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A measurement of the mass of theτ lepton using
new methods to study semi-invisible decays

J. A. Colorado-Caicedo and E. De La Cruz-Burelo

Physics Department, CINVESTAV IPN,
Av. IPN 2508, San Pedro Zacatenco, Mexico City, 07360, Mexico.

Received 20 April 2023; accepted 25 May 2023

Measuring the mass of particles whose decay products cannot be detected poses a significant challenge due to the complexity of reconstructing
these decays and measuring various parameters. However, studying processes involving undetectable particles is crucial as it enables us to
delve deeper into familiar decays involving energy loss, such as Standard Model processes involving neutrinos. Additionally, it provides
an opportunity to test models associated with physics beyond the Standard Model that can be generated in leptonic colliders. In this study,
the mass of the tau lepton was determined by comparing three different methods for decays with semi-invisible final states. Specifically,
the measurement focused on the decayτ− → π−ντ (signal). Among the three methods employed, the most accurate result was obtained
using theMmin method, yielding a tau lepton mass value ofMτ = 1777.06 ± 0.44 MeV. The measurement utilized official Monte Carlo
data provided by the Belle II collaboration, specifically from the MC13a campaign conducted until 2020, with an integrated luminosity of
100fb−1.
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1. Introduction

Theτ lepton is a fundamental particle in the Standard Model
of particle physics (SM). There are measurements with ex-
traordinary precision, such as the mass of the electron [1],
but the mass of theτ still has a large uncertainty, and its pre-
cise mass determination is crucial for testing the theory and
exploring physics beyond it. The mass of the tau lepton is an
essential parameter for precision electroweak measurements
due to its relationship with the weak mixing angle [2], lepton
flavor universality tests, including radiative corrections. [3],
and the determination of the strong coupling constantαs at
the τ mass scale [4]. Important deviations from the SM in
one of these could imply a sighting of BSM physics. Consid-
ering the reasons stated above, and the fascinating features of
theτ lepton, a better determination of its mass is now essen-
tial.

Significant progress has been made in recent years in
measuring the mass of the tau lepton. The most accurate
measurement recorded in the PDG is1776.86 ± 0.12 MeV,
it is dominated for the fit made by BES III [5] which took
advantage ofe−e+ → τ−τ+ cross-section near theτ -pairs
production threshold, the BaBar [6] and Belle [7] collab-
orations used the so-called pseudo-mass method (developed
by ARGUS [8]) is used to provide the measurement. Cur-
rently, the pseudo-mass technique is still employed to de-
termine the mass of theτ in Belle II from the decay mode
τ− → π−π+π−ντ , however, the greatest statistic is not con-
centrated where the pseudo-mass distribution has kinematic
fall [9]. The mass of theτ lepton is connected to such a
decline. To enhance the precision of mass measurement, the
statistics of the distribution used to obtain this quantity must

be redistributed around the kinematic edge.

With the purpose of redistributing better the statistics
around the point of interest, in this work, we implemented
three different methods (Medge, Mmin andMmax) to study
decays where there is lost energy in the final states. Such
processes are produced viae−e+ → XX, where theX
could be a heavy particle; consequently, we have the pro-
cessXX → (

∑n
i=1 Yai +N1)(

∑m
j=1 Ybj +N2) whereYa(b)

represents any detectable particle andN1(2) a particle that
escapes to the detection; processes like these are called semi-
invisible decays.

Kinematic edges link the three techniques, and it is pos-
sible to create a connection between the kinematic edge and
the mass of the mother particle [10, 11]. At the same time,
a constraint, that connects the mother particle’s massesX
and the invisible particlesN1 andN2, is created. This re-
lationship is useful to suggest novel searching variables for
non-standard unseen particles with well-defined initial state
energy and momentum, such as in BSM processes [12];
hence, validation in a more practical situation is required.
We used these approaches fore−e+ → τ−τ+ followed by
τ−τ+ → (π−+ντ )(π+ + ν̄τ ), this decay topology is known
as (1×1)-prong. We have chosen as signal, and tag a process
whereτ decays to one pion plus neutrino, just as shown in
Fig. 1; there are two challenges here: the first is that neutrinos
are impossible to detect entirely, and the second is thatτ has
a very short lifetime. The combination of these two technical
obstacles make reconstructing this process extremely tough.
The measurement of theτ mass in the (1×1)-prong topology
in the Belle II collaboration has not yet been investigated for
the above reasons. We aimed to apply the three approaches
indicated above throughout this study to calculate the mass
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FIGURE 1. Signal-tag scheme in (1× 1)-prong topology in tau de-
cay. The direction of thênthrust vector that separates the signal
from the tag is displayed.

of the τ lepton in the (1 × 1)-prong topology at the simula-
tion level using official Monte Carlo data from the Belle II
experiment for an integrated luminosity of (100 fb−1).

The validation made in this work opens the door for the
Belle II collaboration to investigate the mass of theτ utiliz-
ing (1×1)-topologies or even to examine BSM processes that
satisfy the requirements of the methods used by us.

2. Kinematic reconfiguration

In the extended scenario when we have the decay of theXX̄
pair, we choose to start with kinematic equations including
eight unknown variables to describe the 4-momentum of two
unseen particles, but owing to detector limitations, only six
constraint equations are accessible. But, if two parameters,
such as the mass of theX and the mass of theN , are intro-
duced, these equations may be solved. As a result, we will
count each event with a solution region in the plane compos-
ite by the mass of theX particles and the mass of theN
particles. Since, in our case we only have for each decay one
hadronic particle in the final state that can be detected, we
defineha ≡

∑n
i=1 Yai y hb ≡

∑m
j=1 Ybi, the decay topology

is illustrated in Fig. 2, where the dotted lines indicate that N1
and N2 escape the detector. We follow the approaches given
by Refs. [11,12]

FIGURE 2. Back to back production of the pairXX̄ into detectable
(Y ) and invisible particles (N ).

Now, let us now do a kinematic study of the process of
Fig. 2. LetPa, Pb, P1 andP2 the 4-momentum ofha, hb,
N1 andN2 in the center-of-mass system (CMS) respectively,
wherePa = (Ea,pa), Pb = (Eb,pb), P1 = (E1,p1) and
P2 = (E2,p2). We have the following kinematic relations
due to energy-momentum conservation and invariant mass

qµ = Pµ
a + Pµ

b + Pµ
1 + Pµ

2 , (1)

P 2
1 = m2

1, (2)

P 2
2 = m2

2, (3)

(Pa + P1)2 = (Pb + P2)2 = m2
X , (4)

whereqµ = (
√

s, 0, 0, 0) is the 4-momentum in CMS frame-
work, µ = 0, 1, 2, 3; m1, m2 andmX are the masses ofN1,
N2 andX respectively. Note that if our process occurs in
a hadronic collider,q0 andq3 will be indeterminate,i.e., the
first equation will be nonviable; however, in colliders like Su-
perKEKB, the 4-momentum of the system can be determined,
thusPµ

1 andPµ
2 can be fully determined when solving the

eight kinematic equations for test values ofmX andmN .
For simplicity, we redefine the kinematic variables as

follows, the normalized energieszi ≡ P 0
i /
√

s (i =
1, 2, a, b,X), the normalized 3-momentumkj ≡ pj/

√
s

(j = 1, 2), a ≡ pa/
√

s, b ≡ pb/
√

s and the normalized
massesµk ≡ mk/

√
s (k = 1, 2, X, N ). Using the above

definitions and the conservation of energy-momentum, the
Eqs. (2)-(4) would remain

|k1|2 + µ2
1 = z2

1 = (zX − za)2, (5)

|k1 + a + b|2 + µ2
2 = (1− za − zb − z1)2, (6)

|k1 + a|2 + µ2
X = z2

X , (7)

|k1 + a|2 + µ2
X = (1− zX)2. (8)

As each mother particle takes about half of the energy of
the CMS, we may represent the energy ofX aszX = 1/2.
We need to eliminatek1 from the kinematic equations; for
this, we clear this quantity from the Eq. (5), and we have

K ≡ |k1|2 =
(

1
2
− za

)2

− µ2
1. (9)

To the replacing (9) in (8) we stayed with

a · k1 =
1
2
(za − z2

a − µ2
X + µ2

1 − |a|2), (10)

from (6) we get

b · k1 =
1
2
(z2

b − zb + µ2
X − µ2

2 − |b|2)− a · b. (11)

If we define

A ≡ a · k1, (12)

B ≡ b · k1, (13)
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and we develop

K(azby − aybz)2 = k2
1x(azby − aybz)2

+ k2
1y(azby − aybz)2 + k2

1z(azby − aybz)2,

we come to the quadratic next expression ofk2
1x

(Abz −Baz)2 + (Aby −Bay)2

+ 2[(Abz −Baz)(azbx − axbz)

+ (Aby −Bay)(aybx − axby)]k1x

+ |a× b|2k2
1x = 0.

In addition,k1, a andb must comply with

|k1 × a× b|2 = |(a · k1)b− (b · k1)a|2,
= |k1|2|a× b|2 sin2 θ,

≤ |k1|2|a× b|2. (14)

From the above and using the definitions (12) and (13)
we obtain the solution condition for the Eq. (14) in compact
form

√
K ≥ |Ab−Ba|

|a× b| . (15)

Developing (15) using the equation (9), and the same time
(10) and (11), thus we come to

|a× b|
√(

1
2
− za

)2

− µ2
1 ≥

∣∣∣∣−
1
2

[
(µ2

X − µ2
1)b + (µ2

X − µ2
2)a + H

]∣∣∣∣ , (16)

where

H = (z2
b − zb − |b|2 − 2(a · b))a

+ (z2
a − za + |a|2)b. (17)

Then, by doing some algebra, we get the following inequality

A1(µ2
X − µ2

1)
2 + A2(µ2

X − µ2
2)

2

+ A3(µ2
X − µ2

1)(µ
2
X − µ2

2)

+ B1(µ2
X − µ2

1) + B2(µ2
X − µ2

2)

+ C1µ
2
1 + D1 ≤ 0, (18)

here

A1 ≡ |b|2, (19)

A2 ≡ |a|2, (20)

A3 ≡ 2(a · b), (21)

B1 ≡ 2(b ·H), (22)

B2 ≡ 2(a ·H), (23)

C1 ≡ 4|a× b|2, (24)

D1 ≡ |H|2 − 4|a× b|2
(

1
2
− za

)2

. (25)

If we consider the case whereµ1 = µ2 the Eq. (18) be-
comes in

A0(µ2
X − µ2

1)
2 + B0(µ2

X − µ2
1) + C0µ

2
1 + D0 ≤ 0, (26)

where

A0 ≡ |a + b|2, (27)

B0 ≡ 2[a ·H + b ·H], (28)

C0 ≡ 4|a× b|2, (29)

D0 ≡ |H|2 − 4|a× b|2
(

1
2
− za

)2

. (30)

We obtained an equation in which the input variables are the
kinematic variables of the particles, we can detectha andhb.
It should be noted that the Eq. (26) is an oblique parabola in
the plane(µ2

X−µ2
1), rather, the solution region is bounded by

a parabola (see Fig. 3). All accessible kinematic information
for the processXX̄ → (ha + N1)(hb + N2) is included in
the inequalities (18) or (26), depending on whetherN1 and
N2 are distinct or the same kind of particle.

FIGURE 3. The representation of the solution zone from the
Eq. (26) for a specific event. The true mass of theτ is displayed as
a red cross, the edge mass as a blue star, and the maximum value
as a green point.A0, B0, C0 andD0 were picked from the local
simulation.
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3. Medge, Mmin and Mmax methods

The equation’s parabola (26) is rotated45◦ in the plane
(µ2

X − µ2
1). If we apply a rotational transformation where

θ = 45◦, and put the expression in terms of the new variables
(µ′2X andµ′21 ), we get the parabola vertex in the new reference
system, and if we perform the inverse transformation, we get
the original system’s vertex parabola. This gives us our vari-
ables(µedge

X )2 and(µedge
1 )2, which represent the vertex of the

parabola in the plane(µ2
X − µ2

1). The expressions are

(µedge
X )2 =

4B2
0 + 3C2

0 − 16A0D0 − 8B0C0

16A0C0
,

(µedge
1 )2 =

4B2
0 − C2

0 − 16A0D0

16A0C0
. (31)

Up to this point, we can have two alternatives, that the
parabola has a vertex in quadrant I or that it is in quadrant IV,
but if it is in the latter, we will have a restriction on(µedge

1 )2

and it is that this cannot take negative values, in that case,
we will assign the minimum value to this variable, that is, if
the vertex is in quadrant IV, the furthest physical point will
be the intersection of the parabola and the axisµ2

X . Hence,
from (26) we will obtain for the situation whenµ2

1 = 0

(µborde
X )2 =

√
B2

0 − 4A0D0 −B0

2A0
,

(µborde
1 )2 = 0. (32)

Both (31) and (32) will be used to extract the masses
medge

X andmedge
1 knowing thatmedge

X = (µedge
X )

√
s y medge

1 =
(µedge

1 )
√

s.
Now, to construct the other two methods, let us begin with

the Eq. (18) and let us particularize to the decayτ− → π−ντ .
For practicality, let us considerµ1 = µντ andµX = µτ . As-
sumingmντ = 0, the Eq. (18) reduces to

(A1 + A2 + A3)(µ2
τ )2 + (B1 + B2)(µ2

τ ) + D1

= A0(µ2
τ )2 + B0(µ2

τ ) + D0 ≤ 0. (33)

Solving, we obtain

(µ2
τ )2 = ±

√
B2

0 − 4A0D0

2A0
− B0

2A0
, (34)

this can be seen as
(
µmin

τ

)2 ≤ (µτ )2 ≤ (µmax
τ )2 , (35)

given thatmτ = µτ
√

s, thus

M2
min ≤ m2

τ ≤ M2
max, (36)

where

M2
min =

(√
s
)2

(
−B0 −

√
B2

0 − 4A0D0

2A0

)
, (37)

M2
max =

(√
s
)2

(
−B0 +

√
B2

0 − 4A0D0

2A0

)
. (38)

FIGURE 4. The distribution ofMmin (Mmax) in red (blue). The
dashed line is the true massmtrue

τ .

According to (36), the variablesMmin andMmax should
have endpoints just in the mass of theτ as shown in the Fig. 4.
The mass we seek is associated to locations where these dis-
tributions have a noticeable rise, as seen in the mass distribu-
tions, and it is these points that we will estimate.

4. Event selection

The Belle II detector is composed of several sub-detectors
arranged in a cylindrical configuration arounde−e+ interac-
tion point (IP). We selectτ -pair candidates by requiring only
two final state charged particles; each was less than 3 cm
in the z-direction and less than 1 cm in the transverse plane
from the mean IP. By merging the information from all sub-
detectors into a global discriminator akin to a probability ra-
tio, the particle in the signal hemisphere must be designated
as a pion; such hemisphere is created viathrust that is de-
fined by the unit vector̂uthrust perpendicular to the line sep-
arating the signal and tag (see Fig. 1). The value ofthrust is
defined asVthrust ≡

∑
i |pcm

i ·n̂thrust|/|pcm
i |, such that said

value is the maximum, wherepcm
i is the momentum of each

final-state particle in the CMS. The values are split using the
vector ûthrust and thethrust. In this manner, we have the
production back-to-back ofτ -pairs in the CMS. The variable
EECL/p, which is the ratio of the energy deposited in the
calorimeter to the momentum of charged particles, requires
0 ≤ EECL/p ≤ 0.8 to ensure that there are more pions in
the tracks.

The background wheree−e+ produce in the final-state
qq̄ with q = u, d, s, c (hadronic),l−l+γ (dileptonic), and
e−e+l−l+ (two-photon) needs to be reduced. To identify the
criterion for suppressing these backgrounds, we employ sim-
ulated events. The KKMC generator is used to create the
e−e+ → τ−τ+ process [13, 14]. Theτ decays are handled
with the software TUAOLA [15], their radiative corrections
by PHOTOS [16], We use KKMC to simulateµ−µ+(γ) and
qq̄ production, PYTHIA [17] for the fragmentation of the
qq̄ pair; BabaYaga@NLO [18–21] fore−e+ → e+e−(γ)
events, AAFH [22–24] and TREPS [25] for the non-radiative
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FIGURE 5. a) Signal (blue) and background (red) BDT distributions. b) FOM with maximum in 0.2.

final statese−e+l−l+. The Belle II Software Framework
(Basf2) [26] uses Geant4 [27] to simulate the response of the
detector to the passage of the particles.

To reduce the background noise caused bye−e→qq̄ we
required zero neutrals in the final state. The photons utilized
for π0 reconstruction are in clusters with an energy of at least
0.1 GeV. Neutral pions are photon pairs with masses between
[115,152] MeV/c2. Events containing photons that meet the
aforementioned criteria but are not included in theπ0 recon-
struction and have an energy greater than 0.2 GeV are like-
wise excluded. Imposing a cut in theThrust ≤ 0.99 we
suppressed events frome+e−(γ) andqq̄.

All other events that are not considered as signal are
background, i.e., the remain events of low multiplicity
(ee, eeµµ, µµ, eeee), qq̄ (q = u, d, s, c), mixed (B0B̄0) and
charged(B+B−). To clean our signalτ− → π−ντ (all
other decays of theτ are considered as noise), we used
a Machine Learning (ML) model based on Boosting Deci-
sion Trees (BDT) implemented in ROOT [28] through an
environment for the processing and evaluation of multivari-
ate classification such as TMVA (Toolkit for Multivariate
Data Analysis) [29]. The new variable “BDT” was opti-
mized with the purpose of extracting the best cut for the sep-
aration signal/background using the figure of merit (FOM)
2

(√
Nsig + Nbkg −

√
Nbkg

)
, whereNsig is the number of

the signal events andNbkg is the number of background
events.

5. Estimation of theτ mass

5.0.1. Medge method

To determine the mass of theτ , we performed a unbinned
likelihood fit [30] using the following parametrization

F (Medge) = fSPDF + (1− f)BPDF , (39)

whereSPDF is the probability density function (PDF) for
the signal,BPDF is the PDF for the background andf is a
coefficient less than 1 that is subject to the normalization con-
ditions. The empirical PDF for the signal has the following
form

SPDF (Medge) = (P3 + P4Medge+ P6M
2
edge + P7M

3
edge)

× erf

(
Medge− P1

P2

)
+ P8M

2
edge

+ P5Medge+ 1, (40)

whereP1 is the estimator for the mass of theτ , the estimator
is not exactly the mass of the tau, but it is assumed that it will
be a range from the real value, so the value of the estimator
must be corrected for the selected function in simulated data;
for this, we use an official Monte Carlo sample (MC13a) for
the production ofτ -pairs, for which we know the generation
mass (1777 MeV) that was taken as the real value.

TheMedgedistribution for the background is flat, it can be
modeled as a linear function. The PDF for the background is

BPDF (Medge) = A1 + A2Medge. (41)

For the variableMborde in the mass window1.610 <
Medge< 1.824 and using the addition of PDF’s a value of the
estimatorP1 = 1765.80± 6.0 MeV was obtained [Fig. 5a)].
The difference between the estimator and the true mass is
∆m = 11.2 MeV, and using this bias value, the final esti-
mation in the remaining sample is adjusted [Fig. 5b)]. After
correcting for the bias, we obtain a value for the mass of the
τ of mτ = 1772.40 ± 7.38 MeV. The uncertainties were
summed in quadrature for this final value.

5.0.2. Mmin method

For this estimation, we used the same parametrization func-
tion presented above [Eq. (39)] and the same PDF for the
backgroundBPDF . The signal PDF is given by

SPDF (Mmin) = (P3 + P4Mmin + P6M
2
min + P7M

3
min)

× erfc

(
Mmin − P1

P2

)

+ P8M
2
min + P5Mmin + 1. (42)
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FIGURE 6. a) Signal (blue) and background (red) BDT distributions. b) FOM with maximum in 0.2.

FIGURE 7. a) Signal (blue) and background (red) BDT distributions. b) FOM with a maximum in 0.2.

A value for the estimator ofP1 = 1777.70±0.16 MeV is ob-
tained with a difference from the real value of∆m = −0.70
MeV. Already considering the remaining sample [Fig. 6b)],
and with bias, we corrected the estimation of the mass to ob-
tain a value for the mass of theτ lepton ofmτ = 1777.06±
0.47 MeV.

5.0.3. Mmax method

For the variable Mmin we used the same previous
parametrization function, and the same signal PDF (40).

In this case, it was possible to obtain a value for the mass
estimator ofP1 = 1775.16±0.14 MeV [Fig. 7a)] for a differ-
ence in mass of∆m = 1.84 MeV. Correcting then with this
bias to the value obtained in the adjustment to the remaining
data, a value for the mass ofmτ = 1781.44± 0.38 MeV was
obtained.

6. Conclusions

Three approaches for measuring tau lepton mass based on the
solubility of kinematic equations were adopted in this study.
The first is for a full solution zone calledMedge, where it was
discovered that the density of events is higher towards the
point of actual mass. The other two techniques,Mmin and
Mmax, used zero mass for the tau neutrino as a rough approx-
imation. The key conclusion is that theMmin approach is the

best way for measuring the tau lepton mass in the (1 × 1)-
prong topology (which has not yet been implemented in the
Belle II collaboration), yielding a mass for theτ lepton of
mτ = 1777.06 ± 0.47 MeV. This result is obtained with the
official Belle II simulated data in the MC13a campaign. It is
crucial to note that the methods utilized in this study to do
mass measurements in decays with semi-invisible end prod-
ucts are naturally biased due to the inability of reconstructing
those decays in their entirety. Also, it is important to high-
light that there is a relation between the precision and the
uncertainties of the measurements with the redistribution of
the events (without increase data) around the real value of the
mass. For instance, the measurement made with theMmin

method presents major statistics distributed around the point
of interest, and we obtained with this the more accurate mea-
surement with the lower uncertainty. Therefore, looking at
theMedgevariable we can see that it has the greatest widen-
ing in its distribution, thus, it has the largest bias with a value
of ∆m = 11.2. MeV and the worst accuracy.

Finally, we have verified three approaches for investi-
gating decay processes originating in leptonic colliders with
invisible particles in the final state; such processes can be
also BSM decays where it is necessary to deploy sophisticate
ways to extract new information with the limited variables
that the detectors can give us in order to discover new parti-
cles or impose competitive production upper bounds.
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