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We introduce a two-particle correlation observable that measures multiplicity-momentum correlations and may facilitate an estimate of the 
level of equilibration of the medium created in relativistic nuclear collisions. We calculate that multiplicity-momentum correlations should 
vanish in equilibrium in the Grand Canonical Ensemble, therefore non-zero measured values may indicate that the system has not reached 
local thermal equilibrium. Information about the level of equilibration of the system is important because many state-of-the-art models 
assume local equilibration either directly or through the use of an equation of state that makes this assumption. We make estimates of 
multiplicity-momentum correlations using PYTHIA/Angantyr and find positive values comparable i n magnitude t o well-measured correla-
tions of transverse momentum fluctuations. We then outline a  formalism that can use multiplicity-momentum correlations and correlations 
of transverse momentum fluctuations to quantify the level of partial thermalization of the system.

Keywords: Nuclear collision

1 Introduction

We present a new observable that measures multiplicity-
momentum correlations and may facilitate an estimate of the
level of equilibration of the medium created in relativistic nu-
clear collisions. This observable completes a set of mathe-
matically related two-particle number and momentum den-
sity correlations; the relationship can be used both as a vali-
dation tool, and also as a method for interpreting one observ-
able in therms of the physics of the others. In this work we
only outline the mathematical relationship and some conse-
quences. For a more detailed discussion, see Ref. [1].

In Ref. [1], we show that multiplicity-momentum corre-
lations should vanish in equilibrium in the Grand Canonical
Ensemble. Non-zero values of these correlations then may in-
dicate that the collision system is only partially thermalized.
Following Refs. [2–4], we take a progressive step toward gen-
erating a formalism that utilizes two-particle correlations to
quantify the level of thermalization of the collision system.

In Sec. 2, we introduce multiplicity-momentum corre-
lations, D, and outline their connection to three other two-
particle correlation observables: multiplicity fluctuations, R,
transverse momentum correlations, C, and net correlations of
transverse momentum fluctuations, ⟨δpt1δpt2⟩. Multiplicity
fluctuations, have been linked to centrality fluctuations and
studied as a possible signal for Quark-Gluon Plasma (QGP)
[5–20]. Transverse momentum correlations have been used
to estimate the shear viscosity to entropy density ratio and the
shear relaxation time of the collision medium [21–29]. Trans-
verse momentum correlations, in the form of a covariance of

two different particle’s traverse momentum fluctuation away
from the global average, have been examined as a signature
of critical fluctuations associated with the phase change be-
tween QGP and hadronic matter; they have also been linked
to event-by-event temperature fluctuations [30–43]. In past
work, we argue that measured ⟨δpt1δpt2⟩ values result from
initial state correlations modified by radial flow [44]. We also
argue that these correlations can signal the level of thermal-
ization reached by the collision medium [2, 45, 46]. Specif-
ically, Ref. [2], is our starting point for using multiplicity-
momentum correlations to quantify partial thermalization in
the system.

In Sec. 3 we show some estimates of multiplicity-
momentum correlations, as well as the other correlation ob-
servables, using the PYTHIA/Angantyr model [47, 48]. We
find D to have a positive value with a magnitude on the same
order as that of ⟨δpt1δpt2⟩. This leads us to explore the pos-
sibility of using D as a signature of partial thermalization in
Sec. 4.

In Sec. 4, we discuss how observables ⟨δpt1δpt2⟩ and
D can be written in terms of a “survival probability” that
quantifies the difference between model expectations of cor-
relations arising from locally equilibrated matter and from the
unaltered initial state. To constrain estimates of the survival
probability, we look to the four observables, R, C, D, and
⟨δpt1δpt2⟩, for different dependencies on the survival proba-
bility. We advocate for simultaneous experimental measure-
ment of the four observables to support this effort.
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2 Two-Particle Multiplicity and Momentum
Correlations

In this section we introduce multiplicity-momentum correla-
tions that are observable as

D =

〈
Nk∑
i=1

Nk∑
j=1,j ̸=i

δpt,i

〉
⟨N⟩2

=

〈
(Nk − 1)

Nk∑
i=1

δpt,i

〉
⟨N⟩2

, (1)

where
δpt,i = pt,i − ⟨pt⟩. (2)

Here the angled brackets represent an average over events.
For any quantity X , the event average is defined as ⟨X⟩ =
N−1

events

∑Nevents

k=1 Xk. In (1), indices i, j for particles 1 and
2 run over Nk particles in event k. Then, ⟨N⟩ is the aver-
age number of particles per event, ⟨PT ⟩ is the average total
transverse momentum per event, and ⟨pt⟩ = ⟨PT ⟩ / ⟨N⟩ is
the average transverse momentum per particle. With some
algebra, one can show that (1) becomes

D =
Cov(PT , N)− ⟨pt⟩V ar(N)

⟨N⟩2
. (3)

Here Cov(PT , N) = ⟨PTN⟩−⟨PT ⟩⟨N⟩ is the covariance of
total transverse momentum and multiplicity per event and the
multiplicity variance is V ar(N) = ⟨N2⟩−⟨N⟩2. For details
see Ref. [1].

Equation (3) indicates that multiplicity-momentum corre-
lations vanish if the only source of the correlation is simply
due to multiplicity fluctuations. These trivial multiplicity-
momentum correlations are subtracted by the last term on the
right side of (3).

We show in Ref. [1] that D is zero in equilibrium in the
Grand Canonical Ensemble. This suggests that non-zero val-
ues of D indicate that the collision system freezes out before
it thermalizes. In Sec. 3 we make estimates of D in pp and
AA collisions using the PYTHIA/Angantyr model and find
that D is non-zero and positive. We propose that this positive
value is consistent with the increase in ⟨pt⟩ with multiplicity
as seen in simulation and experiment.

Positive values of D suggest that multiplicity-momentum
correlations may make a non-trivial contribution to other two-
particle transverse momentum correlations that have been
previously used to search for the QCD critical point and the
onset of quark-gluon plasma. Following Ref. [1], we find the
result

(1 +R)⟨δpt1δpt2⟩ − C + 2⟨pt⟩D + ⟨pt⟩2R = 0, (4)

where multiplicity fluctuations are defined by

R =
⟨N(N − 1)⟩ − ⟨N⟩2

⟨N⟩2
=

V ar(N)− ⟨N⟩
⟨N⟩2

, (5)

transverse momentum correlations are defined by

C =

〈
Nk∑
i=1

Nk∑
j ̸=i

pt,ipt,j

〉
− ⟨PT ⟩2

⟨N⟩2
, (6)

and the net correlation of transverse momentum fluctuations
are

⟨δpt1δpt2⟩ =

〈
Nk∑
i=1

Nk∑
j=1,j ̸=i

δpt,iδpt,j

〉
⟨N(N − 1)⟩

. (7)

To illustrate the importance of D, examine Eq. (4) when
solved for ⟨δpt1δpt2⟩,

⟨δpt1δpt2⟩ =
C − 2⟨pt⟩D − ⟨pt⟩2R

(1 +R)
. (8)

The difference C − ⟨pt⟩2R naively represents the construc-
tion of ⟨δpt1δpt2⟩ as transverse momentum correlations with
multiplicity fluctuations removed. This assumption has been
historically made when interpreting ⟨δpt1δpt2⟩ as event-by-
event temperature fluctuations, and using it to search for crit-
ical fluctuations. Through Eq. (4), we now see that the defini-
tion of ⟨δpt1δpt2⟩ also removes multiplicity-momentum cor-
relations. This supports the interpretation of as temperature
fluctuations. Conversely, if one were to solve (4) for C, one
would find

C = ⟨pt⟩2R+ 2⟨pt⟩D + (1 +R)⟨δpt1δpt2⟩. (9)

Here, we see that all of R, D, and ⟨δpt1δpt2⟩ contribute to
transverse momentum correlations. This is significant since
R, C, and ⟨δpt1δpt2⟩ have all been measured deferentially
in relative pseudorapidity and relative azimuthal angle and
show long-range “ridge” correlations. Thus far, D has not
been measured, though we now see it is a key component to
understanding ridge correlations.

Experiments can now use Eq. (4) as a validation tool by
measuring (1), (5), (6), and (7) simultaneously. Addition-
ally, any theoretical model that seeks to describe the ridge,
or any individual observable appearing in (4), now has the
additional constraint that it must describe all observables si-
multaneously as well.

3 Results from Simulation

The centrality dependence of two-particle correlations is po-
tentially subject to a significant bias based on the method of
determining centrality and on the contribution of multiplicity
fluctuations to the observable [49]. To reduce this bias when
determining centrality with multiplicity, we follow Ref. [43]
and use the so-called “sub-group” method.

Observables are calculated using charged particles in the
mid-rapidity |η| < 0.5 region and centrality is found us-
ing particles in the remaining experimental acceptance. This
method allows for the use of one particle wide multiplicity
bins but relies on the fact that the pseudorapidity distribu-
tion of particles is relatively flat in the entire experimental
acceptance. For comparison to STAR, charged particles in
the region 0.5 < |η| < 1.0 are used for centrality and la-
belled Nacc. For comparison to ALICE, charged particles in
the region 0.5 < |η| < 0.8 are used for Nacc.

Supl. Rev. Mex. Fis. 3 040906
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FIGURE 1. Calculation of observables (1), (5), (6), and (7) scaled
by mid-rapidity multiplicity ⟨N⟩ using PYTHIA pp collisions.

0 200 400 600 800 1000

0

0.5

1

1.5

2
PYTHIA Pb-Pb 2.76 TeV

PYTHIA Au-Au 200 GeV

(a) <N>R

0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 ]2(b) <N>C [GeV

0 200 400 600 800 1000

0.02−

0

0.02

0.04

0.06

0.08 (c) <N>D [GeV]

0 200 400 600 800 1000

0.03−

0.02−

0.01−

0

0.01

0.02

0.03

0.04
]2> [GeV

T,2
 pδ

T,1
 pδ(d) <N>(1+R)<

accN

FIGURE 2. Calculation of observables (1), (5), (6), and (7) scaled
by mid-rapidity multiplicity ⟨N⟩ using PYTHIA/Angantyr AA col-
lisions.
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For pp collision systems we calculate observables (1), (5),
(6), (7), and the relation (4) in 30 sub-groups of events. We
then calculate the sub-group average and standard deviation
to represent the value and uncertainty of each observable. For
AA collisions, we use the same method with the exception
that we subsequently calculate the average and standard devi-
ation of the values of every 50 multiplicity bins. This average
is the reported value and the standard deviation determines
the uncertainty band.

In Fig. 1, we plot (1), (5), (6), and (7) calculated with
PYTHIA pp events. Each observable is scaled in a manner
that should naively remove centrality dependence. For exam-
ple, R, (5), is expected to trend like 1/⟨N⟩ since V ar(N) ∝
⟨N⟩ [1, 14]. Therefore, ⟨N⟩R should be flat with Nacc. Be-
cause of its different normalization, ⟨δpt1δpt2⟩ requires an
extra factor of (1 +R) = ⟨N(N − 1)⟩/⟨N⟩2 in order for it
to match the R, C, and D multiplicity centrality dependence.

Importantly, if each event yields a particle multiplic-
ity that is completely independent of every other event,
the the multiplicity distribution would be Poisson, meaning
V ar(N) = ⟨N⟩, and R = 0. Non-zero R, indicates that
different events are linked by the physics of the particle pro-
duction mechanism. Similarly, if the total multiplicity of an
event is small, V ar(N) → 0, then R → −1/⟨N⟩. This
explains the drop to negative values in Fig. 1(a). Similarly,
these negative values exist in very peripheral AA collisions
and this accounts for the lower value of the most peripheral
point of Fig. 2(a). The transverse momentum correlation, C,
is the pt weighted version of R and therefore has very similar
centrality dependence in both Figs. 1 and 2.

Figures 1(c,d) and 2(c,d) show PYTHIA/Angantyr re-
sults for ⟨N⟩D and ⟨N⟩(1 + R)⟨δpt1δpt2⟩ in pp and AA
collisions respectively. Notice that ⟨N⟩D is larger than
⟨N⟩(1 +R)⟨δpt1δpt2⟩ in all cases. We also calculate (4) for
all systems and results are consistent with zero within a max-
imum numerical error of |3|×10−17 for all collision systems.
Both observables are relatively flat with Nacc which is con-
sistent with 1/⟨N⟩ behavior. We look for deviations from this
trend in mid-peripheral to central collisions to signal novel
physics effects. As discussed in Sec. 2, the non-zero value
of D may signal the level of partial thermalization of the sys-
tem. In the next section, we briefly outline how the level of
thermalization can be quantified by and D.

4 Partial Thermalization

In Ref. [2], we show that the linearized Boltzmann equa-
tion, in the relaxation time approximation, can be modified
with a random Brownian motion-like noise term that mod-
els stochastic changes in the phase space parton distribution
f(p,x, t). This equation can be solved using the method of
characteristics to find

f = f0(p,x− vpt)S(τ, τ0)

+ fe(p,x− vpt)(1− S(τ, τ0)), (10)

where t is a function of the proper time τ in accord with
dt/dτ = E/p · u. In (10), f0 is the initial state phase space
distribution at the formation time τ0, and fe represents what
the equilibrium distribution would be given the values of the
temperature, flow velocity, and chemical potential of the sys-
tem at the time t. The quantity x−vpt accounts for how par-
tons would “free-stream” given a drift velocity vp that arises
from the fluid cell momentum p at any phase space point.

The survival probability

S(τ, τ0) = exp

{
−
∫ τ

τ0

ν(τ ′)dτ ′
}
, (11)

indicates the probability that particles escape the collision
volume without suffering any collisions. A vaue of S = 1
represents free-streaming particles and as thermalization pro-
ceeds S → 0. In Eq. (11), ν−1 is the characteristic relaxation
time that dictates the rate at which f → fe.

To apply this result to two-particle correlations we define
the correlation function

G12 = ⟨f1f2⟩ − ⟨f1⟩⟨f2⟩ − ⟨f1⟩δ(1− 2) (12)

for phase space distributions f1, and f2 of particles 1 and
2. Here we define δ(1 − 2) ≡ δ(x1 − x2)δ(p1 − p2) so
that the quantity ⟨f1f2⟩ − ⟨f1⟩δ(1 − 2) is the phase space
density of particle pairs with auto-correlations removed. In
the absence of any correlations, the pair density is equal to
⟨f1⟩⟨f2⟩, which would result in G12 = 0.

In Ref. [2], we derive a differential equation for the evo-
lution of G12 based on the Boltzmann-Langevin formulation
and Itô calculus. Again we use the method of characteristics
to find the solution which takes the form

G12 = Ge
12 + (X0

12 +X0
21)S +∆G0

12S
2. (13)

Defining the fluctuation of the phase space distribution away
from the equilibrium distribution to be δf = f − fe, the
mixed correlation function X12 is the covariance ⟨δf1fe

2 ⟩ −
⟨δf1⟩fe

2 , and ∆G = ⟨δf1δf2⟩− ⟨δf1⟩⟨δf2⟩− ⟨δf1⟩δ(1− 2).
In Eq. (13), terms weighted by the survival probability are de-
termined by initial conditions and the local equilibrium func-
tion has arguments Ge

12 = Ge(p1,x1−vp1
t,p2,x2−vp2

t).
By integrating appropriate moments of (13), we further

show in Ref. [2] that net correlations of transverse momen-
tum fluctuations ⟨δpt1δpt2⟩, depends on the survival proba-
bility (11). We find

⟨δpt1δpt2⟩ = ⟨δpt1δpt2⟩0S2 + ⟨δpt1δpt2⟩e(1− S2). (14)

Notice that (14) depends on S2.
We seek to determine a method for extracting S from ex-

periment. Since both ⟨δpt1δpt2⟩0 and ⟨δpt1δpt2⟩e are model
dependent, there is much uncertainty in using (14) with ex-
perimental data to determine S. However, given that we ex-
pect D is non-zero, we can calculate the dependence of D on
the survival probability. Then, by measuring ⟨δpt1δpt2⟩ and
D in the same experiment, model definitions of initial state
correlations and equilibrium correlations must simultane-
ously match the two observables and yield the same value
of S.

Supl. Rev. Mex. Fis. 3 040906
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Following Refs. [3, 4], we calculate

D = De +

∫
δpt1

⟨G12 −Ge
12⟩

⟨N⟩2
dω1dω2, (15)

where we abbreviate the differential phase space elements
dω = dxdp, and the spatial integrals are on the Cooper-Frye
freeze-out surface with dx = pµdσµ/E [50]. We then find

D = DoS +De(1− S). (16)

Notice that (16) depends on only a single power of S where
(14) depends on S2. Therefore, experimental measurement
of D will provide important constraints on our extraction of
values of the survival probability. In future work we will in-
vestigate the S dependence of all observables (1), (5), (6),
and (7). We advocate for simultaneous measurement of these
observables – under the same conditions – to facilitate our
estimates of the level of equilibration in relativistic nuclear
collision systems.

5 Discussion and Summary

In this work we introduce multiplicity-momentum correla-
tions, D, Eq. (3), a relatively new observable that we first
introduced in Ref. [1]. Our early estimates of D, using
PYTHIA/Angantyr, indicate a positive value similar in mag-
nitude and larger than the related (and much studied) observ-
able ⟨δpt1δpt2⟩. We have shown in Ref. [1] that one can ex-
pect D to vanish in equilibrium in the Grand Canonical En-
semble. Therefore, non-zero values of D may indicate that
the collision system does not fully reach local thermal equi-
librium before freeze-out.

Many hydrodynamic and other models rely either directly
on the assumption of local equilibration or indirectly by using
equations of state taken from lattice QCD calculations that,
themselves, assume local equilibrium. If the experimental
system never reaches this local equilibrium state, then these
model comparisons to data may result in misinterpretations
of the values of transport coefficients like viscosity and re-
laxation times.

To address this issue, we briefly outline a formalism
for using two-particle correlation observables to quantify the
level of partial thermalization of the system. We follow our
earlier work, Ref. [2], where we showed that ⟨δpt1δpt2⟩ can
be written in terms of a “survival probability” S, where S is
the probability that a particle suffers no collisions in the evo-
lution of the medium. Therefore S = 1 in the case where
the initial state free-streams to the detector, and S = 0 in
the case where the collision medium reaches local thermal
equilibrium. This survival probability can be used as a quan-
titative measure of partial thermalization.

With estimates of the initial state correlations and models
that include local equilibrium dynamics, one can use the re-
sult (14) in comparison to experimental data to extract the
survival probability. This leads to a new problem that an
extra parameter is available in the theory to facilitate fits to
data. We propose a solution to this issue issue by looking for
simultaneous comparisons to multiple observables with dif-
ferent dependencies on the survival probability. In (14), only
powers of S2 exist. We reproduce our methods from Ref. [1]
using multiplicity-momentum correlations and find Eq. (16),
which only depends on single powers of S. We advocate for
simultaneous measurement of D and ⟨δpt1δpt2⟩ to provide a
data set that can constrain our theoretical extraction of S.

To strengthen our approach, we define a mathematical re-
lationship (4) between four two-particle correlation observ-
ables, (1), (5), (6), and (7). When all observables are mea-
sured simultaneously, (4) not only provides an experimental
validation of results, but this set of four observables pose a
challenge for any model to explain them simultaneously. Our
motivation is to provide additional constraints on our extrac-
tion of S. In ongoing work, we determine the S dependence
of all four variables [3, 4].
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