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The finite nuclear thickness affects the energy density ε(t) and conserved-charge densities such as the net-baryon density nB(t) produced
in heavy ion collisions. While the effect is small at high collision energies where the Bjorken energy density formula for the initial state is
valid, the effect is large at low collision energies, where the nuclear crossing time is not small compared to the parton formation time. The
temperature T (t) and chemical potentials µ(t) of the dense matter can be extracted from the densities for a given equation of state (EOS).
Therefore, including the nuclear thickness is essential for the determination of the T -µB trajectory in the QCD phase diagram for relativistic
nuclear collisions at low to moderate energies such as the RHIC-BES energies. In this proceeding, we will first discuss our semi-analytical
method that includes the nuclear thickness effect and its results on the densities ε(t), nB(t), nQ(t), and nS(t). Then, we will show the
extracted T (t), µB(t), µQ(t), and µS(t) for a quark-gluon plasma using the ideal gas EOS with quantum or Boltzmann statistics. Finally,
we will show the results on the T -µB trajectories in relation to the possible location of the QCD critical end point. This semi-analytical
model provides a convenient tool for exploring the trajectories of nuclear collisions in the QCD phase diagram.
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1 Introduction

The study of the QCD phase diagram, including the possible
critical end point (CEP) that separates the crossover transition
from a first-order transition, is a focus of relativistic heavy
ion physics [1–3]. For this purpose, it is important to cal-
culate or estimate the collision trajectory in the QCD phase
diagram in the T−µB plane or the general T−µB−µQ−µS

four-dimensional space. So far, this is mostly done by ana-
lyzing the time evolution of given volume cells in dynami-
cal models [4, 5] such as transport models and hydrodynam-
ical models, which usually takes a lot of effort. A trajectory
can also be estimated by using a given equation of state with
assumptions such as imposing a constant s/nB (entropy to
net-baryon-density ratio) along the trajectory [6]. In this ap-
proach, extra information is needed to determine the endpoint
of the trajectory at the maximum energy density.

Here we present a semi-analytical method [7] to calcu-
late the trajectory of central nuclear collisions in the QCD
phase diagram. It is straightforward to reproduce and already
available online [8]. It also allows us to have analytical un-
derstanding of the effects of the finite nuclear thickness and
parton formation time on the collision trajectories of different
collision systems at different energies. The method first cal-
culates the time evolution of four densities: the energy den-
sity ε, net-baryon density nB , net-electric-charge density nQ,
and net-strangeness density nS . We then use a given EOS to
convert them to four thermodynamic quantities: T, µB , µQ,
and µS .

A famous semi-analytical result on the energy density
is the Bjorken energy density formula for mid-spacetime-
rapidity [9]:

εBj(t) =
1

tAT

dET

dy
. (1)

In the above, AT = πR2
A is the transverse overlap area of

the two nuclei in central collisions, RA = 1.12A1/3 fm is the
nuclear radius in the hard-sphere model, and dET /dy is the
transverse energy rapidity density at mid-rapidity. The for-
mula is mostly used to estimate the energy density of the ini-
tial state, where time t is chosen as the formation time of the
quark-gluon plasma or the produced partons (τF ). Note that
the formula also applies to any time t after τF when the par-
tons are assumed to be free-streaming; it thus describes the
time evolution of the energy density produced from the initial
state when the subsequent parton interactions and transverse
expansion are neglected.

However, the Bjorken energy density formula breaks
down at low energies where the nuclear crossing time is not
small compared to τF . In the hard sphere model for the nu-
cleus, the crossing time is given by dt = 2RA/(βγ), where
β is the speed of the projectile nucleus in the center-of-mass
frame and γ = 1/

√
1− β2 is the corresponding Lorentz fac-

tor. Obviously, the crossing time becomes bigger at lower
energies, where its effect must be considered. Therefore, we
have extended the Bjorken formula, first by including the fi-
nite time (but neglecting the finite width along the beam di-
rection z) of the initial energy production [10], and later by
including both the finite time and finite width in z [11]. Fig-
ure 1 shows the schematic picture in the z − t plane for cal-
culating the energy density at mid-spacetime-rapidity (inside
−d < z < d at finite time t with d → 0) for central A+A
collisions. The Bjorken formula [9] assumes that partons are
initially produced at z0 = 0 and time 0, and the first ex-
tension [10] assumes that partons are initially produced at
z0 = 0 but at any time within [0, dt]. In the second exten-
sion [11], partons can be initially produced anywhere inside
the rhombus, which is within z0 ∈ [−βdt/2, βdt/2] and time
∈ [0, dt]. Note that parton interactions after their initial pro-
ductions are neglected in all three methods.

In the second extension study that considers the full fi-
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nite thickness effect [11], the initial energy density at time t
averaged over the full transverse overlap area can be written
as

ε(t) =
1

AT

∫∫
S

dxdz0
t− x

d3mT

dxdz0dy
cosh3 y. (2)

Here, S represents the production area over the initial pro-
duction time x and longitudinal position z0 at observation
time t, as indicated by the shaded area in Fig.1. For the trans-
verse energy density d3mT /(dxdz0dy), we make the sim-
plest assumption that it is uniform over the z0 − x plane,
i.e., d3mT /(dxdz0dy) ∝ dmT /dy. After parameterizing
the dmT /dy function with the measured transverse energy
rapidity density and net-proton dN/dy [11], we can then cal-
culate the time evolution of the energy density. We apply the
same method to calculate the time evolution of the net-charge
densities [7]. For example, the net-baryon density from our

semi-analytical model is given by

nB(t) =
1

AT

∫∫
S

dxdz0
t− x

d3NB

dxdz0dy
cosh2 y, (3)

where NB represents the net-baryon number in an event. On
the other hand, the net-baryon density in the Bjorken model
is given by

nBj
B (t) =

1

tAT

dNB

dy
. (4)

Details of the calculations including the parameterizations of
dmT /dy and the net-proton dN/dy can be found in the full
studies [7, 11]. Note that our method enforces the relevant
conservation laws, i.e., the produced matter in a central heavy
ion collision is assumed to have a total energy A√sNN , total
net-baryon number 2A, total net-charge 2Z, and total net-
strangeness 0.
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We first use the simpler method 1)
to illustrate the qualitative effect of
nuclear thickness on ε(t)

(energy density at mid-pseudorapidity
averaged over the transverse area)

2) With both finite t & zWithout finite t or z:
the Bjorken ε formula

1) With finite t
(but not finite z-width)

Bjorken, PRD (1983) ZWL, PRC (2018)
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FIGURE 1. Schematic diagram for the crossing of two identical nuclei for (a) the Bjorken ε formula, (b) the method that considers the finite
crossing time but not the finite longitudinal width [10], and (c) the current method that considers the full crossing diamond area [11]. In (c),
partons can be produced anywhere inside the rhombus, the solid diagonal lines represent the light cone boundaries for partons that can reach
z ≈ 0 at time t, while the hyperbola represents the boundary of these partons after considering the formation time tF = τF cosh y.
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FIGURE 2. (a-c) Energy density ε(t) and (d-f) net-baryon density
nB(t) at mid-rapidity for central Au+Au collisions at √sNN =5,
27 and 200 GeV from our model for τF = 0.1 and 0.3 fm/c in
comparison with the Bjorken formula for τF = 0.1 fm/c.

The top panels of Fig. 2 show the results of ε(t), the aver-
age energy density at mid-rapidity as calculated with Eq.(2),
for central Au+Au collisions at three different energies. The
results from our semi-analytical model at τF = 0.1 (solid)
and 0.3 (dashed) fm/c are shown in comparison with the re-
sults from the Bjorken energy density formula at τF = 0.1
fm/c (dot-dashed). The lower panels show the correspond-
ing results of the net-baryon density nB(t). Compared to the
results from the Bjorken formula, our results show signifi-
cantly lower peak values, εmax and nmax

B , at lower collision
energies, as expected from earlier studies of the effect of the
finite nuclear thickness [10, 11]. At high collision energies,
our results approach the Bjorken formula. We also see that
the peak energy density εmax increases as √s

NN
increases,

while the peak net-baryon density nmax
B first increases and

then decreases with √s
NN

. Note that for the net-charge and
net-strangeness densities, our semi-analytical method gives
the following:

nQ(t) =
Z

A
nB(t), nS(t) = 0. (5)
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Note that the above relations are often used to constrain the
equation of state such as those from lattice QCD calcula-
tions [6].

After calculating the densities, we can then use a given
equation of state of the nuclear matter to convert them into
the thermodynamical quantities: temperature T and chem-
ical potentials µ. In this proceeding, we use the ideal gas
quark-gluon plasma EOS with quantum or Boltzmann statis-
tics for the conversions [7]. The solid curves in Fig. 3 show
the T and µ results for central Au+Au collisions at τ

F
= 0.1

fm/c, which are extracted from the full solution of the quan-
tum ideal gas EOS, i.e., by solving the four equations relating
ε, nB , nQ, and nS to T, µB , µQ, and µS . We can see that the
peak temperature Tmax increases with√s

NN
, while the peak

net-baryon chemical potential µmax
B decreases with√s

NN
. In

addition, both Tmax and µmax
B are reached earlier at higher

energies due to the shorter crossing time.
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FIGURE 3. The extracted T (t), µB(t), µQ(t), and µS(t) for τF =
0.1 fm/c from the full solution or partial solutions of the quantum
ideal gas EOS for central Au+Au collisions at 5, 27, and 200 GeV.
Note that the µQ(t) curves have been multiplied by a factor of 10.

If we are only interested in the collision trajectory in the
T − µB plane (instead of the four-dimensional T − µ space)
of the QCD phase diagram, it would be convenient to have
the (partial) relations between ε, nB and T, µB without the
net-charge or net-strangeness variables. The easiest way to
achieve this, which has often been used [6, 12], is to assume
µQ = µS = 0. We name the resultant relations as the partial-
2 solution of the EOS. However, this assumption violates the
strangeness neutrality condition nS = 0 that is expected for
heavy ion collisions. Indeed, we see from Fig. 3 that the
partial-2 solution (dotted curves) gives a much smaller µB

than the full solution and thus cannot give accurate trajecto-
ries.

An alternative way is to assume the following:

µQ = 0, µS =
µB

3
, (6)

and we name the resultant relations as the partial-1 solution
of the EOS. The assumption µQ = 0 is made because the
µQ values extracted from the full solution are very small, as
shown in the upper-right panel of Fig.3 where the µQ val-
ues have been multiplied by a factor of 10. The smallness
of µQ is a consequence of the fact that most nuclei have
Z ∼ A/2, because the strangeness neutrality nS = 0 plus the
condition nQ = nB/2 would lead to µQ = 0 for either the
quantum or Boltzmann ideal gas EOS [7]. The other assump-
tion µS = µB/3 is made to satisfy the strangeness neutrality,
which requires µB − µQ − 3µS = 0 for the QGP ideal gas
equations of state [7]. Note that the recent numerical results
of the collision trajectories from the AMPT model [5] also
show µQ ≈ 0 and µS ≈ µB/3. In the left panels of Fig.3,
we see that the T (t) and µB(t) results from the partial-1 so-
lution and those from the full solution agree very well. This
demonstrates that the partial-1 solution and its following re-
lations from the quantum ideal gas EOS are quite accurate, at
least for the QGP ideal gas equations of state:

ε1 =
19π2

12
T 4 +

µ2
B

3
T 2 +

µ4
B

54π2
,

nB,1 =
2µB

9
T 2 +

2µ3
B

81π2
.

(7)
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FIGURE 4. Trajectories for the quantum ideal gas EOS at τF = 0.1,
0.3, and 0.9 fm/c for central Au+Au collisions at different energies,
together with the trajectory endpoint curves for √sNN from 2 to
200 GeV. The endpoint at the threshold energy is shown as star. The
FRG crossover curve with the critical end point is also shown, where
the two constant energy density curves from the partial-1 solution
intersect the endpoints of the FRG curve.

Figure 4 shows the T − µB trajectories in the QCD
phase diagram for the quantum ideal gas EOS at three dif-
ferent τ

F
values for central Au+Au collisions at different

energies. The QCD crossover curve and the critical end
point at (µB , T ) = (0.635 GeV, 0.107 GeV), calculated
from the functional renormalization group (FRG) withNF =
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2 + 1 [13], are also shown. We have also used the quan-
tum partial-1 solution Eq.(7) to calculate the lines of con-
stant ε, which go through the two endpoints of the FRG
crossover curve at ε = 1.23 (dashed) and 0.51 (dot-dashed)
GeV/fm3. At the threshold energy √sNN = 2mN with mN

being the nucleon mass, our model gives εmax = 2ρ0mN

and nmax
B = 2ρ0 [7] (ρ0 ≈ 0.17 fm−3), which would be

expected if the two nuclei would just fully overlap. If we
treat this matter as an ideal gas QGP with quantum statis-
tics, it will be located at (µB , T ) ∼ (0.9 GeV, 0.06 GeV), as
shown by the star symbol in Fig. 4. When a trajectory reaches
the endpoint, where both εmax and nmax

B are reached, it turns
clockwise and returns toward the origin. We see that the re-
turning part of the trajectory almost overlaps with the outgo-
ing part at high collision energies. In addition, the trajectories
in Fig. 4 pass through the crossover curve for central Au+Au
collisions at√sNN & 4 GeV.

The results from our semi-analytical model [7, 10, 11]
depend on the value of τF , and Fig. 4 also shows how the
T − µB trajectories from the quantum ideal gas EOS depend
on τ

F
. At a smaller τ

F
, the peak densities are higher; there-

fore, the trajectory becomes longer with the endpoint moving
further to higher µB (and also higher T except at very low
energies). The endpoints of the trajectories as functions of
the collision energy are shown by the three colored dotted
curves in Fig. 4 for three different formation times. We ob-
serve a clear separation of the endpoint curves of different
τ
F

values, except for very low collision energies, where the
endpoint curves become less sensitive to τ

F
. This is expected

because the densities such as the energy density depend on
τF weakly at low collision energies but strongly (∝ 1/τF ) at
high energies [11]. We also see in Fig. 4 that even for the rel-
atively large value of τ

F
= 0.9 fm/c, the CEP from the FRG

calculation is within the coverage of the trajectory endpoint
curve.
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FIGURE 5. Trajectories for the Boltzmann ideal gas EOS for cen-
tral Au+Au collisions at different energies from our method and the
Bjorken formula for τF = 0.1 fm/c. The FRG crossover curve with
the CEP is also shown.

To see the effect of the finite nuclear thickness, in Fig. 5
we compare our trajectories with the Bjorken trajectories, i.e.,

trajectories extracted from the ε(t) and nB(t) values calcu-
lated with the Bjorken formula, for the Boltzmann ideal gas
EOS. At high collision energies, our trajectories are rather
close to the Bjorken trajectories as expected. At lower col-
lision energies, however, the µmax

B value from the Bjorken
trajectory is much larger because of its much higher peak
density nmax

B . In addition, we see in Fig. 5 that the late-
time part of the Bjorken trajectory overlaps with the return-
ing part of our trajectory. This is expected because at late
times our semi-analytical model approaches the Bjorken for-
mula [10, 11], which can be seen in Fig. 2.

By comparing the trajectories from the quantum ideal gas
EOS in Fig. 4 and those from the Boltzmann ideal gas EOS
in Fig. 5, we can see that the trajectory depends on the equa-
tion of state. While the Tmax values are often similar at
the same collision energy (except for very low energies), the
µmax
B value is significantly larger in the quantum ideal gas

EOS. This feature is also seen in the trajectories calculated
from the AMPT model [5] and can be understood in terms of
the Pauli exclusion principle in the quantum EOS.

3 Summary and outlook

We have developed a semi-analytical model to calculate
the time-dependent energy density ε(t), net-baryon density
nB(t), net-electric-charge density nQ(t), and net-strangeness
density nS(t) at mid-pseudorapidity averaged over the trans-
verse overlap area in central Au+Au collisions. We then ex-
tract the time evolution of the thermodynamical quantities
T, µB , µQ, and µS assuming the formation of a QGP with ei-
ther quantum or Boltzmann ideal gas equation of state. This
enables us to plot the collision trajectories in the T−µB plane
of the QCD phase diagram.

The trajectories from our model are very different from
those calculated with the Bjorken formula at energies below
tens of GeVs, demonstrating the importance of including the
finite nuclear thickness at those energies. We also find that
the accessible area in the phase diagram depends strongly on
the parton formation time τF when the collision energy is
higher than a few GeVs. However, even when using a rela-
tively large τF value of 0.9 fm/c, the critical end point from
the FRG calculation is within the area covered by the trajec-
tories. We also find that the T − µB results from the simpler
partial solution that assumes µQ = 0 and µS = µB/3 are
very close to the full solution. On the other hand, the results
from another partial solution that assumes µQ = µS = 0,
which violates the strangeness neutrality, significantly under-
estimate the extracted µB values.

We find that the collision trajectory depends on the equa-
tion of state. For our results from the ideal gas equations
of state for the quark-gluon plasma, the calculated trajectory
should break down soon after it goes below the crossover
curve (or the first-order phase transition curve) in the QCD
phase diagram. We plan to extend this study by using more
realistic equations of state, such as those based on the lattice
QCD calculations [6]. In addition, we have so far neglected
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the transverse expansion of the created matter, which would
decrease the peak densities and thus affect the collision tra-
jectory in the phase diagram. We also plan to include this
effect in the update of the full study [7].

We have written a web interface [8], which will plot the
calculated energy density as a function of time as well as the
event trajectory in the T-µB plane according to the user’s in-
put for the colliding system, energy and formation time τF .
A data file for the time evolution of the energy density, tem-
perature, and the three chemical potentials can also be down-
loaded. So far only the ideal gas equations of state are im-
plemented at the web interface, and we plan to add a more

realistic equation of state. We hope that this semi-analytical
model will provide the community a useful tool for exploring
the trajectories of nuclear collisions in the QCD phase dia-
gram in the T − µB plane or the general T − µB − µQ − µS

space.
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