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We use the most general four-lepton effective interaction Hamiltonian to investigate the impact of massive Dirac and Majorana neutrinos on
the leptonic decays of muons and taus. Our analysis encompasses the specific energy and angular distribution of the resulting charged lepton,
accounting for both the initial and final polarizations of the charged leptons. Additionally, we identify the emergence of novel generalized
Michel parameters and concentrate on the influence of the heavy neutrino masses, which can make significant contributions in cases where
new sterile neutrinos exhibit non-negligible mixing. Our analysis reveals that the most promising scenario occurs in the case ofτ decays,
featuring one heavy neutrino with a mass approximately ranging from102 to 103 MeV. In this setting, the discrepancy between the Dirac and
Majorana cases could reach an order of magnitude of10−4, which is significant enough to be detected in present and future experiments.

Keywords: Electroweak precision physics; sterile or heavy neutrinos.

DOI: https://doi.org/10.31349/SuplRevMexFis.4.021105

1. Introduction

A crucial approach to exploring a fundamental understand-
ing of nature beyond the standard model (SM) is to con-
duct high-precision measurements, where any potential new
physics (NP) could manifest as a noticeable deviation from
the SM’s prediction, seee.g. Refs. [1–3].

In this paper, which is based on Ref. [4], we investigate
the leptonic decays̀− → `

′−
ν̄`′ ν`, where the lepton pair

(`,`
′
) may be (µ,e), (τ ,e), or (τ ,µ). Our analysis employs

the most general four-lepton effective interaction Hamilto-
nian to test the SM predictions and to explore potential new
physics in the weak charged currents, as well as the impact
of neutrino masses and their specific nature. This is partic-
ularly relevant in the context of low-scale seesaw scenarios,
where the new sterile sectors exhibit non-negligible mixings,
and some of them require low enough masses to be produced
on-shell, resulting in a detectable effect on the process.

The paper is organized as follows: in Sec. 2, we briefly
review the standard Michel distribution in the case of mass-
less neutrinos. We then proceed to compute the effective
decay rate, incorporating the finite neutrino masses of Dirac
(Sec. 3.1) and Majorana (Sec. 3.2) types in Sec. 3. We sum-
marize both results in a single expression in Sec. 3.3. In
Sec. 4, we compare and contrast the common factors and pri-
mary differences between the two distributions. Finally, we
provide a summary of our findings and some conclusions in
Sec. 5.

2. Michel Distribution for Massless Neutrinos

We consider the leptonic decays`− −→ `
′−

ν̄`′ ν`, for mass-
less neutrinos.

The most general, local, derivative-free, lepton-number

conserving, four-lepton interaction Hamiltonian, consistent
with locality and Lorentz invariance is [1,5,6]

H = 4
G``′√

2

∑
n,ε,ω

gn
εω

[
¯̀′
εΓ

n(ν`′ )σ

]
[(ν̄`)λΓn`ω] . (1)

The subindicesε, ω, σ, and λ indicate the chiralities for
left (L) and right(R) handed fermions, whilen = S, V, T
specifies the type of interaction: scalar(ΓS = I), vector
(ΓV = γµ), and ’tensor’(ΓT = σµν/

√
2). Note that tensor

interactions can only contribute for opposite chiralities of the
charged leptons, which means that only 10 complex coupling
constants can appear in the Hamiltonian (4 scalar, 4 vector,
and 2 tensor).

After removing an unphysical global phase, we are left
with 19 real numbers to be extracted from the experiment.
Additionally, the factorG``′ , which is determined from the
total decay rate, leads to the following normalization condi-
tion for the coupling constants:

1 =
1
4
(|gS

RR|2 + |gS
RL|2 + |gS

LR|2 + |gS
LL|2) + 3(|gT

LR|2

+ |gT
RL|2) + (|gV

RR|2 + |gV
RL|2 + |gV

LR|2 + |gV
LL|2). (2)

This results in the theoretical upper-limits:|gS
εω| ≤ 2,|gV

εω| ≤
1 and|gT

εω| ≤ 1/
√

3. The Standard Model predicts|gV
LL| = 1

with all other couplings being zero. Working with this Hamil-
tonian, in the massless neutrinos case, the differential decay
probability to obtain a final charged lepton with (reduced) en-
ergy betweenx = E`′/ω andx+dx, emitted in the direction
ẑ at an angle betweenθ andθ + dθ with respect to the ini-
tial lepton polarization vector~P, and with its spin parallel to
the arbitrary direction̂ζ, neglecting radiative corrections, is
given by [7]
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dΓ
dxd cos θ

=
m`

4π3
ω4G2

``′

√
x2 − x2

0

×
(
F (x)− ξ

3
P

√
x2 − x2

0 cos θA(x)
)

× [
1 + ζ̂ · ~P`′ (x, θ)

]
, (3)

whereP = |~P|, ω ≡ (m2
` +m2

`′ )/2m`, x0 ≡ m`′/ω and the
polarization vector~P`′ in Eq. (3) is

~P`′ = PT1 x̂ + PT2 ŷ + PL ẑ, (4)

wherex̂, ŷ and ẑ are unit vectors defined as:̂z is along the
`
′

momentum~p`′ , ẑ × ~P`′/|ẑ × ~P`′ | = ŷ is transverse to~p`′

and perpendicular to the decay plane,ŷ× ẑ = x̂ is transverse
to ~p`′ and in the decay plane, and the components of~P`′ are,
respectively

PT1=P sin θ·FT1(x)
/{

F (x)−ξ

3
P

√
x2−x2

0 cos θA(x)
}

,

PT2=P sin θ·FT2(x)
/{

F (x)−ξ

3
P

√
x2−x2

0 cos θA(x)
}

,

PL=
−FIP (x)+P cos θ·FAP (x)

F (x)− ξ
3P

√
x2−x2

0 cos θA(x)
, (5)

where the explicit form of all these functions can be found in
Ref. [7]. These are written in terms of the Michel parameters
ρ, η, δ, ξ, η

′′
, ξ
′
, ξ
′′
, α

′
, β

′
, which are bilinear combinations

of thegn
εω couplings [1,5,7–9]. This final charged-lepton dis-

tribution could be used to reveal the signature of NP. Specifi-
cally, in the SM case:ρ = δ = 3/4, η = η

′′
= α

′
= β

′
= 0

andξ = ξ
′
= ξ

′′
= 1.

The most accurate experimental values on theτ andµ de-
cay Michel parameters [10–16] are shown in Table I. We note
that lepton universality yields the most preciseη bound from
the combination of tau decays into the muon and the electron
channel,η = 0.013± 0.020.

TABLE I. Michel parameters determinations [10–16].

µ− → e−νµν̄e τ− → e−ντ ν̄e τ− → µ−ντ ν̄µ

ρ 0.74979± 0.00026 0.747± 0.010 0.763± 0.020

η 0.057± 0.034 — 0.094± 0.073

ξ 1.0009+0.0016
−0.0007 0.994± 0.040 1.030± 0.059

ξδ 0.7511+0.0012
−0.0006 0.734± 0.028 0.778± 0.037

ξ
′

1.00± 0.04 — —

ξ
′′

0.65± 0.36 — —

The interested reader is addressed to Refs. [1,7] for a de-
tailed discussion.

3. Michel Distribution for Massive Neutrinos

In this context, the interaction of the charged weak current
is expressed in the mass eigenstates basis of the charged lep-
tons` and the neutrinosNj , obtained after diagonalizing the
charged lepton and neutrino mass matrices. We work in the
basis where the charged lepton mass matrix is already diago-
nal, where the lepton flavor neutrino basisνL,R is assumed to
be a superposition of the mass-eigenstate neutrinosNj with
massmj , i.e.,

ν`L =
∑

j

U`jNjL, ν`R =
∑

j

V`jNjR, (6)

wherej = {1, 2, ..., n} labels the number of mass-eigenstate
neutrinos.

As shown by Langacker and London [17], explicit lepton-
number nonconservation still leads to a matrix element equiv-
alent to the one derived from Eq. (1).

3.1. The Effective Decay Rate for Dirac Neutrinos

The effective Hamiltonian, written in the mass basis, for the
`− → `

′−
N jNk process is:

H = 4
G``′√

2

∑

j,k

{
gS

LL

[
¯̀′
LV`′ jNjR

] [
NkRV ∗

`k`L

]
+ gV

LL

[
¯̀′
LγµU`′ jNjL

] [
NkLU∗

`kγµ`L

]
+ gS

RR

[
¯̀′
RU`′ jNjL

] [
NkLU∗

`k`R

]

+ gV
RR

[
¯̀′
RγµV`′ jNjR

] [
NkRV ∗

`kγµ`R

]
+ gS

LR

[
¯̀′
LV`′ jNjR

] [
NkLU∗

`k`R

]
+ gV

LR

[
¯̀′
LγµU`′ jNjL

] [
NkRV ∗

`kγµ`R

]

+ gT
LR

[
¯̀′
L

σµν

√
2

V`′ jNjR

] [
NkLU∗

`k

σµν√
2

`R

]
+ gS

RL

[
¯̀′
RU`′ jNjL

] [
NkRV ∗

`k`L

]
+ gV

RL

[
¯̀′
RγµV`′ jNjR

] [
NkLU∗

`kγµ`L

]

+ gT
RL

[
¯̀′
R

σµν

√
2

U`′ jNjL

] [
NkRV ∗

`k

σµν√
2

`L

]}
. (7)
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For the Dirac neutrinos caseN represents an antineutrino,
then we will have only one possible first-order Feynman dia-
gram. If we define the amplitude to beMD

jk for the process

`− −→ `
′−

N jNk, then the corresponding differential decay
rate is

dΓ =
∑

j,k

(2π)4δ4(p1 − p2 − p3 − p4)
2m`

× d3p2d
3p3d

3p4

(2π)32E2(2π)32E3(2π)32E4
|MD

jk|2, (8)

where the sum extends over all energetically allowed neu-
trino pairs, including the possible heavy sector involved. Sec-
tion 3.3 provides the detailed expression for the differential
decay rate of Dirac neutrinos.

3.2. The Effective Decay Rate for Majorana Neutrinos

For the Majorana neutrinos caseN should be identified with
N (N=N c=CN

T
), then, unlike the Dirac case, we will have

two possible first-order Feynman diagrams, which shall have
strong consequences in the amplitude.

Indeed, as it has been pointed out in well-known pre-
vious works [18] for Majorana neutrinos the decay modes
`− → `

′−
N jNk and`− → `

′−
NkNj yield the same final

states forj 6= k as well as forj = k (sinceNi = Ni), and
hence the amplitudes must be added coherently. Figure 1 il-
lustrates the two first-order Feynman diagrams for the decay
`− → `

′−
NjNk.

The first diagram leads to the same matrix element as the
Dirac case, while the second diagram is only possible in the
Majorana neutrino case due to the identification ofN and
N . The orientation of each fermion chain (indicated by blue
arrows) is also defined according to the Feynman rules for
Majorana fermions [19].

If we define the total amplitude to beMjk for the process
`− → `

′−
NjNk, then the differential decay rate is

dΓ =
1
2

∑

j,k

(2π)4δ4(p1 − p2 − p3 − p4)
2m`

× d3p2d
3p3d

3p4

(2π)32E2(2π)32E3(2π)32E4
|Mjk|2. (9)

The above equation includes an additional factor of 1/2 for
two different reasons. The first one is the usual statistical
factor when dealing with indistinguishable fermions for the
case wherej = k. The second reason is due to double count-
ing for the case wherej 6= k. This is because the sum overj
andk is not limited toj ≤ k.

If MD
jk andMM

jk are the amplitudes coming from the first
and second diagram respectively, then, once the integration
over the momenta of the neutrinos is carried out, the decay
rate will have a dependence on the amplitude as follows:i

FIGURE 1. First-order Feynman diagrams for`− −→ `
′−

NjNk.

dΓ ∝ 1
2

∑

j,k

|MD
jk −MM

jk |2

=
1
2

∑

j,k

{
|MD

jk|2 + |MM
jk |2 − 2Re(MD

jkMM∗
jk )

}

=
∑

j,k

|MD
jk|2 −

∑

j,k

Re(MD
jkMM∗

jk ). (10)

The key difference between the Dirac and Majorana cases is
the interference term, which is referred to as the Majorana
term [20]. This contribution arises due to the presence of the
second Feynman diagram in the Majorana case, and it has an
overall minus sign that comes from the application of Wick’s
theorem when dealing with Majorana fermions [19].

Using this property, we can summarize the Dirac and Ma-
jorana cases in a single expression, where the Dirac case is
just the result obtained from the Majorana one when we force
the Majorana term to vanish. We can do this by the imple-
mentation of a flag parameterε = 0, 1, as we shall see next.

3.3. Final Distribution (Dirac and Majorana neutrinos)

Our final distribution will be expressed using the widely
used PDG parametrization convention [7]. As previously dis-
cussed, to differentiate between the two natures of neutrinos,
we incorporate the Majorana term by introducing the parame-
ter ε = 0, 1. This approach enhances the clarity and usability
of our expressions for various applications.

Supl. Rev. Mex. Fis.4 021105
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Then, the differential decay probability taking into account finite Dirac (ε = 0) or Majorana (ε = 1) neutrino masses is
given by

dΓ
dxd cos θ

=
∑

j,k

m`

4π3
ω4G2

``′

√
x2 − x2

0

(
[FIS(x) + F ′IS(x) + F ′′IS(x)]

− P cos θ
[
FAS(x) + F ′AS(x) + F ′′AS(x)

])(
1 + ζ̂ · ~P`′ (x, θ)

)
, (11)

and the components of~P`′ are, respectively,

PT1 = P sin θ · (FT1(x) + F ′T1
(x) + F ′′T1

(x)
)/

N,

PT2 = P sin θ · (FT2(x) + F ′T2
(x) + F ′′T2

(x)
)/

N,

PL =
(
− (

FIP (x) + F ′IP (x) + F ′′IP (x)
)

+ P cos θ
(
FAP (x) + F ′AP (x) + F ′′AP (x)

))/
N, (12)

with N the normalization factorN =
(
FIS(x) + F ′IS(x) + F ′′IS(x)

)− P cos θ
(
FAS(x) + F ′AS(x) + F ′′AS(x)

)
.

This can be viewed as a simple extension of the massless neutrino case. Specifically, for each standard function, we
introduce two additional functions: a primed function and a biprimed function. These functions have linear (mν/ml′) and
quadratic (m2

ν/m2
l′) dependence on the neutrino masses, respectively. Their explicit form and the new Michel parameters that

arise due to considering finite neutrino masses can be found in Ref. [4], as an example:

F ′T1
(x) =

1
4

mj

m1
Re

[
(λ+

L)jk

(
x0(1− x) + x0

√
1− x2

0

)
− (λ+

R)kj

(
x
(
1 +

√
1− x2

0

)− x2
0

)]
,

(λ+
N )jk = −(fS

NN )jk(fV
LR)∗jk + (fV

NN )jk((fS
LR)∗jk + 2(fT

LR)∗jk) + 2(fS
NN )kj(fT

LR)∗kj − 2(fV
NN )kj(fV

LR)∗kj

+ ε
[
− 2(fV

NN )kj(fV
LR)∗jk +

1
2
(fS

NN )kj(fS
LR)∗jk + (fS

NN )kj(fT
LR)∗jk + 4(fV

NN )jk(fT
LR)∗kj

− (fS
NN )jk(fV

LR)∗kj

]
+ (L ↔ R), (13)

where thefn
lm constants are related to thegn

lm couplings
via the neutrinos mixing matrix elements, as can be seen in
Ref. [4]. The specific neutrino mass suppression and the pres-
ence of new parameters is evident. Also, we distinguish the
specific Majorana term in every parameter with the parame-
ter ε, beingε = 0(1) for Dirac (Majorana) case as we just
wanted.

4. Dirac vs Majorana distribution

Both the Dirac and Majorana distributions exhibit the same
suppression due to neutrino masses. We can estimate it and
evaluate its impact on the spectrum. To simplify the analy-
sis, we will consider only one additional heavy neutrino and
focus on the suppression resulting from its mass and mixing.

If the heavy neutrino is within reach kinematically, the
suppression of the terms featuring explicit dependence on
neutrino masses in the primed and biprimed functions will be
affected by the mass of the heavy neutrino and its interaction
with the active and sterile sectors.

We estimate this suppression for the general case,
taking into account one and two final heavy neutrinos,
where the suppression is computed as|U`4|2(mν/m`) and

|U`4|2|U`′4|2(mν/m`)2 for the linear and quadratic terms
respectively, where the specific neutrino mass and mixing are
taken from the best experimental constraints on an invisible
heavy neutrino [21, 22]. Taking these factors into account,
we can calculate the level of suppression of the terms that de-
pend on the neutrino mass compared to those without such
dependence, the most relevant case is shown in Table II.

These findings are intriguing because they suggest that a
heavy neutrino sector with a mass of around102 − 103 MeV
could produce significant distortions of the order ofO(10−3)
in the differential decay rate of aτ -decay. This further under-
scores the importance of exploring new physics in this pro-
cess.

So far, we have only considered the effects of neutrino
masses and mixings and have not accounted for the impact

TABLE II. Suppression of neutrino mass dependent terms.

Neutrino Mass Mixing Linear Term

(GeV) Suppression Suppression

Heavy (1) (̀ = τ ) 0.1− 1.2 10−7 − 10−3 10−8 − 10−3

Supl. Rev. Mex. Fis.4 021105
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FIGURE 2. a) Neutrino mass effect on the Dirac, and b) Majorana
energy spectrum of the final charged-lepton.

of the new physics couplings. To provide a more realistic
assessment of the potential effects of a heavy neutrino sec-
tor, we apply our results to an example model that considers
the dominantgV

LL coupling and a non-zerogS
RR, still with

left-handed neutrinos. This coupling is among the most well-
motivated new physics interactions and naturally arises in
many beyond SM theories. Additionally, to prevent the linear
neutrino mass terms from vanishing, we introduce another
non-vanishing coupling,gS

LR, in our simple yet realistic ex-
ample of a scalar NP sector. The specific dependence of the
new Michel parameters can be seen in Ref. [4].

By using the experimental mean values for the standard
Michel parameters and assigning numerical values ofgV

LL =
0.96, gS

RR = 0.25, andgS
LR = 0.5 for the new parameters in

the tau lepton case, which adhere to the normalization condi-
tion and also meet the current restrictions on the couplings, it
is possible to obtain the energy spectrum for both the Dirac
and Majorana cases, with and without the inclusion of neu-
trino mass contributions, which is presented in Fig. 2.

The plot in Fig. 2 illustrates that the overall impact of the
net neutrino mass could be around10−4. This means that
even after factoring in the suppression of the relevant new
physics couplings and phase space structures, the influence
of the neutrino mass could still cause noticeable alterations
in the energy spectrum.

Also, for this realistic example, we have discovered that
the neutrino mass has a specific impact on the energy distri-
bution for the Dirac and Majorana scenarios, producing op-
posing effects. Indeed for Dirac neutrinos, the neutrino mass
leads to a decrease in the differential decay rate, whereas for

FIGURE 3. Neutrino mass contribution to energy distributions in
Dirac and Majorana cases.

Majorana neutrinos, it leads to an increase in the differential
decay rate.

Actually, to derive the precise impact of the neutrino mass
term in the Dirac and Majorana cases, we can compute the
difference between the differential rate with neutrino mass
effects and the rate without this contribution. As shown in
Fig. 3, our findings align with the prior discussion, indicating
an opposing net effect in the Dirac and Majorana rates that is
of the order of10−4.

Therefore, the alteration of the energy spectrum, if ob-
served, could serve the dual purpose of identifying the exis-
tence of a heavy neutrino sector and distinguishing between
the Dirac and Majorana nature of neutrinos.

Also, the interference Majorana term, which affects ev-
ery Dirac parameter, could generate a measurable distortion
depending on the new physics involved. Thus, studying this
term via theε parameter could provide another way to distin-
guish the neutrino nature and the presence of new physics.

A complete analysis can be found in Ref. [4], where we
apply our expressions to other model dependent scenarios,
reproducing well-known results and discussing their main
properties.

5. Summary and Conclusions

In this work, the decay process̀− → `
′−

NjNk has been
studied, whereNj andNk represent mass-eigenstate neutri-
nos. The matrix element of this decay has been derived us-
ing the general four-lepton effective interaction Hamiltonian,
and the resulting energy and angular distribution of the final
charged lepton has been calculated, along with the polariza-
tion of both the decaying and final charged leptons.

By introducing generalized Michel parameters and a flag
parameterε = 0, 1, we were able to classify the Dirac and
Majorana contributions in a single result. Our results are pre-
sented in a general form, making them applicable to model-
dependent scenarios and facilitating the differentiation of the
possible nature of neutrinos.

We analyze the properties and distinctions of the decay
rate for both the Dirac and Majorana scenarios, and determine
the magnitude of the neutrino mass dependent contributions

Supl. Rev. Mex. Fis.4 021105
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based on some of the best experimental constraints on an in-
visible heavy neutrino, where in the case of aτ -decay featur-
ing a single massive final-state neutrino with a mass range of
102 − 103 MeV, the suppression from the linear term could
be around10−4, which is a sufficiently low value to be de-
tectable in ongoing and upcoming experiments.
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i. It is worth noting that once the momenta of the neutrinos are
integrated out,MD

jk andMM
jk are related to each other through

the exchangej ↔ k.
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