

D`2 = (1− δ`) (m̃µ + s3m̃e) (1 + s1m̃µ) ,

D`3 = (1− δ`) (1 + s2m̃e) (1 + s1m̃µ) . (18)

In this case, the flavor mixing angles can be expressed as

sin2 θ12 =
1
3

m̃e

m̃µ
ε12, (19)

sin2 θ23 =
1
2

(1 + s2m̃e)
(1 + s1m̃µ)

ε23, (20)

sin2 θ13 =
1
2

m̃e

m̃µ
ε13. (21)

The explicit form of theεij parameters depends on the shape
of charged lepton mass matrix, explicit expressions for equiv-
alent class type-I are given in Appendix A (see the others
types in Ref. [13]). The matricesM0

` andM3
` (M1

` andM5
` ;

M2
` andM4

` ) generate the same form for theε12, ε23, andε13

parameters.

5. Numerical analysis

This section contains the numerical analysis of the allowed
regions for the reactor, atmospheric and solar mixing angles,
see Ref. [13].
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FIGURE 1. The allowed regions for the reactor mixing angleθ13

& δ` for equivalent class with two texture zeros type-I. The purple
stripe corresponds to the values at3σ for the reactor mixing angle
obtained from the global fit, for normal and inverted hierarchy [6].
In these panels, the red area is forM0

` andM3
` , blue area is for

M1
` andM5

` , the green area is for anM2
` andM4

` . In the lower
panel shows an amplification of the region in which the mixing
angle theoretical expressions simultaneously reproduce the current
experimental data.

It is easy to conclude that all charged lepton mass matri-
ces are able to reproduce the current experimental values of
reactor mixing angle. However, the numerical values interval
of the free parameterδ`, for theM1

` , M2
` , M4

` andM5
` mass

matrices, is too small.

In Figs. 1, 2, and 3, the purple stripe corresponds to the
values at3σ for reactor mixing angleθ13, solar mixing angle
θ12, and atmospheric mixing angleθ23 respectively, obtained
from the global fit, for normal and inverted hierarchy. In these
panels, the red area is forM0

` andM3
` , and the green area is

for M2
` andM4

` . In each figure, the lower panel shows an
amplification of the region in which the mixing angles theo-
retical expressions simultaneously reproduce the current ex-
perimental data.

FIGURE 2. The allowed regions for the solar mixing angleθ12 &
δ`, for equivalent class with two texture zeros type-I. Remaining
information as in Fig. 1.

The free parameterδ` should be in the following numeri-
cal interval:

δ` ∈ [0.99132, 0.99382] for M0
` and M3

` ,

δ` ≈ 0.9994 for M1
` and M5

` ,

δ` ≈ 0.9997 for M2
` and M4

` ,

whereas for the phase factors,

|φa| ∈ [76◦, 180◦] for M2
` , M4

` ,

|φc| ∈ [76◦, 180◦] for M0
` , M3

` .

5.1. Neutrinoless double-beta decay

The neutrinoless double beta decay(0νββ) is a second-order
process in which a nucleus decays into another by the emis-
sion of two electrons

(A,Z) → (A,Z + 2) + e− + e−.

The experimental discovery of one of these processes could
solve the open question about particles, which means that it

Supl. Rev. Mex. Fis.4 011008
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FIGURE 3. The allowed regions for the atmospheric mixing angles
θ23 & δ`, for equivalent class with two texture zeros type-I and
type-III. Remaining information as in Fig. 1.

would be the first signal of the non-conservation of the lep-
ton number. The amplitude for(0νββ) is proportional to the
Majorana effective mass

mee =
∑

i

mνiU
2
ei, i = 1, 2, 3,

wheremνi (i = 1, 2, 3) are the Majorana neutrino masses
andUei the elements of the first row of leptonic flavor mix-
ing matrix PMNS.

In the symmetric parametrization of leptonic flavor mix-
ing matrix, the Majorana effective mass has the form

|mee|=|mν1c
2
12c

2
13+mν2s

2
12c

2
13e

−i2φ12+mν3s
2
13e

−i2φ13 |,
whereφ12 andφ13 are the Majorana phase factor.

The mνi neutrino masses can be written in terms of the
lightest neutrino mass through the expressions

mν3[2] =
√

mν1[3] + ∆m2
31[23],

mν2[1] =
√

mν1[3] + ∆m2
21[31],

FIGURE 4. The allowed regions for the atmospheric mixing angle
θ23 & φa, φc, for equivalent class with two texture zeros type-I.

where the∆m2
ij = m2

νi
−m2

νj
andmν1[3] is the lightest neu-

trino mass for the normal[inverted] hierarchy in the neutrino
mass spectrum.

Figure 4 shows the allowed regions for the atmospheric
mixing angleθ23 as function ofφa (upper panel) andφc

(lower panel).

In the upper panel, the red area is for a normal hierarchy
while the orange area is normal hierarchy, both areas are ob-
tained from matricesM0

` andM3
` . In the middle panel, the

magenta area is hierarchy while the blue area is for an in-
verted hierarchy, both areas are obtained fromM1

` andM5
` .

Finally, in the lower panel, the green area is for a normal hi-
erarchy while the cyan area is for an inverted hierarchy, both
areas are obtained fromM2

` andM4
` . From KamLAND-ZEN

and EXO-200, the following upper limitmee < 0.061, which
correspond to the horizontal gray band. From the results re-
ported by Planck collaboration, obtaining the vertical gray
band.

Supl. Rev. Mex. Fis.4 011008
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FIGURE 5. In these panels, regions allowed for the magnitude of
Majorana effective mass|mee| are shown.

In Fig. 5, |mee| & mνligntest are shown for an inverted
and normal neutrino mass hierarchy, the yellow and purple
stripes are obtained from the current experimental data on
neutrino oscillations at3σ [6].

6. Summary

In a model-independent theoretical framework, we presented
a generalization of TBM leptonic flavor mixing pattern. In
this modification to the TBM pattern, the unitary matrix that
diagonalizes to the neutrino mass matrix is represented by
means of TBM flavor mixing pattern, whereas the charged
lepton mass matrix is represented by one of the elements of
the equivalence classes with two texture zeros. Particularly,
we shown a deviation from the TBM pattern in terms of the
charged lepton masses as well as the theoretical expressions
and their parameter space for the mixing angles. Further-
more, from the theoretical expressions ofεij in Appendix A
we have for each type of equivalent class theM0

` andM3
`

matrices generate the same expressions forε23 andε13; sim-
ilarly for M2

` andM4
` , as well asM1

` andM5
` .

From the analysis performed for equivalence classes
type-I, we had that it is easy to conclude that all charged lep-
ton mass matricesMi

` (i = 0, . . . , 5) are able to reproduce
the current experimental values of reactor, solar and atmo-
spheric angles. But, the numerical interval of the free param-
eterδ`, for theM1

` , M2
` , M4

` andM5
` , is too small,

δ` ∈ [0.99132, 0.99382] for M0
` and M3

` ,

δ` ≈ 0.9994 for M1
` and M5

` ,

δ` ≈ 0.9997 for M2
` and M4

` .

On the other hand, for all mass matricesMi
` (i =

0, . . . , 5), the solar and reactor mixing angles have a weak
dependence on phasesφa andφc; whereas forM1

` andM5
` ,

the atmospheric mixing angle has a weak dependence onφa

andφc.
However, to reproduce the current experimental data for

the mixing angleθ23, for M0
` andM3

` (M2
` andM4

` ), the
phaseφc (φa) runs over the numerical range

|φa| ∈ [76◦, 180◦] for M2
` and M4

` ,

|φc| ∈ [76◦, 180◦] for M0
` and M3

` .

Appendix

A. Parameters of equivalent class with two tex-
ture zeros type-I

For the mass matricesM0
` andM3

` ,

Supl. Rev. Mex. Fis.4 011008
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ε23 =
(1 + s3 (δ` − 1)) f`1 + (1− δ`) f`2 + s1s22

√
(1 + s3 (δ` − 1)) (1− δ`) f`1f`2 cos φc

(1− δ`)
(
1 + s3

m̃e
m̃µ

)
(1 + s2m̃e) + 1

2
m̃e
m̃µ

(
f`2 (1 + s3 (δ` − 1)) + f`1 (1− δ`)− 2

√
(1 + s3 (δ` − 1)) (1− δ`) f`1f`2 cos φc

) ,

ε13 =
f`2 (1 + s3 (δ` − 1)) + f`1 (1− δ`)− 2

√
(1− δ`) (1 + s3 (δ` − 1)) f`1f`2 cos φc

(1− δ`)
(
1 + s3

m̃e
m̃µ

)
(1 + s2m̃e)

,

ε12=

f`2 (1+s3 (δ`−1)) +f`1
m̃µ
m̃e

+f`1 (1−δ`) +2
√

(1+s3 (δ`−1)) (1−δ`) f`1f`2cc+(−1)is12

(√
m̃µ
m̃e

(1+s3 (δ`−1)) f`1f`2cac+f`1

√
m̃µ
m̃e

(1−δ`)ca

)

(1−δ`)
(
1+s3

m̃e
m̃µ

)
(1+s2m̃e)− 1

2
m̃e
m̃µ

f`2 (1+s3 (δ` − 1)) + (1− δ`) f`1−2
√

(1−δ`) (1+s3 (δ`−1)) f`1f`2cc

,

(A.1)

wherei = 0 for M0
` , i = 1 for M3

` , ca ≡ cosφa, cc ≡ cos φc, andcac ≡ cos (φa + φc).
ForM1

` andM5
` :

ε23 =

m̃e
m̃µ

f`2 + (1 + s3 (δ` − 1)) f`1 + s12
√

m̃e
m̃µ

(1 + s3 (δ` − 1)) f`1f`2 cos (φa + φc)

(1− δ`)
(
1 + s3

m̃e
m̃µ

)
(1 + s2m̃e)− 1

2
m̃e
m̃µ

(
f`2 (1 + s3 (δ` − 1)) +

m̃µ
m̃e

f`1 − s12
√

m̃µ
m̃e

(1 + s3 (δ` − 1)) f`1f`2 cos (φa + φc)

) ,

ε13 =
f`2 (1 + s3 (δ` − 1)) +

m̃µ
m̃e

f`1 − s12
√

m̃µ
m̃e

(1 + s3 (δ` − 1)) f`1f`2 cos (φa + φc)

(1− δ`)
(
1 + s3

m̃e
m̃µ

)
(1 + s2m̃e)

,

ε12=

f`2 (1+s3 (δ`−1)) +f`1
m̃µ
m̃e

+f`1 (1−δ`) +2s1

√
m̃µ
m̃e

(1+s3 (δ`−1)) f`1f`2cac+(−1)i2

(√
(1+s3 (δ`−1)) (1−δ`) f`1f`2cc+s1f`1

√
m̃µ
m̃e

(1−δ`)ca

)

(1−δ`)
(
1+s3

m̃e
m̃µ

)
(1+s2m̃e)− 1

2
m̃e
m̃µ

f`2 (1+s3 (δ`−1)) +f`1
m̃µ
m̃e

−2s1

√
m̃µ
m̃e

(1+s3 (δ`−1)) f`1f`2cac

,

(A.2)

wherei = 0 for M1
` , i = 1 for M5

` .
ForM2

` andM4
` ,

ε23 =
f`2

(
1− δ` + m̃e

m̃µ
+ s22

√
m̃e
m̃µ

(1− δ`) cos φa

)

(1− δ`)
(
1 + s3

m̃e
m̃µ

)
(1 + s2m̃e)− 1

2
m̃e
m̃µ

f`1

(
1− δ` +

m̃µ
m̃e

+ s12
√

m̃µ
m̃e

(1− δ`) cos φa

) ,

ε13 =

f`1

(
1− δ` +

m̃µ
m̃e

+ s12
√

m̃µ
m̃e

(1− δ`) cos φa

)

(1− δ`)
(
1 + s3

m̃e
m̃µ

)
(1 + s2m̃e)

,

ε12=

f`2 (1+s3 (δ`−1)) +f`1
m̃µ
m̃e

+f`1 (1−δ`)−2s1f`1

√
m̃µ
m̃e

(1−δ`)ca+(−1)i2

(√
(1+s3 (δ`−1)) (1−δ`) f`1f`2cc−s1

√
m̃µ
m̃e

(1+s3 (δ`−1)) f`1f`2cac

)

(1−δ`)
(
1+s3

m̃e
m̃µ

)
(1+s2m̃e)− m̃e

m̃µ

f`1
2

(
1−δ`+

m̃µ
m̃e

+s12
√

m̃µ
m̃e

(1−δ`) cos φa

) ,

(A.3)

wherei = 0 for M2
` , i = 1 for M4

` .
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