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QCD Equilibrium and Dynamical Properties from Holographic Black Holes
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By using gravity/gauge correspondence, we employ an Einstein-Maxwell-Dilaton model to compute the equilibrium and out-of-equilibrium
properties of a hot and baryon rich strongly coupled quark-gluon plasma. The family of 5-dimensional holographic black holes, which are
constrained to mimic the lattice QCD equation of state at zero density, is used to investigate the temperature and baryon chemical potential
dependence of the equation of state. We also obtained the baryon charge conductivity, and the bulk and shear viscosities with a particular
focus on the behavior of these observables on top of the critical end point and the line of first order phase transition predicted by the model.
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1 Introduction

It is the goal of heavy ion physics to map the phases of
strongly interacting matter at finite temperature and density.
Within the multidimensional QCD phase diagram, the most
common representations is a plane of temperature and baryon
chemical potential where the hadronic phase is located at low
temperature and density, whereas at large temperature there
is experimental evidence that the quarks and gluons behave
similarly to a strongly interacting liquid that we now call the
quark-gluon plasma (QGP) [1]].

It is well established that the transition between the
hadron gas and the QGP is a smooth crossover at vanishing
chemical potential [2}/3]]. However, it is conjectured that the
crossover must evolve into a line of first order phase transi-
tion with a critical end point (CEP) at some finite value of
baryon chemical potential. In fact, this is the case in chiral
models when the effects of finite quark masses are consid-
ered [4]]. Experimentally, the QCD phase diagram is scanned
by systematically decreasing the center of mass energy per
nucleon (4/s) in relativistic heavy ion collisions, thus favor-
ing matter over anti-matter produced in these events [5[]. On
the theory side, lattice QCD simulations are the best non-
perturbative tool available to study QCD thermodynamics
and the transition from the hadronic phase to the deconfined
QGP one, and in particular, lattice QCD has provided the
equation of state (EoS) at zero chemical potential [2}6]. Nev-
ertheless, calculations at finite baryon density are limited by
the sign problem, an obstacle present in any path integral rep-
resentation of systems with fermions at finite density [7[]. One
way to circumvent this problem is extending the EoS via Tay-
lor expansion, although this series procedure only works for
moderate values of baryon chemical potential and is available
up to a ratio of /T = 3.5 [8]]. As a consequence, a large
region in the QCD phase diagram remains unknown.

Therefore, in order to potentially guide the experimen-
tal search of the QCD critical point, we need an effective
field theory for hot and dense deconfined matter that ex-
hibits near perfect fluidity, a feature of the QGP character-
ized by a surprisingly small value of its shear viscosity over
entropy density (1/s) [9]. One must also require that this
theoretical approach agrees with the lattice EoS and allows
non-equilibrium calculations to study the dynamical response
of the QGP encoded in the transport coefficients, which are
not easily extracted from first principles despite the progress
of ab initio lattice calculations [[10]. Besides the shear (1)
and bulk viscosities (¢), used as inputs in the hydrodynam-
ical simulations of evolution of relativistic heavy ion colli-
sions [11]], the baryon diffusion coefficient and conductivity
are also relevant at finite baryon density [12].

The gauge/gravity holographic duality [[13H15] can be
employed to study strongly interacting matter at nonzero tem-
perature and density both in equilibrium [16,/17] and out of
equilibrium [18}|19]]. In this manuscript, we summarize the
results regarding the equilibrium and dynamical properties of
strongly interacting matter at finite density by using a fam-
ily of 5-dimensional holographic black holes and its phase
diagram from Refs. [20}21].

2 The Holographic EMD Model

The most general five-dimensional bulk action with one met-
ric field, an abelian gauge field A, and a real scalar field
¢ with at most two derivatives that can generate a QCD-like
theory [16] reads,
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where k2 is the 5-dimensional gravitational constant, Guv 18
the metric tensor, R is the Ricci scalar, ¢ is the dilaton field
and V (¢) is a scalar potential that breaks conformal invari-
ance in the quantum field theory side. V' (¢) is a free func-
tion within the holographic model that is dynamically fixed
by solving the equations of motion at up = 0 with the con-
strain that the holographic equation of state matches the lat-
tice results with (2+1) flavors and physical values of the quark
masses at zero chemical potential from [22]]. The results of
this procedure are shown in Fig. [T}
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FIGURE 1. Thermodynamics at ug = 0. Lattice QCD results from
Ref. [22] (red points) are compared to the holographic model curves
(blue lines): (a) entropy density, (b) speed of sound squared, (c) en-
ergy density e, (d) pressure P, and (e) trace anomaly I = € — 3P.

Additionally, the holographic approach allows to obtain
an EoS at finite chemical potential by adding a Maxwell field
A, and an additional function f(¢) that couples the dila-
ton and Maxwell fields, hence defining an Einstein-Maxwell-
Dilaton model (EMD). The coupling function f(¢) is dynam-
ically fixed by matching the solutions from the black hole to
the second order baryon susceptibility at zero chemical po-
tential obtained from lattice calculations as shown in Fig. [2]
The n—th order baryon susceptibility is defined as:

o (pP/T*
o = ZET) @
I(up/T)
where P corresponds to the pressure. The susceptibilities are
the coefficients of the Taylor series expansion of the pressure
and the baryon density pp.
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FIGURE 2. Results from the fitting of the holographic susceptibility
(solid black curve) to the dimensionless second order baryon sus-
ceptibility x5 (T, g = 0) from lattice QCD [223].

In the EMD model, the ansatz used to describe charged,
isotropic, translational and rotationally invariant and asymp-
totically Anti-de Sitter (AdS) black hole solutions may be
written as:

ds> = e2A[—h(r)dt? + di?] + ,f(:),
b = o(r), )
A = A,dxt = O(r)dt.

with the boundary of the asymptotically AdSs spacetime
placed at » — oo, the black hole horizon rg is given by
the largest root of h(rg) = 0 and the radius of the asymptot-
ically AdSs5 background is set to unity.

From the action[T]and the Ansatz[3] the equations of mo-
tion (EOM) are numerically solved and the thermodynamics
for a QCD-like theory is obtained through holographic dic-
tionary, i.e. from the asymptotic behavior of the black hole
background fields, one can compute the entropy density s
and the baryon density p over a plane of temperature 7" and
baryon chemical potential p g as detailed in Ref. [[17,20].

It is important to point out that this holographic EMD
model is fixed to mimic the lattice EoS only at zero chemical
potential. Therefore, any calculation at finite ;15 and any cal-
culations at up = 0 concerning observables not employed to
fix the free parameters of the model (e.g. the bulk viscosity at
up = 0 which is compared to Bayesian analyses in Ref. [21]])
constitute actual predictions of the model.

3 The EoS and the Critical End Point

Once the EoS for the QCD-like theory is obtained at finite
chemical potential, it is possible to look for signatures of crit-
icality. In fact, the second order baryon susceptibility 2,
which could be interpreted as a measure of how the baryon
density reacts when up is increased, exhibits a divergence
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as shown in Fig. at the coordinates 7¢ = 89 MeV and
u% = 724 MeV, which is a candidate for the QCD critical
end point (CEP).
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FIGURE 3. Upper panel: the behavior of the second order baryon
susceptibility & in the (T, up) plane. As the chemical potential
increases, xZ develops a peak that diverges at the critical point lo-
cated at T°FF ~ 89 MeV and u&* ~ 724 MeV. Lower panel: the
phase diagram of our EMD model. The inflection point of x& and
the minimum of the speed of sound squared at constant entropy per
baryon number ¢? are used to characterize the crossover region.

Additionally, two state variables, sensitive the change of
degrees of freedom from the confined hadronic phase to the
high temperature deconfined QGP phase, were chosen to de-
scribe the crossover region. In particular, the inflection point
of the second order baryon susceptibility xZ and the mini-
mum of the square of the speed of sound at constant entropy
per baryon number ¢ were considered as pseudo transition
lines. These trajectories follow and meet at the CEP.

Thanks to numerical developments, presented in Ref.
[20], it is possible to obtain the thermodynamics of the QCD-
like theory over a broad region in the phase diagram within
the rectangle defined by T' € [2,550] MeV and pp €

[0,1100] MeV. The holographic EoS is compared with the
most recent lattice QCD results from an alternative expan-
sion scheme [8]]. This comparison between the holographic
EMD and the state-of-the-art lattice results for the case of the
energy density up to the unprecedented value of up /T = 3.5
is shown in Fig. ] with an excellent quantitative agreement.
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FIGURE 4. normalized energy density as a function of the tempera-
ture for different values of /T and its comparison with state-of-
the-art lattice QCD results from Ref. 8]

4 Transport Coefficients

The computation of the holographic transport coefficients,
relevant to study the near-equilibrium response of the QGP,
makes use of formulas that have been already derived in the
literature. Here, we consider the black hole background fields
solution and the holographic EoS from Refs. [[17,[20]. For the
first time, we present the transport variables of hot and dense
quark-gluon matter over the crossover region, on top of the
critical point and across the line of first order phase transition
as reported in [21].

In order to obtain the baryon conductivity, bulk viscosity,
and shear viscosity, we consider linear disturbances of the
finite temperature and baryon dense EMD black hole back-
ground fields. As a result of a plane wave Ansatz for the
black hole background field perturbations with zero momen-
tum and frequency w, the resulting disturbances can be orga-
nized into gauge and diffeomorphism invariant combinations
of the SO(3) symmetry group of spatial rotations [[18]. The
SO(3) singlet channel is holographically related to the bulk
viscosity (¢) of the dual plasma, the triplet to the baryon con-
ductivity (o), and the quintuplet to the shear viscosity (7).

4.1 Baryon Conductivity

Regarding the baryon conductivity o g, the derivation can be
found in Ref. [18]], the details of the numerical calculations
are reported in Ref. [21]], and the holographic results for the
baryon conductivity are shown in Fig. [5} Overall, the baryon
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conductivity does not strongly depend on the baryon chemi-
cal potential, and it remains finite at the location of the critical
point, although it develops an infinite slope at this location.
This indicates this holographic result for oz lies in the type
B dynamical universality class [24]]. Beyond the critical point
and over the line of first order phase transition, oz /T devel-
ops a discontinuity that remains small as the baryon chemical
potential increases.
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FIGURE 5. Upper panel: scaled baryon conductivity og /T as a
function of temperature and baryon chemical potential. Lower
panel: scaled baryon conductivity as a function of the temperature,
for several values of the chemical potential.

4.2 Bulk Viscosity

The bulk viscosity ¢, which measures the resistance of the
fluid to deformation due to compression or expansion, in this
holographic context can be associated with the gauge and dif-
feomorphism invariant combination of the EMD fields trans-
forming as a singlet under SO(3). The derivation of the
differential equation associated with this calculation can be
found in Ref. [18], and the details regarding the numerical
computation when considering the present EMD model are

reported in Ref. [21]]. The results regarding the bulk viscos-
ity, presented as a dimensionless combination when divided
by the enthalpy density are shown in Fig. [6]
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FIGURE 6. Holographic bulk viscosity (T'/(e + P) as a function of
T and pp (top), and the same observable as a function of the tem-
perature at different constant values of pp (bottom).

Interestingly, the bulk viscosity is suppressed with in-
creasing baryon chemical potential indicating the fluid be-
comes even more ideal at higher densities. Also, the peak the
bulk viscosity exhibits at vanishing chemical potential does
not follow the CEP when pp increases. However, at some
finite value of baryon chemical potential, the bulk viscosity
develops an inflection point that gives rise to a local mini-

mum at a larger value of 1. Both, the inflection line and the
local minimum of the bulk viscosity, follow and meet at the
critical point. At the CEP, the holographic ¢ remains finite, in
contrast to the prediction for this observable in other effective
models regarding a divergent bulk viscosity although
it exhibits a divergent slope. This is possibly due to the dif-
ferent dynamical universality class expected for QCD (type
H) [27]], and the one for large-N./holographic approaches

(type B) [28].
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4.3 Shear Viscosity

The shear viscosity measures the fluid resistance to shear
flow in the presence of a velocity gradient within the lay-
ers of the fluid. In the holographic context, not only for the
present model, but also any holographic model with isotropic,
rotationally and translationally invariant holographic back-
grounds with at most two derivatives in the gravity action,
the holographic shear viscosity ratio is given by n/s = 1 /4.
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FIGURE 7. Holographic shear viscosity times temperature over en-
thalpy density as a function of 7" and p.p (top) and the same observ-
able as a function of the temperature at several constant values of ;g
(bottom). This dimensionless combination reduces to /s = 1/4x
at up = 0.

Similarly to the case for (, the shear viscosity normal-
ized by the enthalpy density represents the actual measure of
fluidity in a baryon dense medium and is the relevant quan-
tity entering in hydrodynamical simulations [29}[30]. This
dimensionless quantity reduces to the ratio /s at ug = 0.
Also, the normalized holographic shear viscosity is sup-
pressed with increasing pp and remains finite at the CEP,
where it exhibits an infinite slope.

5 Conclusions

Our holographic EMD model [17,20, 21f], which is fixed
to mimic the Lattice EoS for up = 0, predicts a CEP at
TEFP = 89 MeV and pu&FF = 724 MeV. This model is in
quantitative agreement with state-of-the-art lattice QCD ther-
modynamics with (2 + 1) flavors and physical quark masses,
both at zero and finite baryon density [17,20]. With the first
order phase transition line located, we considerably extended
the baryon chemical potential coverage of the EoS in the
phase diagram. The transport coefficients related to transport
of baryon charge, and viscosities were obtained over finite
baryon chemical potential and particularly over the predicted
line of first order phase transition and on top of the critical
end point. We found that the holographic shear and bulk vis-
cosities are suppressed with increasing baryon chemical po-
tential, indicating the medium becomes closer to perfect flu-
idity at larger density. Additionally, the baryon conductivity,
and bulk and shear viscosities are finite at the CEP, although
they exhibit a divergent slope at this location. Beyond the
critical point, and similarly to the equilibrium variables, the
transport coefficients exhibit a discontinuity that corresponds
to the line of first order phase transition.
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