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1 Introduction

The standard paradigm To date, most measurements of 
jets in heavy ion collisions impose a standard paradigm 
for separation of the signal from the background, shown 
schematically in fig. 1. There is a signal from particles pro-
duced in a single hard scattering and a background from all 
other processes. That background possibly includes particles 
from other hard scatterings. This background leads to two 
types of background which must be suppressed and/or sub-
tracted

1. Combinatorial jets - jets whose constituents were not
created by the same, or even correlated, processes, but
which are simply spatially correlated.

2. Background particles in a signal jet - particles
grouped into a signal jet which were not produced by
the primary hard scattering.

These sources of background are the natural consequence of
jet finders which group all particles in an event into a jet.
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FIGURE 1. Schematic diagram showing standard paradigm for jet
background subtraction. Particles and jets are assumed to be clearly
classified as signal or background. In reality, some ambiguity exists.

This approach usually elides ambiguities in the classifi-
cation of particles or jets as signal or combinatorial jets, but

such ambiguities exist both experimentally and theoretically.
If a hard parton scatters off a medium parton, that medium
parton can carry some of the hard parton’s original momen-
tum and become spatially correlated with it. The resulting
hadrons would be indistinguishable experimentally from par-
ticles formed exclusively from fragmentation and hadroniza-
tion of the original hard parton. Experimentally, heuris-
tic procedures are developed to suppress and subtract back-
ground contributions, but possible biases imposed by these
approaches as well as how robust they are to partonic energy
loss are frequently uninterrogated.

The resolution to such ambiguities in particle physics
was the Snowmass Accord [1], which avoided heuristic ap-
proaches designed to get the expected result, leading to a
definition of a jet as, essentially, what a jet finder finds. A rig-
orous approach following the Snowmass Accord is to use the
same jet finding algorithm with the same parameters on sig-
nal and background in order to ensure that the two are compa-
rable. In heavy ion collisions, this would mean applying the
background suppression and subtraction techniques applied
to data to model calculations. This would guarantee that the
comparison is valid, but this approach has not yet been widely
implemented or accepted in the heavy ion community.

Approaches to background Combinatorial jets lead to
contamination of the measured signal by processes unrelated
to hard scatterings. Background particles in signal jets lead
the measured energy to be systematically higher than true en-
ergy; while the average contribution from these particles can
be subtracted, fluctuations in the number of background parti-
cles and their energies smears the reconstructed energy. Con-
tributions from combinatorial jets are suppressed and cor-
rected for by

1. focusing on high momentum jets, where such contri-
butions lead to a negligible contribution,

2. suppressing combinatorial jets by requiring a high mo-
mentum hadron [2] or otherwise requiring that they
contain high momentum constituents [3], and/or

3. subtracting any residual contribution, e.g. through un-
folding [4] or estimating the contribution using a tech-
nique such as mixed events [5].

The fluctuations in the jet energy due to background particles
are suppressed and corrected for by

We used model studies to investigate approaches to distin-guish signal and combinatorial jets.
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1. restricting jet constituents to high momentum particles,

2. correcting for the residual energy resolution using un-
folding, and/or

3. providing a response matrix so that it is possible to
smear a theoretical calculation rather than correct an
experimental measurement for smearing.

Possible biases imposed by these approaches often are cor-
rected for using unfolding in combination with simulations,
leaving the results potentially sensitive to model-dependent
corrections.

2 Models

We have done a number of model studies to evaluate the im-
pact of background suppression and subtraction techniques
and evaluate how robust the assumptions behind them are. To
do this we use two primary models, TennGen and PYTHIA.

We use TennGen [6, 7] for a realistic background Pb+Pb
event at

√
sNN = 2.76 TeV with correlations due to flow

but no other physics correlations. TennGen uses fits of AL-
ICE single particle spectra to a Boltzmann Gibbs Blast Wave
function [8, 9] and the measured single particle azimuthal
anisotropies [10] to throw a background roughly matching
the data. By construction, this background has no contribu-
tion from hard scatterings.

We embed a PYTHIA 6 p+p event produced with the
Perugia 2011c [11] tune at

√
s = 2.76 TeV in the TennGen

event to generate a jet signal. We cluster the combined event
with the anti-kT jet finder, producing a population of jet can-
didates with particles from both PYTHIA and TennGen.

3 Distinguishing signal and combinatorial jets

We can classify jet candidates as combinatorial or signal by
how much momentum is from TennGen and PYTHIA par-
ticles. Jets which contain only particles from TennGen are
classified as combinatorial. Jets which include 80% of the
phard,min
T used in PYTHIA are considered signal jets. All

other jets are classified as "squishy," as they are difficult to
unambiguously classify as signal or combinatoria. The ma-
jority of squishy jets are most likely more combinatorial, but
some contain significant contributions from hard processes.

We then use four variables to characterize what these jets
look like

1. Area (A) - determined by adding low momentum
"ghost" particles to the event. The area is proportional
to the number of ghost particles and is a measure of
how large the jet is. High momentum anti-kT jets will
generally have an area near A = πR2 where R is the
resolution parameter of the jet, but lower momentum

jets in particular are less likely to be conical and may
consist of only a few particles. Since gluon-like jets
tend to fragment into softer particles, any selection on
the area could bias the sample of jets.

2. Angularity [12] (λ1
1) - given by

λ1
1 =

N∑
i=1

zi ·
∆Ri,jet

R
(1)

where N is the number of constituents in the jet, zi is
the momentum fraction carried by constituent i, and
∆Ri,jet is the distance in η-ϕ space between con-
stituent i and the jet axis. This is a measure of how
far constituents are from the jet axis on average. Gen-
erally signal jets should have a lower λ1

1, but gluon-like
jets are broader on average than quark-like jets, so any
selection on λ1

1 is likely to impose a bias.

3. Mean pT (⟨pT ⟩) - is the average momentum of all con-
stituents, including both TennGen and PYTHIA parti-
cles.

4. Leading hadron pT (p1T ) - is the highest momentum
hadron in the jet. Since quark-like jets tend to frag-
ment harder, selecting on this this may lead to a bias in
the surviving jets.

This collection of jet properties aims to both describe the
complete properties of a jet and to be realistically applicable
to jets reconstructed in data. The distribution of these proper-
ties for real, combinatorial, and squishy jets is shown in fig. 2
for anti-kT jets with R = 0.4 for a range of phard,min

T . There
is a clear region at low areas where there are primarily com-
binatorial jets, although for jets with phard,min

T < 20 GeV/c
there is a significant contribution from signal jets. There is
some separation between signal and combinatorial jets for
low angularity and high p1T , while there is little separation
for ⟨pT ⟩. We therefore restrict jets to A < 0.6πR2, which
matches the procedure used by ALICE [2] for further stud-
ies. At lower momenta, this selection may induce a bias at
lower momenta, as the signal jets removed likely have differ-
ent properties from those which are retained.

After the area selection, the surviving population of com-
binatorial jets look nearly indistinguishable from signal jets
for angularity, ⟨pT ⟩, and p1T . There is still some separation
between signal and combinatorial jets, but there is signifi-
cant overlap, particularly for jets with phard,min

T < 20 GeV/c.
For p1T , there is a clear separation between signal and com-
binatorial jets, but there are significant populations of signal
jets for all p1T so any restriction which removes combinatorial
jets would also remove signal jets. Furthermore, this would
have a physics bias, as quark jets fragment harder than gluon
jets [13, 14].
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FIGURE 2. Distribution of jet area A, angularity, ⟨pT ⟩, and p1T for real, combinatorial, and squishy jets before (upper) and after (lower) a
selection of A > 0.6πR2 for anti-kT jets with R = 0.4.

4 Silhouette values

In order to investigate whether there is a separation between
these populations of jets, we investigate the distributions of
silhouette values. The silhouette value for the jet with index
i is given by

S(i) =
b(i)− a(i)

max{a(i), b(i)}
(2)

The a(i) are the mean in-class distance,

a(i) =
1

NI − 1

NI∑
j ̸=i

di,j (3)

where the sum runs over jets of the same class as jet i, NI

is the number of jets in the same class as jet i, dmax is the
largest distance between any two jets, and dmin is the small-
est distance between any two jets. The b(i) are the mean
out-of-class distance, similar to eq. 3. This is typically the
Euclidean distance computed in feature space, but instead we
use

d(i, j) =

√√√√ 4∑
k=1

(
xj − xi

xmax − xmin

)2

(4)

where the x represent the four observables used (A, λ1
1, ⟨pT ⟩,

and p1T ) and the xmax and xmin represent the maximum and
minimum, respectively, of each of these observables. The
normalized distances are used because the units and scales of
each observable are different.

By construction, −1 < S(i) < 1. Positive values indi-
cate that the jet is more like others in its group; for instance, a
given combinatorial jet is more like other combinatorial jets
than signal jets. Negative values indicate that the jet is more
like jets in the other group; for instance, a combinatorial jet
is more like a signal jet than other combinatorial jets. A sil-
houette value of zero indicates that the jet is equally close to

both its own group and the other group. The strength of sil-
houette values is that they are sensitive to multiple variables
at once. Silhouette values are more sensitive to multivariable
correlations which may enable the separation of signal and
background jets than single variables.

The distribution of silhouette values for real and combi-
natorial jets is shown in fig. 3 for anti-kT jets with R = 0.4
for a range of phard,min

T , both before and after the area selec-
tion. The silhouette values cannot be defined for squishy jets,
as it is unclear which group they belong in. Since silhouette
values are normalized to measure the difference between the
two groups in the sample, the silhouette values in different
panels in fig. 3 are not directly comparable to each other. For
all samples, most signal jets have positive silhouette values,
meaning that these look more like signal jets than combina-
torial jets. There is always a significant population of com-
binatorial jets with negative silhouette values, indicating that
these jets are more similar to signal jets than background jets.
The fraction of combinatorial jets with negative silhouette
values increases with decreasing jet momenta. This makes
intuitive sense, as high momentum jets stand out more from
the background.

At low momenta, the overlap between signal and com-
binatorial jets is significant. This means that combinatorial
jets are indistinguishable from signal jets, even in our con-
trolled simulations where we can clearly and unambiguously
define these samples. The ALICE collaboration found that
unfolding for the jet momentum resolution was not stable
without an additional selection on p1T . Our studies here in-
dicate that there is no hidden selection which overcomes the
need for additional selection on variables such as p1T which
inherently bias the surviving jet population. Realistically,
therefore, some kinematic selections which would impose a
bias are necessary. This ought to be considered carefully in
the interpretation of the results. Furthermore, in many cases,
a residual combinatorial jet contribution is corrected for us-
ing unfolding; this would add an inherent but subtle model
dependence in the way that these corrections are done.
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FIGURE 3. Distribution of silhouette values for real and combinatorial jets before (upper) and after (lower) a selection of A > 0.6πR2 for
anti-kT jets with R = 0.4 for various phard,min

T .

5 Unfolding

Experiments correct for distortions in the jet momentum due
to the migration of jets from their correct momentum bin
to another bin using a procedure called unfolding [15, 16].
Given the results in sec. 3 and sec. 4 indicating that some
bias may, indeed, be a necessary consequence of kinematic
selections which distinguish between signal and combinato-
rial jets, we investigate how robust unfolding is.

Momentum smearing arises due to both detector effects
and jet background fluctuations. Usually, a response matrix
is determined from a full simulation of the detector response
to a jet, often with a simulated p+p collision embedded in
either a real or a simulated Pb+Pb collision. An alternate ap-
proach is to factorize the response matrix into a detector re-
sponse, constructed with a p+p collision, and smearing in the
jet energy resolution from background fluctuations [2]. We
use both approaches, using PYTHIA Angantyr for the Pb+Pb
event.

Two sets of jets are reconstructed, the generated distri-
bution, which contains only charged particles from the p+p
event, and the smeared distribution, using all charged parti-
cles in either event. We do not include the impact of the finite
single track reconstruction efficiency.

FIGURE 4. Comparison of the unfolded result to the true distribu-
tion for an embedding response matrix (upper) and a fluctuation-
only response matrix (lower).

An unfolded distribution has to converge to the true distri-
bution in order to demonstrate closure. We use the jets in the
combined Pb+Pb plus p+p event which were matched to a jet
in the p+p event and unfold this transverse momentum spec-
trum using Bayesian unfolding implemented in the RooUn-
fold [17] package. We compare this to the transverse mo-
mentum spectrum in PYTHIA p+p events. Results in fig. 4
demonstrate that closure is only achieved for the embedding
response matrix. We note that this is consistent with previ-
ous studies indicating the two approaches were consistent,
but those studies had limited statistics. This indicates that
full embedding is required to achieve closure for Monte Carlo
models which simulate the full event.
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FIGURE 5. Distribution of silhouette values for real and combinatorial jets before (upper) and after (lower) a selection of A > 0.6πR2 for
anti-kT jets with R = 0.4 for various phard,min

T .

6 Conclusions

We used model studies to investigate approaches to distin-
guish signal and combinatorial jets. The results in sec. 3 and
sec. 4 demonstrate that some combinatorial jets are indistin-
guishable from signal jets, which indicates that the suppres-
sion of combinatorial jets at lower momenta requires kine-
matic selections which may bias the results. Of the four
variables investigated to distinguish between signal and com-

biantorial jets, selected because they could actually be ap-
plied to data, only p1T is relatively robust to a large back-
ground. Therefore, the ideal approach would involve apply-
ing these selections in a Monte Carlo which generates the full
event so that model calculations faithfully reproduce any bi-
ases. Section 5 demonstrates that to achieve closure, a full
Monte Carlo calculation requires unfolding using a response
matrix constructed with embedding.

We therefore propose the scheme in fig. 5 to ensure that
data and models are comparable. The RIVET [18] (Robust
Independent Validation of Experiment and Theory) frame-
work provides a generalized software framework for facili-
tating these comparisons in a systematic way. Analyses im-
plemented in this framework can follow the procedure in the
paper, including background subtraction. For models simu-
lating the entire event, as opposed to models which only sim-
ulate the jet, an additional step constructing a response matrix
and unfolding to correct for fluctuations in the background is
necessary. This avoids many of the problems with separating
signal and combinatorial background, as any biases or resid-
ual contamination
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