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Particle radiation produced by accelerated systems
and their analogy with damped oscillators
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The Unruh effect predicts how uniformly accelerated observers will perceive a change in the vacuum state. This shows that the concept
of particle number depends on the acceleration of the reference frame. Although this is a result of quantum field theory, its experimental
verification is still questioned, mainly due to the high accelerations required. In this work we study a quantum oscillator with only one
complex coordinate and a damping term acting as perturbation, which has all the characteristics of the Unruh effect in second quantization
for an accelerated observer. The Bogoliubov transformation connecting the two different vacuum states is obtained. This leads to an explicit
formula for the particle occupation number as a function of energy and acceleration. Furthermore, it is shown that our analogue system
contains an effective temperature that depends on the observer’s sudden acceleration, seen as a friction force. The purpose of this work is to
demonstrate that quanta production (particles or energy packets) is inevitable under the premises of quantum field theory.
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1. Introduction

Relativistic quantum field theory complies with the princi-
ple of invariance under changes of inertial frames, which is
to say, that Poincaré invariance is a cardinal principle of all
physical theories. However, Unruh concluded that the con-
cept of vacuum depends on whether frames of reference are
inertial or non inertial [1, 2]. The lack of invariance of vac-
uum under transformations for accelerated observers entails
particle production, but this effect has not been experimen-
tally verified due to the need of large accelerations and ex-
pensive setups. Nowadays there are interesting proposals to
demonstrate it empirically; nonetheless, simplified analogue
setups in top table experiments should enable us to demon-
strate its inevitability. The present contribution is devoted to
the study of a single mode quantum oscillator that receives
corrections due to a non inertial coordinate frame. Quanta
production, thermal distributions and transition amplitudes
can be computed analytically without divergences, with the
aim of implementing the effect in micro electro-mechanical
oscillators (MEMs) [3].

Despite the early objections on the plausibility of observ-
ing Unruh radiation –e.g. the nature of particle detectors in
accelerated frames– here we argue that the modification of
the average particle number depends crucially on the initial
state selected by the observer, as well as a sudden acceler-
ation process that modifies the observables, but not the pre-
selected state, which is the inertial vacuum. Evidently, due
to the presence of vacuum expectation values (VEVs) this
would be equivalent to the transformation of the state with-
out change in the relevant observables,e.g. particle number
or excitation number.

After a short review of the Unruh effect for a scalar field
in Sec. 2, we shall establish in Sec. 3 an analogy with a single

harmonic oscillator subjected to a damping force; this shall
be done by means of a dimensional reduction of the Klein-
Gordon equation in curved space. The results of this paper
increase the collection of successful quantum-dynamical em-
ulations in simplified systems produced in [4,5] (Dirac oscil-
lator) and [6,7] (Peierls model of interacting channels). Some
concluding remarks are given in Sec. 4.

2. Klein-Gordon in curved space

We know that the Lorentz transformation connecting a frame
S′ moving with a velocityv in the axisx with respect to a
second frameS, is

(
x
ct

)
=

(
cosh(φ) sinh(φ)
sinh(φ) cosh(φ)

)(
x′

ct′

)
, (1)

where cosh(φ) = γ y sinh(φ) = γβ. A Rindler ob-
server [8] is one that moves with a constant acceleration, see
Fig. 1. Therefore, using the equivalence principle, its motion
is given by (1) with α = φ̇ and−α2 = − (

a0
)2 +

(
a1

)2

for the acceleration vectorαµ. The Rindler metric isgµν =
diag

(
α2x2,−1,−1,−1

)
. As we know, the scalar curvature

in this case isR = 0 and the Christoffel symbols correspond-
ing to this metric areΓx

ττ = αx, Γτ
τx = Γτ

xτ = 1/αx and
the rest vanish. In flat Minkowski spacetime with the metric
η = (1,−1,−1,−1) we have the well-known Klein-Gordon
equation

(
¤ + m2

)
φ (xµ) = 0, in natural units. Further-

more, we know that this scalar field can be expanded in terms
of the momentum eigenfunctionsφk = N e−iωkteik·x, with
their corresponding coefficientsCk y C∗k . However when
we work in a curved space we need to replace the operator
∂µ by the covariant derivative operator∇µ, which satisfies
∇µgνσ = 0. We have
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FIGURE 1. A diagram of Rindler space. The red line limits the re-
gion known as Rindler wedge. The black hyperbolas correspond to
the trajectories for observers with constant acceleration. A magni-
fication in the asymptotic region shows the limit of flat space-time.

(∇µ∇µ + m2
)
φ = ∇µ [∇µφ] + m2φ

= ∂µ∂µφ + Γλ
µλ∂µφ + m2φ = 0. (2)

By the equivalence principle, the equation for a curved space
is the same as having an accelerated observer,i.e. it is equiv-
alent to a change of coordinates. Similar expansions can be
made in the curved case; letψn(x) be the stationary solutions
of the problem, such that

φ(x) =
∑

n

[Dnψn(x) + D∗
nψ∗n(x)] . (3)

Using the corresponding inner product, we will have the fol-
lowing projections:

(φk, φ) =
∫

d3k′Ck′ (φk, φk′) = 2ωkCk,

(ψn, φ) =
∑

n′
Dn′ (ψn, ψn′) = 2ωnDn. (4)

With this last result (4) we arrive at a transformation between
the coefficients of the different modes:

Ck =
1

2ωk

∑
n

[Dn 〈φk, ψn〉+ D∗
n 〈φk, ψ∗n〉] . (5)

The next step is to use the second quantization postu-
lates on the fields, which implies a substitution of the co-
efficients Ck, Dn by operatorsĈk, D̂n. Making a di-
rect substitution of the Fourier expansion (3) in commuta-
tion relations

[
φ̂(t,x), (g00)

−1/2
∂tφ̂(t,y)

]
= i~δ3(x − y),

[φ̂(t,x), φ̂(t,y)] = g00
[
∂tφ̂(t,x), ∂tφ̂(t,y)

]
= 0, and mak-

ing the substitution̂Ck = Â†k/
√

2ωk, we find the following
Heisenberg algebra

[
Âk, Â†k′

]
= δ3 (k− k′) ,

[
Âk, Âk′

]
= 0. (6)

These commutation relations reveal the usual infinite set of
harmonic oscillators that conforms the field. We finally ob-
tain the celebrated Bogoliubov transformation:

Âk =
∑

n

[( 〈φk, ψn〉∗
2
√

ωkωn

)
B̂n +

( 〈φ∗k, ψn〉
2
√

ωkωn

)
B̂†

n

]
. (7)

We can see that the old inertial vacuum|0〉A is not annihi-
lated by the accelerated operators,i.e. B̂n|0〉A 6= 0. We
come to the conclusion that the vacuum state and the concept
of number depend on whether our framework is accelerated
or not. Crearly, if the inertial vacuum|0〉A is pre-selected by
an inertial observer, no particle radiation should be visible.
Upon a sudden acceleration of such an observer, the system
remains in state|0〉A but the observables evolve into acceler-
ated operatorŝBn. Thus〈NB〉A = 〈NA〉B 6= 0 which shows
particle production.

3. Reduction to a single harmonic oscillator:
an analogy

We study the analogy between the Klein-Gordon equation in
Rindler space and the equation for a classical harmonic os-
cillator with a viscous force. Our goal is to obtain the Bo-
goliubov transformation for a single oscillation mode. First
we observe that the term affected byΓ in Eq. (2) is linear in
the derivatives, which is similar to a velocity-dependent force
that perturbs the acceleration∂2φ/∂t2. If we apply a dimen-
sional reduction such thatµ = 0 is the only allowed value,
we will haveg00 ≡ 1, Γ0

00 ≡ a, m2 ≡ ω2, φ(x, t) → X̂(t),
which leads to the equivalence between the two following
equations
[

d2

dt2
+a

d

dt
+ω2

]
X̂(t) = 0↔ [

¤+Γλ
µλ∂λ+m2

]
φ = 0. (8)

The factora is associated with the friction of the system. In
general it can be complex but for systems with dissipation it
is taken as real and positive. Equation (8) for X̂(t), can also
be obtained using the Caldirola-Kanai Hamiltonian [9]

Ĥ = e−at P̂
2

2
+ e+atω2 X̂2

2
. (9)

With the use of a canonical transformation̂Y = e+at/2X̂,
Π̂ = e−at/2P̂ , we obtain a new equation corresponding to an
oscillator with a new frequencyΩ2 ≡ ω2 − (a/2)2. We have

d2Ŷ

dt2
= − [

ω2 − (a/2)2
]
Ŷ ≡ −Ω2Ŷ . (10)

The new solution of the damped oscillatorŶ can be ex-
pressed in terms of the orthonormal basis

{
e−iωt, e+iωt

}
and the old coefficientsC andC†, corresponding to the case
a = 0, which gives us

Ŷ (t) = e−iωtĈ†(t) + e+iωtĈ(t). (11)
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By means of the inner product obtained from the equa-
tion of motion (8), we calculate the projection between̂Y
and the eigenmodes of the unperturbed problem. This oper-
ation will result in a connection between old coefficientsĈ
and Ĉ†, with new coefficientsD̂ andD̂†, corresponding to
the damped problem. The simplified Bogoliubov transforma-
tion is

Ĉ =
ω − Ω

2ω
e−i(ω+Ω)tD̂† +

ω + Ω
2ω

e−i(ω−Ω)tD̂. (12)

Furthermore, the creation and annihilation operators will be
given by

D̂ =
B̂†
√

2Ω
,

[
B̂, B̂†

]
= 1,

Ĉ =
Â†√
2ω

,
[
Â, Â†

]
= 1. (13)

Finally using the notationζ =
√

Ω/ω, obtains

Â =
ζ − ζ−1

2
ei(ω+Ω)tB̂† +

ζ + ζ−1

2
ei(ω−Ω)tB̂,

B̂ =
ζ−1 − ζ

2
ei(ω+Ω)tÂ† +

ζ−1 + ζ

2
ei(Ω−ω)tÂ. (14)

We see that the old vacuum in the casea = 0, i.e. |0〉x, is
not annihilated by the new operatorŝB|0〉x 6= 0. We con-
clude that the vacuum state will depend on whether or not
our system hasfriction. To support this statement, we take
this transformation to phase space as the application of a ro-
tation, a rescaling of variables and a reverse rotation.

(
x̂
p̂

)
=

(
cos ωt − sin ωt
sinωt cos ωt

)

×
(

eθ 0
0 e−θ

)(
cosΩt sinΩt
− sinΩt cosΩt

)

×
(

X̂

P̂

)
= R>ω SθRΩ

(
X̂

P̂

)
, (15)

with eθ = ζ. In Hilbert space, the rotationsRω andRΩ are
generated by the number operator, whileSθ is the squeeze
operator, a rescaling of variables,i.e. Rω → eiB̂†B̂ωt,

RΩ → e−iB̂†B̂Ωt, S0 → e
θ
2

(
B̂†

2−B̂2
)
.

ThenU , the transformation that consists of the succes-
sive application of these three operators, will connect both
vacuum states. Therefore, the old vacuum|0〉x in terms of
the new modes with friction|n〉 ≡ |n〉y, will be:

|0〉x = U†|0〉

=
∞∑

n=0

〈n|eiB†BΩte
θ
2

{
B̂†

2−B̂2
}
e−iB†Bωt|0〉|n〉

=
∞∑

n=0

einΩt〈n|e−θ(B̂†2−B̂2)/2|0〉|n〉. (16)

There are several methods to determine the matrix elements
of the operator that appears in (16). Here we use the Baker-
Campbell-Hausdorff formula for bilinear operators of the
harmonic oscillator, found in [10]

S(z) = exp
[
1
2

(
zB†B† − z∗BB

)]

= exp
[
1
2

(
eiφ tanh r

)
B†B†

]

× exp
[
−2(ln cosh r)

(
1
2
B†B +

1
4

)]

× exp
[
−1

2
(
eiφ tanh r

)
BB

]
. (17)

In our casez = reiφ, z = z∗ = −θ = |1|eiφ ⇒ eiφ = −1
andr = θ. Applying the formula to (16), obtains:

|0〉x =
∑

n

Cn|n〉, (18)

Cn =
einΩt

√
cosh θ

{(− tanh θ
2

)n/2
√

n!
(n/2)! , if n even

0, if n odd
. (19)

The coefficient|Cn|2 is interpreted as the transition prob-
ability between the old ground state and the new quantum
occupation numbers. Sinceeθ = (ω/(ω2−a2/4)1/2)1/2, we
have now a relationship between the number of excitations
produced in the oscillator and the viscous force factora in
Eq. (19). We know that|Cn|2 is a discrete probability distri-
bution but we may consider continuous variables by writing
n = E/Ω − 1/2. The probability of havingn particles with
energyE as a function of viscosity parametera is:

Pa(E) =
2
√

ω
(
ω2 − (a/2)2

)1/4

ω + (ω2 − (a/2)2)1/2

×
Γ

(
E√

ω2−(a/2)2
+ 1

2

)

[
Γ

(
E

2
√

ω2−(a/2)2
+ 3

4

)]2

× exp

{
−

(
E√

ω2 − (a/2)2
− 1

2

)

× ln

(
2
ω +

(
ω2 − a2/4

)1/2

ω − (ω2 − a2/4)1/2

) }
. (20)

Equation (20) can be treated using a Stirling approximation,
leading to a Boltzmann-type law, see Fig. 2. For large values
of n(n ≥ 10), we have:

Pa(E) = 2

√
Ωω

ω2 − Ω2
exp

[
− 1

Ω
ln

(
ω + Ω
ω − Ω

)
E

]
(21)
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FIGURE 2. Comparison between approximation (21) (red curves)
and exact result (20) (green curves). Different curves are gen-
erated for valuesa = 0.02s−1, a = 0.04s−1, a = 0.06s−1,
a = 0.08s−1. The Stirling approximation works better for largen.

We can deduce that our probability density as a function
of energyE has the form of a Boltzmann factor

Pa(E) = βe−βE , β ≡ 1
Ω

ln
(

ω + Ω
ω − Ω

)
. (22)

And finally, we have now an expression of effective temper-
ature as a function of frequency and viscosity, as plotted in
Fig. 3:

T =
~
√

(ω2 − (a/2)2)

kB ln
(

ω+(ω2−a2/4)1/2

ω−(ω2−a2/4)1/2

) . (23)

FIGURE 3. Effective temperature as a function ofa. We see an
asymptotic linear relation bounded by the conditiona = 2ω, com-
plying with 0 < Ω2.

4. Concluding remarks

We have found an analogy between the Klein-Gordon equa-
tion in curved space for accelerated observers and the equa-
tion of a harmonic oscillator with rheological force, which
can be seen in the Bogoliubov transformation (14). We have
calculated the coefficients for this transformation in (19). Fi-
nally, we have arrived at a particle occupation number dis-
tribution as a function of an effective temperature in terms
of the observer’s acceleration, in analogy with a rheological
force.

1. L. Crispino, A. Higuchi, and G. Matsas, The Unruh ef-
fect and its applications,Rev. Mod. Phys. 80 (2008), https:
//doi.org/10.1103/RevModPhys.80.787

2. W. Unruh, Notes on black-hole evaporation,Phys. Rev.D14
(1976), https://doi.org/10.1103/PhysRevD.14. 870

3. J. Krim, Friction at the nano-scale,Physics World18 (1976)
31, https://dx.doi.org/10.1088/2058-7058/
18/2/39 .
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7. E. Sadurńı and W. P. Schleich, Conformal mapping and bound
states in bent waveguides,AIP Conference Proceedings1323
(2010),https://doi.org/10.1063/1.3537857 .

8. W. Rindler, Hyperbolic Motion in Curved Space Time,Phys.
Rev. 119 (1960) 2082, https://doi.org/10.1103/
PhysRev.119.2082 .

9. P. Caldirola, Forze non conservative nella meccanica quantis-
tica, Il Nuovo Cimento18 (1941) 393-400,https://doi.
org/10.1007/BF02960144 .

10. D. Truax, Baker-Campbell-Hausdorff relations and unitarity of
SU(2) and SU(1,1) squeeze operators,Phys. Rev. D31 (1985)
1988,https://link.aps.org/doi/10.1103/ .

Supl. Rev. Mex. Fis.4 021101

https://dx.doi.org/10.1088/2058-7058/ 18/2/39�
https://dx.doi.org/10.1088/2058-7058/ 18/2/39�
https: //doi.org/10.1103/PhysRevLett.111.170405�
https: //doi.org/10.1103/PhysRevLett.111.170405�
https://dx.doi.org/10.1088/ 1367-2630/12/5/053014�
https://dx.doi.org/10.1088/ 1367-2630/12/5/053014�
https://doi.org/10.1103/PhysRevE.87.042912�
https://doi.org/10.1103/PhysRevE.87.042912�
https://doi.org/10.1063/1.3537857�
https://doi.org/10.1103/ PhysRev.119.2082�
https://doi.org/10.1103/ PhysRev.119.2082�
https: //doi.org/10.1007/BF02960144�
https: //doi.org/10.1007/BF02960144�
https://link.aps.org/doi/10.1103/ �

