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Plasma screening and the critical end point in the QCD phase diagram
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In heavy-ion collisions, fluctuations of conserved charges are known to be sensitive observables to probe criticality for the QCD phase
transition and to locate the position of the putative critical end point (CEP). In this work we seek to show that the Linear Sigma Model with
quarks produces an effective description of the QCD phase diagram in which deviations from a Hadron Resonance Gas are due to plasma
screening effects, encoded in the contribution of the ring diagrams. Accounting for these, it is possible to include in the description the effect
of long-range correlations. To set the model parameters we use LQCD results for the crossover transition at vanishing chemical potential.
Finally, studying baryon number fluctuations from the model, we show that the CEP can be located within the HADES and/or the lowest end
of the NICA energy domain,

√
sNN ∼ 2 GeV.
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1 Introduction

In recent years, the study of hadron matter under extreme
conditions of temperature and baryon density has become
a subject of great interest. Of particular importance is the
possibility of experimentally exploring the QCD phase struc-
ture by means of relativistic heavy-ion collisions. Currently,
this exploration is carried out in experimental facilities such
as RHIC, with the STAR Beam Energy Scan program, and
HADES [1, 2]. Dedicated experiments soon to come on line,
such as the NICA-MPD [3, 4] and FAIR-CBM [5], are ex-
pected to widen the energy range for the exploration of the
phase diagram.

From Lattice QCD (LQCD) calculations, its known that
for finite temperature T and vanishing baryon chemical po-
tential µB , the transition between the confined/chiral sym-
metry broken and the deconfined/partially restored chirally
symmetric phases, is a crossover that occurs at a pseudocrit-
ical temperature Tc(µB = 0) ≃ 158 MeV [6–8]. Also from
the calculations made using effective models [9–14], it can
be found that this transition becomes first order at low T and
high µB . Therefore, the point at which the first-order phase
transition line in the T vs µB plane ends and the crossover

begins, as the temperature increases, is called the Critical
End Point (CEP). Unfortunately, LQCD calculations cannot
be used to directly determine the position of this CEP due
to the severe sign problem [15] but results employing the
Taylor series expansion around µB = 0 or the extrapolation
from imaginary to real µB values, suggest that the CEP has
not yet been found for µB/T ≤ 2 and 145 ≤ T ≤ 155
MeV [6, 16, 17].

The Hadron Resonance Gas Model (HRGM) describes
the crossover transition line for low values of µB found by
LQCD [18] when the occupation numbers are given in terms
of Boltzman statistics [19]. Therefore, the strategy to locate
the CEP consists in finding deviations from the statistical
behavior of the HRGM. The statistical properties of a ther-
mal system are characterized in terms of the cumulants of
its conserved charges, that are extensive quantities [20]. To
avoid uncertainties introduced by volume effects, the analy-
ses involve ratios of these cumulants. The strategy narrows
down to find deviations in the ratios of these cumulants from
those obtained in HRGM, which are described by the Skel-
lam distribution where the ratios of cumulants of even order
are equal to 1. The baryon number is a conserved quantity
that can be experimentally probed by means of measurements
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of proton multiplicities [2, 21–23]. Therefore the location of
the CEP can be identified by the appearance of critical be-
havior [24–29] in this and other conserved charges such as
electric charge and strangeness, when a collision energy scan
is performed.

In this work we study baryon number fluctuations as a
function of the collision energy looking at the evolution of
cumulant ratios, in the context of relativistic heavy ion colli-
sions, using the Linear Sigma Model with quarks (LSMq)
including the plasma screening effects. The latter are en-
coded in the ring diagram contribution to the effective po-
tential which becomes a function of the order parameter after
spontaneous chiral symmetry breaking. Therefore, the statis-
tical properties of the system can be formulated in terms of
fluctuations of this order parameter [30, 31] when the colli-
sion energy

√
sNN and thus T and µB , are varied. To provide

analytical insight, we employ the high temperature approxi-
mation and work in the chiral limit. Although these approxi-
mations have limitations in terms of the accuracy for the CEP
localization, they are a useful guide for future more precise
studies. The remaining of this work is organized as follows:
In Sec. 2 we describe the LSMq and compute the effective
potential up to the ring diagrams contribution, which requires
computation of the self-energies corresponding to the meson
degrees of freedom. The parameters of the model are fixed
by requiring that the phase transition line in the vicinity of
µB = 0 corresponds to the one found by the most recent
LQCD calculations [6]. In Sec. 3, we formulate how baryon
number fluctuations are described in terms of the probabil-
ity distribution associated with the order parameter near the
transition line and report the results obtained from the anal-
ysis of the cumulant ratios used to describe baryon number
fluctuations as a function of

√
sNN . We show that these ra-

tios deviate from the expectations of the HRGM for energies
around

√
sNN ∼ 4 − 6 GeV and that the CEP can be found

at energies
√
sNN ∼ 2 GeV. The model thus predicts that

the CEP can be found either in the lowest NICA or within
the HADES energy domain. We finally summarize in Sec. 4.
The complete analysis can be found in Ref. [32].

2 Linear Sigma Model with quarks

The QCD phase diagram can be partially described by ef-
fective models; they can be used to explore different regions
in parameter space depending on the degrees of freedom in
the model. Given that LQCD calculations find that coinci-
dent deconfinement and chiral symmetry restoration transi-
tions lines, it should be possible to explore the phase dia-
gram emphasizing the chiral aspects of the transition only,
like LSMq does. The Lagrangian of the LSMq is given by

L =
1

2
(∂µσ)

2 +
1

2
(∂µπ⃗)

2 +
a2

2
(σ2 + π⃗2)

− λ

4
(σ2 + π⃗2)2 + iψ̄γµ∂µψ − gψ̄(σ + iγ5τ⃗ · π⃗)ψ, (1)

where ψ is a SU(2) isospin doublet of quarks,

π⃗ = (π1, π2, π3), (2)

and σ are isospin triplet and singlet, corresponding to the
three pions and the sigma meson, respectively. The squared
mass parameter a2 and the self-coupling λ and g are taken to
be positive and, for the purpose of describing the chiral phase
transition at finite T and µB , they need to be determined from
conditions close to the phase boundary, and not from vacuum
conditions. In order to allow for a spontaneous symmetry
breaking, we work in the strict chiral limit and we let the σ
field to develop a vacuum expectation value v, namely,

σ → σ + v, (3)

which can later be taken as the order parameter of the transi-
tion. After this shift, the Lagrangian can be rewritten as

L =
1

2
(∂µσ)

2 +
1

2
(∂µπ⃗)

2 − 1

2

(
3λv2 − a2

)
σ2

− 1

2

(
λv2 − a2

)
π⃗2 +

a2

2
v2 − λ

4
v4

+ iψ̄γµ∂µψ − gvψ̄ψ + Lb
I + Lf

I , (4)

where Lb
I and Lf

I are given by

Lb
I = −λ

4
σ4 − λvσ3 − λv3σ − λσ2π+π− − 2λvσπ+π−

− λ

2
σ2(π0)2 − λvσ(π0)2 − λ(π+)2(π−)2

− λπ+π−(π0)2 − λ

4
(π0)4 + a2vσ

Lf
I = −gψ̄(σ + iγ5τ⃗ · π⃗)ψ. (5)

The expressions in Eq. (5) describe the interactions among
the fields σ, π⃗ and ψ, after symmetry breaking.

From Eq. (4) we can see that the sigma, the three pions
and the quarks have masses given by

m2
σ = 3λv2 − a2, m2

π = λv2 − a2,

mf = gv, (6)

respectively. We study the behavior of the effective poten-
tial in order to analyze the chiral symmetry restoration con-
ditions in terms of temperature and quark chemical potential.
The effective potential includes the classical potential or tree-
level contribution, the one-loop correction both for bosons
and fermions and the ring diagrams contribution, which ac-
counts for the plasma screening effects.

The tree-level potential is given by

V tree(v) = −a
2

2
v2 +

λ

4
v4, (7)

whose minimum is found at

v0 =

√
a2

λ
. (8)

Since v0 ̸= 0 then chiral symmetry is spontaneously bro-
ken. To include quantum corrections at finite temperature
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and density, we work within the imaginary-time formalism
of thermal field theory. The general expression for the one-
loop boson contribution can be written as

V b(v, T ) = T
∑
n

∫
d3k

(2π)3
lnDb(ωn, k⃗)

1/2, (9)

where
Db(ωn, k⃗) =

1

ω2
n + k2 +m2

b

, (10)

is the free boson propagator with m2
b being the square of the

boson mass and ωn = 2nπT the Matsubara frequencies for
boson fields.

For a fermion field with mass mf , the general expression
for the one-loop correction at finite temperature and quark
chemical potential µ = µB/3 is

V f(v, T, µ) = −T
∑
n

∫
d3k

(2π)3
Tr[lnSf(ω̃n, k⃗)

−1], (11)

where
Sf(ω̃n, k⃗) =

1

γ0(ω̃n + iµ) + /k +mf
, (12)

is the free fermion propagator and ω̃n = (2n+ 1)πT are the
Matsubara frequencies for fermion fields. The ring diagrams
term is given by

V Ring(v, T, µ) =
T

2

∑
n

∫
d3k

(2π)3
ln[1 + ΠbDb(ωn, k⃗)],

(13)

where Πb is the boson self-energy. The self-energies for the
sigma and pion fields are in general different. However, we
are working in the high-temperature approximation, keeping
only the leading matter effects. In this approximation the bo-
son self-energies become mass independent and therefore in-
dependent of the boson species. Additionally, because no ex-
ternal agent that might couple to the electric charge, such as a
magnetic field, is considered, there is no distinction between
neutral and charged pions and we can write [33]

Πb ≡ Πσ = Ππ± = Ππ0

= λ
T 2

2
−NfNcg

2T
2

π2

[
Li2

(
−e−

µ
T

)
+ Li2

(
−e

µ
T

)]
,

(14)

whereNc andNf are the number of colors and flavors, respec-
tively, while Li2(x) stands for the polylogarithm function of
order 2.

Wrapping all the ingredients together, the effective poten-
tial at finite temperature and baryon density, up to the contri-
bution of the ring diagrams, after renormalization of the bo-
son and fermion masses in the MS scheme at the ultraviolet
scale µ̃, the effective potential can be written as

V eff(v) = −a
2

2
v2 +

λ

4
v4 +

∑
b=π±,π0,σ

{
−T

4π2

90
+
T 2m2

b

24
− T (m2

b +Πb)
3/2

12π
− m4

b

64π2

[
ln

(
µ̃2

(4πT )2

)
+ 2γE

]}

+NcNf

{
m4

f

16π2

[
ln

(
µ̃2

T 2

)
− ψ0

(
1

2
+

iµ

2πT

)
− ψ0

(
1

2
− iµ

2πT

)
+ ψ0

(
3

2

)
− 2 (1 + ln(2π)) + γE

]
− m2

f T
2

2π2

[
Li2

(
−e−

µ
T

)
+ Li2

(
−e

µ
T

)]
+
T 4

π2

[
Li4

(
−e−

µ
T

)
+ Li4

(
−e

µ
T

)]}
, (15)

with γE ≃ 0.57721 denoting the Euler-Mascheroni constant.
Equation (15), with the boson self-energies given in Eq. (14),
provide the necessary tools to explore the effective phase dia-
gram of QCD from the chiral symmetry restoration/breaking
point of view.

The matter correction to the boson mass is encoded in
the boson self-energy. For a second order (our approach to a
crossover due the strict chiral limit) these corrections should
cause the thermal boson masses to vanish when the symme-
try is restored. This means that in the transition, the effective
potential not only develops a minimum but it is also flat (the
second derivative vanishes) at v = 0. This property can be
exploited to find the suitable values of the model parameters

a, λ and g at the critical temperature T 0
c for µc

B = 0. So,
the condition to produce a flat effective potential at Tc for
µB = 0 can be written as [33]

6 λ

(
T 2
c

12
− Tc

4π

(
Πb − a2

)1/2
+

a2

16π2

[
ln

(
µ̃2

(4πTc)2

)
+ 2γE

])
+ g2T 2

c − a2 = 0. (16)

where, from Eq. (14),

Πb(T
0
c , µ

c
B = 0) =

[
λ

2
+ g2

]
(T 0

c )
2. (17)
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We take µ̃ = 500 MeV, which is large enough to be con-
sidered the largest energy scale in our problem. Notice that
the dependence in µ̃ is only logarithmic, therefore small vari-
ations on this parameter do not change significantly the result.
To fix λ, g and a, we look for a set of parameters such that
the solutions of Eq. (16) produce a curve comparable to the
LQCD transition curve at T 0

c ≃ 158 MeV. In order to com-
pare the curves, we use a common parameterization of the
LQCD transition curve given by

Tc(µB)

T 0
c

= 1− κ2

(
µB

T 0
c

)2

+ κ4

(
µB

T 0
c

)4

, (18)

with κ2 = 0.0153 and κ4 = 0.00032 [6, 34]. In other words,
fixing the parameters is reduced to finding the set of λ, g and
a such that the coefficients κ2 and κ4 of their transition curve
are comparable to those given by LQCD. Explicitly, we first
fix a value of λ, and find the solution of Eq. (16) for g and a
that, from the effective potential in Eq, (15), produce a phase
transition at the values of Tc(µB), hereafter simply referred
to as Tc, and µB given by Eq. (18). We then repeat the proce-
dure for other values of λ. In this manner, the solutions can
be expressed as a relation between the couplings g and λ

g(λ) = 0.31 + 1.94λ− 2.06λ2 + 0.97λ3 − 0.20λ4, (19)

and a relation between a and λ

a(λ)

Tc
=0.35 + 2.08λ− 2.21λ2 + 1.03λ3 − 0.21λ4. (20)

Since Eq. (16) is non-linear, the set of parameters is not
unique.

With all the parameters fixed, we can study the proper-
ties of the effective potential and find the values of Tc and
µc
B where the chiral phase transition takes place. Figure 1

shows the effective potential as a function of the order pa-
rameter. We take as examples three different sets of values
of Tc and µc

B along the transition curve using a = 148.73
MeV, λ = 1.4 and g = 0.88. Notice that for µB = 0 and
Tc = 158 MeV the phase transition is second order. As µB

increases, the phase transition is signaled by a flatter effective
potential until the chemical potential and temperature reach
values µCEP

B and TCEP, where the effective potential develops
a barrier between degenerate minima. For µc

B > µCEP
B and

Tc < TCEP, the phase transitions are always first order. This
is shown more clearly in Fig. 2, where we show the phase
diagrams thus obtained. The upper panel is computed using
λ = 1.4, g = 0.88 and a = 148.73 MeV. The lower panel
is computed with λ = 0.4, g = 0.82 and a = 141.38 MeV.
The solid (red) lines represent second order phase transitions,
our proxy for crossover transitions, whereas the dotted (blue)
lines correspond to first order phase transitions. The star sym-
bol represents the location of the CEP. These are the results
directly obtained from our analysis. In all cases, we locate the
CEP in a region of low temperatures and high quark chemi-
cal potential. Also, variations of the model parameters do not
change the CEP position appreciably.

μB=0, Tc
0=158 [MeV]

μ
B

CEP=807, TCEP=71.5 [MeV]

μ
B

c=810, Tc=69.9 [MeV]

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

v [MeV ]

V
e
ff
(v
)-
V
e
ff
(0
)
[M
e
V
]

FIGURE 1. V eff as a function of the order parameter for different sets
of values of Tc and µc

B along the transition curve using a = 148.73
MeV, λ = 1.4 and g = 0.88. For µB = 0 and T 0

c = 158 MeV
the phase transition is second order. For µCEP

B = 807 MeV and
T CEP = 71.5 MeV, where the CEP is located, the phase transition
becomes first order.

In fact, for the allowed range of values of a, λ and g,
the CEP location ranges between 786 MeV < µCEP

B < 849
MeV and 69 MeV < TCEP < 70.3 MeV. Now that we have
the complete analysis of the phase diagram from the effective
potential, in the next section we introduce the elements nec-
essary to study the phase diagram in terms of baryon number
fluctuations.

3 Baryon number fluctuations

To study the fluctuations in the number of baryons predicted
by the analysis, we start by looking at the probability distri-
bution, which is a function of the order parameter around the
equilibrium value in the restored symmetry phase ⟨v⟩ = 0
given by

P(v) = exp
{
−ΩV eff(v)/T

}
, (21)

where, the factor Ω represents the system volume. For this
work, we explored large volumes compared to the typical
fireball size created in heavy ion collisions, to simulate the
thermodynamic limit. Using λ = 1.4, g = 0.88 and a =
148.73 MeV, we illustrate in Fig. 3 the normalized probabil-
ity distribution for different pairs of µc

B , Tc along the transi-
tion curve. We have extended the domain of the order param-
eter making v → |v| to include negative values and ensure
that its average satisfies ⟨v⟩ = 0. Notice that for µB = 0
and T 0

c , for which the phase transition is second order, the
probability distribution is Gaussian-like, albeit wider. This is
due to the fact that quartic terms in v are important for these
values of µc

B and Tc producing a wider distribution around
⟨v⟩. As µc

B increases and the phase transition becomes first
order for µc

B > µCEP
B and Tc < TCEP, the phase transitions

are always first order and the probability distribution devel-
ops secondary peaks that reflect the fact that for first order
phase transitions the effective potential develops degenerate
minima.
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FIGURE 2. Examples of effective phase diagrams obtained for two
choices of the possible sets of parameters a, λ and g. The upper
panel is computed with λ = 1.4, g = 0.88 and a = 148.73
MeV. The lower panel is computed with λ = 0.4, g = 0.82 and
a = 141.38 MeV. Notice that the position of the CEP is not signifi-
cantly altered by varying the choice of parameters. For the allowed
range of values of a, λ and g, the CEP location ranges between 786
MeV < µCEP

B < 849 MeV and 69 MeV < T CEP < 70.3 MeV.
Adapted from [32].

We emphasize that the features of the probability distri-
butions for first order phase transitions are due to the inclu-
sion of the ring diagrams and thus of the plasma screening.
If these effects were not included, the development of sec-
ondary peaks in the probability distribution would not occur
and, therefore, deviations from the Skellam statistic would
not be possible. To understand the properties of the proba-
bility distribution we calculate the behavior of the fourth or-
der cumulant, also known as kurtosis. Figure 4 shows the
kurtosis κ, as functions of µB , for fixed T across the corre-
sponding critical value of µc

B , for λ = 0.4, g = 0.82 and
a = 141.38 MeV. Notice that for second order phase transi-
tions, κ is represented by smooth curves. However, when T
approaches TCEP, this function shows a peaked structure that
becomes more pronounced when the transitions become first
order. Notice also that when T goes below TCEP, the kurtosis
develops a maximum for µB > µc

B . Let us next proceed to
describe the behavior of the kurtosis as functions of the colli-
sion energy in heavy-ion reactions. To this end, we resort to
the relation between the chemical freeze-out value of µB and

the collision energy
√
sNN , given by [35]

µB(
√
sNN ) =

d

1 + e
√
sNN

, (22)

where d = 1.308 GeV and e = 0.273 GeV−1. Figure 5
shows the ratio of the cumulants C4/C2 = κσ2, normal-
ized to the same ratio computed for µB = 0 and T = Tc,
where σ2 is the variance, for three different values of the vol-
ume Ω. The upper panel is computed with the set of param-
eters a = 148.73 MeV, λ = 1.4 and g = 0.88, whereas the
lower panel corresponds to a = 141.38 MeV, λ = 0.4 and
g = 0.82. Additionally the value of

√
sNN for each set of pa-

rameters that corresponds to the CEP location is represented
by the vertical line.

μB=0, Tc
0=158 [MeV]

μ
B

CEP=810, TCEP=69.9 [MeV]

μ
B

c=822, Tc=61.6 [MeV]

-20 -10 0 10 20
0.00

0.05

0.10

0.15

0.20

v [MeV ]

P
(v
)

FIGURE 3. Normalized probability distribution for different pairs
of µc

B , Tc along the transition curve. We use the values of the pa-
rameters λ = 1.4, g = 0.88 and a = 148.73 MeV. For µB = 0 and
T 0
c = 158 MeV the probability distribution is Gaussian-like albeit

wider. For µCEP
B and T CEP the probability distribution becomes even

wider. For µc
B > µCEP

B and Tc < T CEP, the phase transitions are al-
ways first order and the probability distribution develops secondary
peaks. Adapted from [32].

μ
B

c 300, Tc 150 [MeV]

μ
B

c=600, Tc=122.3 [MeV]

μ
B

CEP=840, TCEP=70.1 [MeV]

μ
B

c=849, Tc=66.5 [MeV]

= (100 fm)3

-2 -1 0 1 2

0

2

4

6

μB-μB
c

κ

FIGURE 4. Kurtosis κ as functions of µB − µc
B at a fixed value of

the corresponding Tc for λ = 0.4, g = 0.82 and a = 141.38 MeV
and a volume Ω = (100 fm)3. For first order phase transitions the
Kurtosis show a peaked structure when µB goes across the corre-
sponding critical value of µc

B . Adapted from [32].
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FIGURE 5. Ratio of the cumulants C4/C2 = κσ2 normalized to the
same ratio computed for µB = 0 and T = T 0

c for three different
values of the volume Ω as a function of the collision energy

√
sNN ,

using its relation with µB given by Eq. (22). The upper panel is
computed with a = 148.73 MeV, λ = 1.4 and g = 0.88. The lower
panel is computed with a = 141.38 MeV, λ = 0.4 and g = 0.82.
In each case the ratio C4/C2 is independent of Ω except near the
collision energy where we find the CEP, and the high temperature
approximation is less accurate. The value of (

√
sNN )CEP ∼ 2 GeV

that corresponds to the CEP location for each set of parameters, is
represented by the vertical line. The insets show the same ratio of
cumulants in a region around (

√
sNN )CEP. Notice that κσ2 signif-

icantly drops down as the collision energy moves from the right to
the left across (

√
sNN )CEP. This behavior is in agreement with re-

cent data [2]. Adapted from [32].

Thus, we see that the CEP position is heralded not by the
dip of C4/C2 but for its strong rise as the energy that corre-
sponds to the CEP is approached. A similar result has been
found in Ref. [29]. Also, as pointed out in Ref. [36], this
non-monotonic behavior cannot be described by many other
model calculations [37, 38]. We emphasize that the reason
for this failure is that other models do not include long-range
correlations, as we do in this work with the LSMq, which is
crucial to describe critical phenomena. Notice that, as is ex-
pected for a ratio of cumulants, in each case the ratio C4/C2

is independent of the volume Ω except near the collision en-
ergy where we find the CEP, where the high temperature ap-
proximation is less accurate.

a=141.38, λ=0.4, g=0.82
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FIGURE 6. Ratio C4/C2 = κσ2, normalized to the same ratio com-
puted for µB = 0 and T = T 0

c for Ω = (100 fm)3 for three differ-
ent allowed sets of parameters a, λ and g. The dips have different
depths. However, the strong rise of the ratio happens for almost
the same value of the collision energy (

√
sNN )CEP ∼ 2 GeV. This

is shown in the inset where the same ratio of cululants in a region
around (

√
sNN )CEP is depicted. Notice that κσ2 significantly drops

down as the collision energy moves from the right to the left across
(
√
sNN )CEP. This behavior is in agreement with recent HADES

data [2]. Adapted from [32].

Notice also that the product κσ2 significantly drops down
for energies lower than the collision energy where the CEP is
located, in agreement with recent HADES measurements of
net-proton fluctuations at low energies [2]. Finally, Fig. 6
shows the ratio C4/C2 = κσ2, normalized to the same ratio
computed for µB = 0 and T = T 0

c , for Ω = (200 fm)3 and
for three different allowed sets of parameters a, λ and g. It
is worth mentioning that, even though the dips have different
depths, the sharp increase in the ratios occurs for almost the
same value of collision energy

√
sNN ∼ 2 GeV.

4 Summary

In this work we have used the LSMq in the high tempera-
ture and chiral limits to explore the QCD phase diagram from
the point of view of chiral symmetry restoration. We have
computed the finite temperature effective potential up to the
contribution of the ring diagrams to account for the plasma
screening effects. This model makes an effective description
of the system equilibrium distribution that deviates from that
of the HRGM, where the ratios of cumulants of even order
are always equal to 1. When we include the plasma screen-
ing properties, encoded in the ring diagrams contribution, we
find a deviation from the HGR model, since the screening
properties describe a key feature of plasma in the transitions,
namely, the long-range correlations. We fix the LSMq pa-
rameters using conditions at the phase transition for µB = 0
provided by LQCD calculations, namely the crossover tran-
sition temperature T 0

c and the curvature parameters κ2 and
κ4. The phase diagram can be obtained by finding the kind
of phase transitions that the effective potential allows when
varying T and µB . We found that the CEP can be located
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in the range 786 MeV < µCEP
B < 849 MeV and 69 MeV

< TCEP < 70.3 MeV. From the probability distribution ob-
tained using the effective potential, we have computed the be-
haviour of the kurtosis and found that these cumulants show
strong peaks as the CEP is crossed. Finally, we describe the
ratio of the cumulants C4/C2 = κσ2 as a function of the
collision energy in a heavy-ion collision.

We conclude that the CEP location coincides with a sharp
rise in this ratio at

√
sNN ∼ 2 GeV. Our studies were per-

formed at the high temperature limit and without including an
explicit symmetry breaking term that gives rise to a finite vac-
uum pion mass. Due to this, the encouraging findings of this
work can be extended to provide a more accurate description
including an explicit chiral symmetry breaking introduced by
a finite pion mass, as well as by relaxing the high-temperature
approximation. This is work for the near future that will be
reported elsewhere.
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