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Over the last years, Machine Learning methods have been successfully applied to a wealth of problems in high-energy physics. In this work,
we discuss the extraction of the average number of Multiparton Interactions (〈Nmpi〉) from minimum-bias pp data at LHC energies using a
regression based on Boosted Decision Trees. Using the available ALICE data on transverse momentum spectra as a function of multiplicity,
we report that for minimum-bias pp collisions at

√
s = 7 TeV the averageNmpi is 3.98± 1.01, which complements our previous results

for pp collisions at
√

s = 5.02 and 13 TeV. The comparisons indicated a modest center-of-mass energy dependence of〈Nmpi〉. The study
is further extended extracting the multiplicity dependence ofNmpi for the three center-of-mass energies. These results are qualitatively
consistent with the existing ALICE measurements sensitives to Multiparton Interactions. Through the regression applied to pp collisions at√

s = 13 TeV, we also show that computing the multiplicity in the forward region the extraction ofNmpi is improved. This result opens the
possibility to extract the number of Multiparton Interactions event-by-event, and in this way study the particle production as a function of
that quantity. Our results provide additional evidence of the presence of Multiparton Interactions in hadronic interactions and can help to the
understanding of the heavy-ion-like behaviour observed in pp collisions data.
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1. Introduction

In hadronic interactions it is possible to have Multipar-
ton Interactions (MPI),i.e. several parton-parton interac-
tions within the same hadron-hadron collision, given the
composite nature of hadrons. The presence of MPI in pp
collisions is supported by data [1-4], the study of its ef-
fects in pp collisions has recently attracted the attention of
the heavy-ion community, because surprisingly, the high-
multiplicity pp data unveiled heavy-ion-like features,i.e. az-
imuthal anisotropies [5], the enhancement of (multi-)strange
hadrons [6], as well as radial flow patterns in the transverse
momentum (pT) spectra of identified hadrons [7]. Besides
the hydrodynamical approach [8, 9], MPI offers an alterna-
tive to explain the observed phenomena. For instance, colour
reconnection and MPI can mimic radial flow patterns in pp
collisions [10]. In this direction, we have proposed the ex-
traction of the MPI activity from minimum-bias pp data using
ML techniques [4, 11]. In this contribution, we summarize
the main results including the multiplicity dependence of the
average number of MPI extracted from the available ALICE
pp data at the LHC [7,12].

2. Analysis

Our approach relies on a Machine Learning (ML) regression
technique based on Boosted Decision Trees (BDT). A re-
gression tree is a binary tree structured regressor in which
repeated yes or not decisions are taken on one single vari-
able. In this way, the phase space is split into many regions

where each output node represents a specific value of the
target variable. For regression tasks the boosting algorithm
used is the gradient boost, this procedure tries to minimize
the loss-function which describes how the model is predictive
with respect to the training data. The study is conducted us-
ing the Toolkit for Multivariate Analysis (TMVA) framework
which provides a ROOT-integrated ML environment for the
processing and parallel evaluation of multivariate classifica-
tion and regression techniques [13].

The training is performed using pp collisions at
√

s =
13 TeV simulated with PYTHIA 8.244 [14] tune 4C [15].
The choice of the input variables is based on their correla-
tion with Nmpi [16]. We consider the event-by-event average
transverse momentum and the mid-pseudorapidity charged
particle multiplicity (Nch). Based on the kinematic restric-
tions from the ALICE data, these quantities are calculated
for primary charged particles within|η| < 0.8, and the av-
eragepT considers tracks with transverse momentum above
0.15 GeV/c.

The systematic uncertainties take into account variations
of the PYTHIA 8 model, as well as the MPI and hadroniza-
tion models. To this end, tunes: 2C, 4C and Monash 2013
were used for training, and the effects of MPI and hadroniza-
tion were investigated using the Monte Carlo (MC) gener-
ator HERWIG 7.2 [17] for training. Figure 1 shows the
correlation between the self normalized number of MPI
(Nmpi/〈Nmpi〉) and the self normalized mid-pseudorapidity
charged particle multiplicity (N/〈Nch〉) in pp collisions at√

s = 5.02, 7 and 13 TeV. ForNch/〈Nch〉 < 3, the self nor-
malizedNmpi increases linearly with the event multiplicity.
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FIGURE 1. Monte Carlo closure test using pp collisions at
√

s = 5.02 (left), 7 (middle) and 13 TeV (right) simulated with PYTHIA 8 tune
4C. The top panels display the self normalized average number of MPI as a function of the self-normalized mid-pseudorapidity charged
particle multiplicity. Ratios between ML results and the true values provided by PYTHIA are shown in the bottom panels.

On the other hand, for higher multiplicities, we observe
a deviation of the self normalizedNmpi with respect to the
linear trend. Figure 1 also displays the results obtained from
regression (lines), and shows that one can recover the energy
and multiplicity dependence using the ML-based regression.

Regarding the analysis using the available data, we built
a toy MC in order to get the correlation between the event-
by-event〈pT〉 andNch. The toy MC was constructed inside
ROOT, and work as follows: for simplicity, each event class
was simulated assuming its multiplicity spectrum as a Pois-

FIGURE 2. Mean transverse momentum as a function of the aver-
age charged-particle multiplicity density in pp collisions at

√
s =

5.02, 7 and 13 TeV. In the top panel, the ALICE data [7, 12] (solid
markers) are compared with results from the toy MC (solid lines).
The bottom panel displays the ratios between the toy MC and the
data.

son distribution [18]. Their corresponding average multiplic-
ity values as well as their contribution to the inelastic cross
section were taken from [7, 12]. With this information,Nch

pseudo-particles were generated in each event, where each
psuedo-particle had a transverse momentum which obeyed
thepT spectra reported by ALICE [7,12]. The information of
all events generated with the toy MC was stored as a colum-
nar dataset (TTree) using ROOT [19].

Figure 2 displays the mean transverse momentum as a
function of the average charged-particle multiplicity density
in pp collisions at

√
s = 5.02, 7 and 13 TeV. Within uncer-

tainties, the toy MC reproduces the correlation between the
〈pT〉 and〈dNch/dη〉. In our approach, the event-by-event in-
formation produced by the toy MC was processed with the
trained BDT in order to extract the MPI activity associated
with the data.

3. Results

Using the ALICE data from pp collisions at
√

s = 7 TeV [7],
we extract the average number of MPI, which is found to be
〈Nmpi〉 = 3.98 ± 1.01. Figure 3 displays the average num-
ber of MPI as a function of the center-of-mass energy, for pp
collision at

√
s = 5.02, 7 and 13 TeV. We obtain a regression

value which is above unity, therefore, our results support the
presence of MPI in pp collisions. We also observe a mod-
est energy dependence, which is similar to that predicted by
PYTHIA 8 [4].

Figure 4 displays the self normalized number of MPI
(Nmpi/〈Nmpi〉) as a function of the self-normalized mid-
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FIGURE 3. Average number of MPI as a function of the center-of-
mass energy. Results for pp collisions at

√
s = 7 TeV, are com-

pared to those for pp collisions at
√

s = 5.02 and 13 TeV reported
in Ref. [4].

FIGURE 4. The self normalized average number of Multiparton In-
teractions as a function of the self normalized mid-pseudorapidity
charged particle multiplicity is shown for pp collisions at

√
s =

5.02, 7 and 13 TeV.

pseudorapidity charged-particle multiplicity (Nch/〈Nch〉) in
pp collisions at

√
s = 5.02, 7 and 13 TeV from ALICE

data. We observe that forNch < 3〈Nch〉 the self normalized
Nmpi increases linearly with the event multiplicity. Regard-
ing higher multiplicities, we observe a deviation of the self
normalizedNmpi with respect to the linear trend. This result
qualitatively agrees with PYTHIA 8 (see Fig. 1).

Last but not least, we proposed to include more informa-
tion in the BDT training. Using pp collisions data at

√
s =

13 TeV generated with PYTHIA 8 Tune 4C we computed
the event multiplicity in the forward-pseudorapidity regions,
in order to determine if the event-by-event extraction of the
Nmpi is improved. We trained three BDT sets which are de-
scribed below:

FIGURE 5. Average number of Multiparton Interactions (〈Nmpi〉
(Reg)) determined with the BDT as functions of the true value of
Multiparton Interactions (Nmpi (True)) provided by PYTHIA sim-
ulations. Correlation displays when the multiplicity is computed
in the mid-pseudorapidity range (black markers), as well as when
is computed in the forward region defined by the V0A+V0C (red
markers) and MFT+V0+ (blue markers) detectors.

• For the first set the multiplicity was computed in the
|η| < 0.8 pseudorapidity range.

• For the second set the multiplicity was computed in the
forward-pseudorapidity regions 2.8< η < 2.5 and -3.6
< η < -1.7, covered by the V0A and V0C arrays, re-
spectively.

• Finally, for the third set the multiplicity was computed
in the forward-pseudorapidity regions -3.6< η < -
2.45 and 2.2< η < 5.1, covered by the Muon Forward
Tracker (MFT) and VZERO+ detectors respectively
which are part of ALICE’s Run3 upgrades planned
from 2021 to 2023 [20].

Each BDT set was applied to pp collisions data at
√

s =
13 TeV generated with PYTHIA 8 Tune 4C. Figure 5 displays
the average number of Multiparton Interactions (〈Nmpi〉
(Reg)) determined with ML as a function of the number of
Multiparton Interactions (Nmpi (True)) from pp collisions at√

s = 13 TeV simulated with PYTHIA.
We observe that forNmpi (True)≈ 16, when the multi-

plicity is computed in the forward pseudorapidity range (AL-
ICE Run2 V0A+V0C and ALICE Run3 MFT+V0+), the de-
viation of the〈Nmpi〉 (Reg) /Nmpi (True) ratio with respect
to the case when the multiplicity is computed in the mid-
pseudorapidity range (ALICE Run2 Mid), is around 13%.
Therefore, including more information in the BDT training
the extraction of theNmpi is improved.
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4. Conclusions

We report the extraction of the average number of MPI from
pp data at the LHC energies using ML methods. We have
found〈Nmpi〉 = 3.98±1.01 for pp collisions at

√
s = 7 TeV.

The comparisons with our previous results for pp collisions
at
√

s = 5.02 and 13 TeV indicate a modest energy depen-
dence ofNmpi. This result provide experimental evidence of
the presence of MPI in hadronic interactions. In addition, we
also report the multiplicity dependence ofNmpi for the three
center-of-mass energies. Finally, we have found that com-
puting the event multiplicity in the forward-pseudorapidity
regions theNmpi extraction is improved, this result opens

the possibility to extract the number of MPI event-by-event
and in this way study the particle production as a function
of MPI, this idea was explored on reference [4]. Our re-
sults are fully consistent with the so-called “mini-jet analy-
sis” of ALICE [2], and suggest that high multiplicities (at
mid-pseudorapidity) can only be reached by selecting events
with many high-multiplicity jets.

Acknowledgments

Authors acknowledge Antonio Paz for providing the simula-
tions with HERWIG 7.2. E. Z. acknowledges the fellowship
of CONACyT.

1. B. Abelevet al., Transverse sphericity of primary charged par-
ticles in minimum bias proton-proton collisions at

√
s = 0.9,

2.76 and 7 TeV.Eur. Phys. J. C, 72 (2012) 2124.https:
//doi.org/10.1140/epjc/s10052-012-2124-9 .

2. B. Abelev et al. Multiplicity dependence of two-particle
azimuthal correlations in pp collisions at the LHC.
JHEP, 09 (2013) 049, https://doi.org/10.1007/
JHEP09(2013)049 .

3. A. Ortiz, Experimental results on event shapes at hadron
colliders. Adv. Ser. Direct.High Energy Phys., 29 (2018) 343,
https://www.worldscientific.com/doi/abs/
10.1142/97898132277670016 .

4. A. Ortiz, A. Paz, J. D. Romo, S. Tripathy, E. A. Zepeda,
and I. Bautista, Multiparton interactions in pp collisions
from machine learning-based regression.Phys. Rev. D,
102 (2020) 076014,https://link.aps.org/doi/10.
1103/PhysRevD.102.076014 .

5. V. Khachatryanet al. Observation of Long-Range Near- Side
Angular Correlations in Proton-Proton Collisions at the LHC.
JHEP, 09 (2010) 091, https://doi.org/10.1007/
JHEP09(2010)091 .

6. J. Adamet al. Enhanced production of multi-strange hadrons
in high-multiplicity proton-proton collisions.Nature Phys., 13
(2017) 535,https://doi.org/10.1038/nphys4111 .

7. S. Acharyaet al. Multiplicity dependence of light-flavor hadron
production in pp collisions at

√
s = 7 TeV. Phys. Rev. C,

99 (2019) 024906,https://link.aps.org/doi/10.
1103/PhysRevC.99.024906 .
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