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Particle radiation produced by accelerated systems
and their analogy with damped oscillators
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The Unruh effect predicts how uniformly accelerated observers will perceive a change in the vacuum state. This shows that the concept
of particle number depends on the acceleration of the reference frame. Although this is a result of quantum field theory, its experimental
verification is still questioned, mainly due to the high accelerations required. In this work we study a quantum oscillator with only one
complex coordinate and a damping term acting as perturbation, which has all the characteristics of the Unruh effect in second quantization
for an accelerated observer. The Bogoliubov transformation connecting the two different vacuum states is obtained. This leads to an explicit
formula for the particle occupation number as a function of energy and acceleration. Furthermore, it is shown that our analogue system
contains an effective temperature that depends on the observer’s sudden acceleration, seen as a friction force. The purpose of this work is 1
demonstrate that quanta production (particles or energy packets) is inevitable under the premises of quantum field theory.
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1. Introduction harmonic oscillator subjected to a damping force; this shall
be done by means of a dimensional reduction of the Klein-

Relativistic quantum field theory complies with the princi- Gordon equation in curved space. The results of this paper

ple of invariance under changes of inertial frames, which idncrease the collection of successful quantum-dynamical em-

to say, that Poincérinvariance is a cardinal principle of all ulations in simplified systems produced in [4,5] (Dirac oscil-

physical theories. However, Unruh concluded that the contator) and [6,7] (Peierls model of interacting channels). Some

cept of vacuum depends on whether frames of reference ammncluding remarks are given in Sec. 4.

inertial or non inertial [1, 2]. The lack of invariance of vac-

uum under transformations for accelerated observers entails i )

particle production, but this effect has not been experimené- ~ Klein-Gordon in curved space

tally verified due to the need of large accelerations and ex- . :

pensive setups. Nowadays there are interesting proposals@&e knoyv tha.t the Lorenltz trgnsformqtlon gonnectmg aframe

demonstrate it empirically; nonetheless, simplified analogu moving with a velocityv in the axisz with respect o a

setups in top table experiments should enable us to demor?facond frame, is

strate its inevitability. The present contribution is devoted to r cosh(¢)  sinh(g) 2

the study of a single mode quantum oscillator that receives ( ot ) = < sinh(¢) cosh(g) ) ( ! ) . (@

corrections due to a non inertial coordinate frame. Quanta

production, thermal distributions and transition amplitudeswhere cosh(¢) = v y sinh(¢) = ~3. A Rindler ob-

can be computed analytically without divergences, with theserver [8] is one that moves with a constant acceleration, see

aim of implementing the effect in micro electro-mechanicalFig. 1. Therefore, using the equivalence principle, its motion

oscillators (MEMs) [3]. is given by @) with a = ¢ and—a? = — (a)” + (a1)2
Despite the early objections on the plausibility of observ-for the acceleration vectaer”. The Rindler metric i‘?‘]/w =

ing Unruh radiation e.g. the nature of particle detectors in diag (a?z2, —1,—1,—1). As we know, the scalar curvature

accelerated frames— here we argue that the modification i this case isk = 0 and the Christoffel symbols correspond-

the average particle number depends crucially on the initiaing to this metric ard'>_ = ax, I'’, = I',_ = 1/ax and

state selected by the observer, as well as a sudden accelgtie rest vanish. In flat Minkowski spacetime with the metric

ation process that modifies the observables, but not the prgr= (1, -1, —1, —1) we have the well-known Klein-Gordon

selected state, which is the inertial vacuum. Evidently, dueequation(O + m?) ¢ (z,) = 0, in natural units. Further-

to the presence of vacuum expectation values (VEVSs) thignore, we know that this scalar field can be expanded in terms

would be equivalent to the transformation of the state with-of the momentum eigenfunctiong, = Ne~*rte™* with

out change in the relevant observableg particle number their corresponding coefficients;, y Cf. However when

or excitation number. we work in a curved space we need to replace the operator
After a short review of the Unruh effect for a scalar field 9, by the covariant derivative operat&f,, which satisfies

in Sec. 2, we shall establish in Sec. 3 an analogy with a singl& ,,g,., = 0. We have
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These commutation relations reveal the usual infinite set of
harmonic oscillators that conforms the field. We finally ob-
tain the celebrated Bogoliubov transformation:

— [\ 2y/@pw, 2y wkwn
We can see that the old inertial vacuyén 4 is not annihi-
lated by the accelerated operatoirs, B,|0)4 # 0. We
come to the conclusion that the vacuum state and the concept
of number depend on whether our framework is accelerated
or not. Crearly, if the inertial vacuum) 4 is pre-selected by
an inertial observer, no particle radiation should be visible.
Upon a sudden acceleration of such an observer, the system

remains in staté) 4 but the observables evolve into acceler-

FIGURE 1. A diagram of Rindler space. The red line limits the re- - - .
gion known as Rindler wedge. The black hyperbolas correspond fited operatorss,.. Thus(Np) 4 = (Na)p # 0 which shows

the trajectories for observers with constant acceleration. A magni-part'de production.
fication in the asymptotic region shows the limit of flat space-time.

3. Reduction to a single harmonic oscillator:
an analogy

(VuVE+m?) ¢ =V, [VF¢] +m? We study the analogy between the Klein-Gordon equation in
4 A au 2 Rindler space and the equation for a classical harmonic os-
= 0u0"0 + 30" +m7o = 0. (2) cillator wiEc)h a viscous fo?ce. Our goal is to obtain the Bo-
By the equivalence principle, the equation for a curved spacgoliubov transformation for a single oscillation mode. First
is the same as having an accelerated obsereeit is equiv-  we observe that the term affected byn Eq. 2) is linear in
alent to a change of coordinates. Similar expansions can b@e derivatives, which is similar to a velocity-dependent force
made in the curved case; ket (=) be the stationary solutions that perturbs the acceleratiofg/0t?. If we apply a dimen-

of the problem, such that sional reduction such that = 0 is the only allowed value,
L. we will haveggy = 1, T, = a, m? = w?, ¢(z,t) — X (1),
$(x) = > [Dnton(x) + Dyt ()] - (3)  which leads to the equivalence between the two following
n equations
Using the corresponding inner product, we will have the fol- 2 J
. S . 5 A 9\
lowing projections: [dt2+adt+w2]X(t) = 0 [O+T7,0*+m?] ¢ = 0. (8)
_ 311 _
(x,¢) = /d K Ci 9k, 01') = 20k C, The factora is associated with the friction of the system. In
general it can be complex but for systems with dissipation it
(¥n,6) = > Dur (n, tonr) = 2wy Dy, (4) s taken as real and positive. Equati@ for X (¢), can also

be obtained using the Caldirola-Kanai Hamiltonian [9]
With this last result4) we arrive at a transformation between

the coefficients of the different modes: = efatP72 n e+atw2g. )
1 * *
Wr With the use of a canonical transformatidbh = etet/2X,

T — ,—at/2p : . .
The next step is to use the second quantization postul-I € P, we obtain a new equation comresponding to an

; ; 2,2 2
lates on the fields, which implies a substitution of the co-OSCIIIator with a new frequenc” = w” — (a/2)”. We have

efficients Cy, D, by operatorsC’k,Dn. Making a di- P2V
rect substitution of the Fourier expansidad) (n commuta- Gz

tion relations[é(t, x), (900) /% 0 (¢, y)} — i (x — y), )
7 7 _ 009 5 _ _ The new solution of the damped oscillatsr can be ex-
[#(t: %), o(t,y)] = g [@(i)(lf,){)ﬁt(gﬁ(t,y)] = 0, and mak pressed in terms of the orthonormal bagis *, et}

ing the substitutiorC, = A] /v/2wy., we find the following  and the old coefficients’ andC', corresponding to the case
Heisenberg algebra a = 0, which gives us

[Ak,AL,} =07 (k- K, [Ak»flk'} =0. (8 V(t) = e ICT(t) + e O(1). (11)

= — [w? — (a/2)?] Y = -Q%. (10)
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By means of the inner product obtained from the equaThere are several methods to determine the matrix elements
tion of motion B), we calculate the projection betwe&h  of the operator that appears ib6j. Here we use the Baker-
and the eigenmodes of the unperturbed problem. This opeZampbell-Hausdorff formula for bilinear operators of the
ation will result in a connection between old coefficieats —harmonic oscillator, found in [10]
and C't, with new coefficientsD and D1, corresponding to

the damped problem. The simplified Bogoliubov transforma- S(z) = exp B (zBTBT _ z*BB)]

tionis
A -Q +Q 1
C = L z(erQ)tDT L w 7z(w Q)t D (12) = exp |: 14) tanhr BTBT:|
2w 2w 2
Furthermore, the creation and annihilation operators will be 1 1
given by X exp { 2(Incoshr) ( BB + )}
4
. Bt L 1
D=_—"_ [B B*] —1 x exp | —= (¢ tanhr) BB 17)
m? K K 2
o , [A,Aq -1 (13) Inourcaser = re'?, z = 2* = =0 = [1]e'* = ¢ = —1
v Vow andr = 0. Applying the formula tol16), obtains:
Finally using the notatiog = /2 /w, obtains
y using g =+/Q/w S o, 18)
A C C zw+QtBT+<+<7 i(w— Q)tB "

-1 -1 C, (n/2)L . (19
B TSt gt S FC i@t (1a) Vcosh (19)
2 2

2 2 eintt [ (=tanh 9)"/ > Vnl ity even
0, if 1 odd

We see that the old vacuum in the case- 0, i.e. |0)., is The coefficientC,, |* is interpreted as the transition prob-
not annihilated by the new operataB§0), # 0. We con-  apjlity between the old ground state and the new quantum
clude that the vacuum state will depend on whether or nopccupation numbers. Sineé = (w/(w? —a2/4)1/2)1/2 we

our system hafiction. To support this statement, we take have now a relationship between the number of excitations
this transformation to phase space as the application of a ryoduced in the oscillator and the viscous force factdn

tation, a rescaliﬂg of variables and a reverse rotation. Eq. (19) We know thaqc’n|2 is a discrete probabmty distri-
4 coswh — sinwt bution but we may consider continuous variables by writing
< . > = ( . ) n = E/Q — 1/2. The probability of having: particles with
D sinwt  coswt . . . .
energyF as a function of viscosity parameteis:
y e 0 cosQt  sinQt
0 e? —sinQt  cosQt 2v/w w(w2— (a/2 2)1/4
X X ) = o (@2
><<P>:RIS¢9RQ<P>7 (15)
P (gt )
with ¢ = ¢. In Hilbert space, the rotationg,, and R, are “ (a/ )
generated by the number operator, whlgis the squeeze [F ( n 3)]
operator, a rescaling of variablese. R, — !B Bet, 2\/w?— (a/2)2 4
R — e—iB'BOt g, o3 (BT B)
ThenU, the transformation that consists of the succes- X eXP{ (22 2)
sive application of these three operators, will connect both w? — (a/2)?
vacuum states. Therefore, the old vaculim, in terms of wt (w? - a2/4)1/2
the new modes with frictiopn) = |n),,, will be: x 1 ( 7 > } (20)
w— (w? —a?/4)
10). = UT[0)
- e Equgtion 20) can be treated using a St?rling approximation,
_ Zm‘eiBTBmeg{BT -B }e‘iBTB“’t|O>\n) leading to a Boltzmann-type law, see Fig. 2. For large values
of n(n > 10), we have:
inQt —o(B12-B2)/2
= Ze (nle*( )210)n). 18)  p(E)=2 %exp [—é In (Z - 8) E] (21)
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FIGURE 2. Comparison between approximati@i) (red curves)

and exact result20) (green curves). Different curves are gen-

erated for valuess = 0.02s7', a = 0.04s7', a = 0.0657",
a = 0.08s~ 1. The Stirling approximation works better for large

We can deduce that our probability density as a function

of energyE has the form of a Boltzmann factor

P,(E) = Be , B_an<w_9 .

(22)

And finally, we have now an expression of effective temper
ature as a function of frequency and viscosity, as plotted if

Fig. 3:
hy/(w? — (a/2)?)

wt(w2—a2/4)1/2\ "
bl (S50 )

T =

(23)
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FIGURE 3. Effective temperature as a function of We see an
asymptotic linear relation bounded by the conditios 2w, com-
plying with 0 < Q2.

. Concluding remarks

We have found an analogy between the Klein-Gordon equa-
tion in curved space for accelerated observers and the equa-

tion of a harmonic oscillator with rheological force, which

an be seen in the Bogoliubov transformatid)( We have
calculated the coefficients for this transformationi8)( Fi-
nally, we have arrived at a particle occupation number dis-
tribution as a function of an effective temperature in terms
of the observer’s acceleration, in analogy with a rheological
force.
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