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Geometrical causality: casting Feynman integrals into quantum algorithms
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The calculation of higher-order corrections in quantum field theories is a challenging task. In particular, dealing with multiloop and multileg
Feynman amplitudes leads to severe bottlenecks and a very fast scaling of the computational resources required to perform the calculation.
With the purpose of overcoming these limitations, we discuss efficient strategies based on the loop-tree duality, its manifestly causal repre-
sentation and the underlying geometrical interpretation. In concrete, we exploit the geometrical causal selection rules to define a Hamiltonian
whose ground-state is directly related to the terms contributing to the causal representation. In this way, the problem can be translated into a
minimization one and implemented in a quantum computer to search for a potential speed-up.
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1. Introduction

It is a well-known fact that particle physics is going through
the precision era. Most of the theoretical predictions ex-
tracted from the Standard Model (SM) seem compatible with
the experimental data, within the estimated errors. Then,
reducing the errors (both from experiment and theory) will
allow to test the fundamental parameters of SM and shed
light into potential new physics signals. From the theory
side, reaching more accurate predictions forces us to deal
with complex calculations. In particular, in the context of
high-energy physics (HEP), this implies the need of higher-
orders in perturbation theory. Then, we must compute multi-
loop Feynman amplitudes and integrate multiparticle phase-
spaces: both operations are plagued of technical bottlenecks
that prevent a straightforward calculation.

In the last decades, a tremendous progress has been done
regarding Feynman integral calculationsii. Even if several
drawbacks were solved, breaking the current precision fron-
tier leads to expressions that are so complicated that they
cannot be efficiently handled by traditional methods. In the
direction of exploring new strategies for tackling Feynman
integrals and scattering cross-sections, the Loop-Tree Du-
ality (LTD) [2–7] was unveiled to connect loop and phase-
space calculations in a natural way. The underlying idea of
the formalism is to remove the energy component of loop
momenta, so that the remaining integration is performed
in a Euclidean space, resembling a traditional phase-space
integrationiii. With the time, this framework has evolved to
allow efficient asymptotic expansions [9–12], local numeri-
cal renormalization [13, 14] and local integrand-level repre-
sentations of benchmark NLO cross-sections [15–18], among
other applications in HEP.

Furthermore, the LTD framework was recently reformu-
lated by exploiting the emergence of a causal representa-
tion from the iterated application of Cauchy’s residue the-
orem [19–28]. This representation can be derived from al-
gebraic [29, 30] and geometrical [31, 32] approaches, thus
avoiding an explicit handling of the resulting expressions
from the nested residue calculation. In particular, we have
recently shown that the geometrical formalism is suitable to
study the causal representation of multiloop scattering ampli-
tudes using quantum computers [33, 34], which might allow
a faster calculation.

In this article, we explain how the geometrical causal rep-
resentation of LTD amplitudes is specially suited to imple-
ment Feynman integral calculations in quantum devices. In
Sec. 2 we present a brief explanation of the LTD framework,
with special emphasis in the causal representation. Then, in
Sec. 2.1, the connection between graph theory and causal-
ity is outlined through the introduction of the geometrical
causal selection rules. Making use of this geometrical con-
cepts, we explain in Sec. 3 how the causal representation can
be bootstrapped from the collection of directed acyclic graphs
(DAGs), and how to detect these graphs with quantum algo-
rithms. In particular, in Sec. 3.1, we explain how to build
a Hamiltonian whose ground-state contains all the possible
DAGs, and how to find the configurations with minimum en-
ergy using VQE-based algorithms. Finally, in Sec. 4, we
present the conclusions and discuss possible future research
directions.

2. Causal Loop-Tree Duality

As mentioned in the introduction, the LTD formalism allows
to decrease one degree of freedom per loop integration when
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considering multiloop multileg scattering amplitudes. If the
energy component is removed, then the resulting integral is
defined over an Euclidean space (instead of a Minkowski
one), which transforms loops into phase-space integrals. So,
let us start from a genericL-loop scattering amplitude with
P external particles in the Feynman representation,

A(L)
F =

∫

`1...`L

N ({`s}L, {pj}P

) n∏

i=1

GF (qi) , (1)

where qi with i ∈ {1, . . . , n} are the momenta flowing
through each Feynman propagator,GF (qi) = (q2

i − m2
i +

ı0)−1 is the Feynman propagator andN represents a generic
numerator. By re-writing the Feynman propagators as

GF (qi) =
1

qi,0 − q
(+)
i,0

× 1

qi,0 + q
(+)
i,0

, (2)

with q
(+)
i,0 =

√
~qi

2 + m2
i − ı0 the positive on-shell energy as-

sociated to thei-th internal line, we can compute the nested
residues [20] and add all the terms to obtain [21,22]

A(L)
D =

∫

~̀1...~̀L

1
xn

∑

σ∈Σ

Nσ

n−L∏

i=1

1

λ
hσ(i)

σ(i)

+ (λ+
p ↔ λ−p ) , (3)

with hσ(i) = ±1. In the previous expression,λ
hσ(i)

σ(i) are
calledcausal thresholdsand they encode any possiblephys-
ical threshold singularity of the underlying loop scattering
amplitude: 1/λ are the so-calledcausal propagators. It is
worth noticing that the causal thresholds only involve sums
of positive on-shell energies,i.e.

λ
hσ(i)

σ(i) =
∑

p∈Oi

q
(+)
p,0 ± Pi,0 , (4)

with Pi,0 a combination of external momenta energies. The
quantityn in Eq. (3) represents the number of internal mo-
menta sets: two internal momentaqi andqj are said to belong
to the sets if they depend on the same linear combination of
primitive loop momenta{`r}. k = n − L is known as the
order of the diagram, and it tells us how many causal thresh-
olds mustbe simultaneously entangled to reproduce all the
possible threshold singularities of the diagram [31,32]: then,
Σ indicates the set of all the allowed causal entangled thresh-
olds. In this way, Eq. (3) is a generalization of the well-
known Cutkosky rules [35] and enables the reconstruction of
the complete amplitude.

Finally, let us notice that the factorxn =
∏

n 2q
(+)
i,0

transforms the integration measure fromdd`i into ≈
dd−1~̀

i/(2Ei), namely the phase-space measure with the
proper normalization. For this reason, the causal LTD for-
malism is specially suited to tackle the cross-section calcu-
lation at higher-orders in a completely unified way, without
splitting into real (extended phase-space integration) and vir-
tual (extended loop integration) corrections [36].

2.1. Geometry, causality and causal propagators

In order to achieve a purely geometrical description of the
causal LTD representation, it is necessary to introduce some
previous concepts inspired in graph theory. The first obser-
vation is that Feynman diagrams areoriented graphsmade
of vertices(codifying the interaction among particles) and
edges(associated to the propagation of virtual states). We
definereduced Feynman graphsby collapsing all the edges
connecting a certain pair of vertices into a singlemulti-edge.
For the sake of simplicity, in this article, we work at the level
of reduced graphs, so we can unambiguously refer tomulti-
edgesas simplyedges. The way in which verticesV are con-
nected through a set of edgesE is encoded within the adja-
cency matrixA: (A)ij is 1 (−1) if an edge fromi to j (j to
i) exists, otherwise it is 0. It is important to highlight that the
causal structure of a given Feynman diagram is completely
determined by its reduced graph and, hence, by its adjacency
matrix [31, 37]. Moreover, we can proof that the order of a
diagram,k = n − L, is directly related to the number of
vertices, namelyk = V − 1 [31,32].

Given a reduced Feynman graph, we can build all the bi-
nary partitions of connected vertices,PC

V . These binary par-
titions codify all allowed physical thresholds, which originate
when the diagram is split into two consistent connected sub-
graphs. This condition is directly motivated by Cutkosky’s
rules [35]. In this way, given a partitionp, we define the
conjugated causal thresholds, λ̄p, by summing all the mo-
menta flowing through the partition. These conjugated causal
thresholds are in one-to-one correspondence with all the pos-
sibleλ’s appearing in the denominator of Eq. (3).

So, by using only geometrical concepts, we manage to
identify all the elements appearing in the causal LTD mas-
ter formula. The remaining ingredient is the recipe for prop-
erly entangling the causal thresholds. Summarizing Ref. [31],
there are three compatibility rules to be checked:

1. All the edges involved in a causal threshold must carry
momenta flowing in the same direction.

2. Given a combination of causal entangled thresholds, all
the edges must be cut at least once. This means that the
product

∏k
i=1 λ

hσ(i)

σ(i) for every allowedσ ∈ Σ depends

on q
(+)
j,0 for all j ∈ E.

3. Causal thresholds do no intersect: if we represent each
λp by a line delimiting the partitionp, then these lines
do not cross each other.

The first condition turns out to be equivalent to order the mo-
menta of all the edges in such a way that there are no cycles
(loops). In other words, it implies that the graphical repre-
sentation of a causal entangled threshold corresponds to a
DAG [33].

The geometrical compatibility rules also suggest a pro-
cedure to build the causal representation. Given a reduced
Feynman graph, one possibility consists in identifying all the
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associated DAGs. Then, we generate all the causal thresholds
{λp} by computing all the possible binary connected parti-
tions. After that, we dress the previously identified DAGs
with k = V − 1 different causal propagators in such a way
that the resulting combination fulfills (ii) and (iii). Within this
strategy, the efficient identification of all the possible DAGs
of a given Feynman diagram is a crucial step for bootstrap-
ping a causal LTD representation.

3. Quantum algorithms and causal flow

When dealing with multileg multiloop scattering amplitudes,
the number of vertices and edges of the underlying Feynman
diagrams scales very fast. As a consequence, the complex-
ity of the causal representation grows almostexponentially
because of the large number of allowed entangled causal
thresholds. In particular, having in mind the recipe for ge-
ometrical reconstruction, at a certain point we would need to
identify all the possible DAGs of a given reduced Feynman
diagram. Since the number of directed graphs is2E with
V ≤ E ≤ V (V − 1)/2, there is an exponential number of
configurations to be tested for the acyclicity condition. For
solving this task, there are constructiveclassicalalgorithms
which perform well for sparse graphs. However, when the
graphs are dense or maximally-connected, the complexity is
exponential.

With this panorama in mind, and noticing that the iden-
tification of DAGs is the first step towards the full causal
reconstruction, we decided to explore alternative algorithms
in search of a potential speed-up. One of these alternatives
comprises quantum algorithms. They have been very re-
cently applied to a wide variety of problems in HEP, includ-
ing jet reconstruction [38–44], determination of parton densi-
ties (PDFs) [45], anomaly detection [46], integration of scat-
tering processes [47–49], among others. In our case, we de-
cided to implement a Grover-based search algorithm [50,51]
to identify all the DAGs within a given Feynman diagram. In
Ref. [33], we codify the direction of each edge into a single
qubit. This choice is motivated by Eq. (2), since a propa-
gator in the Feynman representation can be understood as a
superposition of a particle traveling forward and backward in
time.

In Fig. 1, we present the result of the application of our
algorithm to a four-loop N3MLT or pizza topology, which
contains eight edges and five vertices. In the upper part of the
figure, we present four representative cyclic configurations
dressed with the appropriate causal entangled thresholds (fol-
lowing the recipe presented in Sec. 2.1). The corresponding
quantum circuit was implemented in aQiskit simulator,
and required 35 qubits (including ancillary ones) with tran-
spiled depth 55. After 700 shots, we reach a 5-sigma dis-
crimination among cyclic and acyclic states, which allows to
reach a 100% success rate in the identification of DAGs.

FIGURE 1. Representative causal entangled thresholds for a four-loop N3MLT or pizza topology (upper plot). Probability distribution
originated by our Grover-based DAG search algorithm that allow to identify the 39 acyclic configurations (out of 256 possible states) with a
100% success rate (lower plot).
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FIGURE 2. Representation of two terms contributing to the loop
Hamiltonian of a pizza topology. In blue, we indicate the edges in-
volved in the loop, being the direction of each arrow the associated
to G0. In the triangle (left figure), we see thate5 must be reversed
in order to have a closed loop, which is reflected by the inverted
projectorπ0

5 .

3.1. Hamiltonian formulation for VQE

The Grover-based algorithm turned out to be very efficient
and provided a certain speed-up w.r.t. classical strategies.
Although the success rate was perfect with a very reduced
number of shots, the rapid growth in the number of qubits
and the need of implementing depth circuits translates into a

large consumption of quantum resources, which are not
available in current devices. Thus, we decided to ex-
plore another strategy to identify DAGs: the minimization
of a Hamiltonian using Variational Quantum Eigensolvers
(VQE).

The first part of this strategy consisted in building a
Hamiltonian whose ground-state embodies all the DAGs of
a given graph. In order to do so, we rely on the adjacency
matrix. Explicitly, we start by fixing an arbitrary orientation
of all the edges of the graph; we denote byG0 = (E0, V )
this oriented graph. We defineei ≈ |0〉 (ei ≈ |1〉) if the di-
rection of the edgeei is the same (opposite) as inG0. Then,
we introduce the projector operator in a single edge,π

(0,1)
i ,

defined asπ0
i |ψ〉 = |ψ〉 andπ1

i |ψ〉 = 0 if ei is in the same
direction as inG0. With all of these, it is possible to write
the adjacency matrixA as a function ofπ operators and we
define the Hamiltonian as

HG0 =
MG0∑
n=1

tr(An) , (5)

with MG0 the maximal size of the cycles inG0. The ground-
state is composed by all DAGs and has energy 0. For in-
stance, if we consider a pizza or N3MLT topology, the Hamil-
tonian reads

HN3MLT = 4π0
0 π0

1 π0
2 π0

3 + 4π1
0 π1

1 π1
2 π1

3 + 3π1
0 π1

4 π0
5 + 5π0

1 π0
2 π0

3 π1
4 π0

5 + 3π0
0 π0

4 π1
5 + 5π1

1 π1
2 π1

3 π0
4 π1

5

+ 4π1
0 π1

1 π1
4 π0

6 + 4π0
2 π0

3 π1
4 π0

6 + 3π1
1 π1

5 π0
6 + 5π0

0 π0
2 π0

3 π1
5 π0

6 + 4π0
0 π0

1 π0
4 π1

6 + 4π1
2 π1

3 π0
4 π1

6

+ 3π0
1 π0

5 π1
6 + 5π1

0 π1
2 π1

3 π0
5 π1

6 + 5π1
0 π1

1 π1
2 π1

4 π0
7 + 3π0

3 π1
4 π0

7 + 4π1
1 π1

2 π1
5 π0

7 + 4π0
0 π0

3 π1
5 π0

7

+ 3π1
2 π1

6 π0
7 + 5π0

0 π0
1 π0

3 π1
6 π0

7 + 5π0
0 π0

1 π0
2 π0

4 π1
7 + 3π1

3 π0
4 π1

7 + 4π0
1 π0

2 π0
5 π1

7 + 4π1
0 π1

3 π0
5 π1

7

+ 3π0
2 π0

6 π1
7 + 5π1

0 π1
1 π1

3 π0
6 π1

7 , (6)

which is defined w.r.t. the initial orientation drawn in Fig. 2.
In that figure, we present the graphical description of two
concrete terms ofH, to better explain their meaning.

Once the Hamiltonian is defined, we proceed to mini-
mize it using a multi-run VQE strategy, which is an hybrid
classical-quantum algorithmiv. In the original VQE, we start
with an ansatz codified into a parameterized quantum circuit,
and we measure the expectation value of the Hamiltonian on
this ansatz. This feeds a classical optimizer which modifies
the value of the parameters and the measure is repeated. The
process is iterated till an approximation to the ground-state
is found. This procedure works very well for problems with
low-degeneration of the ground state. However, the identifi-
cation of DAGs implies solving a multiple-degenerated prob-
lem (i.e. there could be up to2E global minima), so we ex-
ecuted multiple runs of the VQE, collect the solutions found
and modify the Hamiltonian for the next run by adding pe-
nalization terms (to avoid re-finding the already detected so-
lutions). By means of this strategy, the success rate jumped

from O(4 %) in the naive VQE toO(90%) with the im-
proved multi-run VQE, as reported in Ref. [34] with a set of
benchmark topologies.

4. Conclusions and outlook

In this article, we discussed how to use the Loop-Tree Du-
ality (LTD) to cleverly rewrite Feynman integrals, switch-
ing from a Minkowski to a Euclidean integration domain.
We proved that the nested residues strategy leads to a man-
ifestly causal representation of multiloop scattering ampli-
tudes. This causal representation can be re-derived by-
passing the explicit calculation of the residues applying a set
of geometrical rules. In concrete, given a reduced Feynman
graph, we have to identify all the binary connected partitions
(in one-to-one correspondence with the causal thresholds)
and the associated directed acyclic graphs (DAGs). Then, the
set of DAGs isdressedwith the causal propagators{λr}, in
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such a way that only a certain subset ofcompatiblecausal
entangled thresholds remain. The result of this procedure
is Eq. (3), namely a master formula describing the causal
LTD representation of any multiloop multileg scattering am-
plitude.

Furthermore, it turned out that the geometrical formal-
ism is specially suited for translating the reconstruction of
causal representation into a problem of quantum computing.
In fact, we have tackled the identification of DAGs by using
Grover-based and multi-VQE algorithms, presenting proof-
of-concepts with a high success rate. This is a very first and
promising step towards a complete bootstrapping of causal
representations with realistic quantum algorithms. Further
developments in this direction (in particular, codifying the
geometrical selection rules within a Hamiltonian) will have
an important impact in the calculation of multiloop multileg

scattering amplitudes, potentially allowing to surpass the cur-
rent limitations of standard classical algorithms in quantum
field theories.
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Renteŕıa-Olivo (IFIC-Valencia), K. Jansen, A. Crippa,
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45. A. Pérez-Salinas, J. Cruz-Martinez, A. A. Alhajri and S. Car-
razza, Determining the proton content with a quantum com-
puter,Phys. Rev. D103 (2021) 034027,https://dx.doi.
org/10.1103/PhysRevD.103.034027

46. V. S. Ngairangbam, M. Spannowsky and M. Takeuchi,
Anomaly detection in high-energy physics using a quantum au-
toencoder,Phys. Rev. D105 (2022) 095004,https://dx.
doi.org/10.1103/PhysRevD.105.095004 .

Supl. Rev. Mex. Fis.4 021103

https://dx.doi.org/10.1007/JHEP10(2016)162�
https://dx.doi.org/10.1007/JHEP10(2016)162�
https://dx.doi.org/10.1007/JHEP06(2021)089�
https://dx.doi.org/10.1007/JHEP06(2021)089�
https://dx.doi.org/10.1007/JHEP12(2019)163�
https://dx.doi.org/10.1007/JHEP12(2019)163�
https://dx.doi.org/10.1103/PhysRevLett.124.211602�
https://dx.doi.org/10.1103/PhysRevLett.124.211602�
https://dx.doi.org/10.1007/JHEP01(2021)069�
https://dx.doi.org/10.1007/JHEP01(2021)069�
https://dx.doi.org/10.1007/JHEP02(2021)112�
https://dx.doi.org/10.1007/JHEP02(2021)112�
https://dx.doi.org/10.1007/JHEP04(2021)129�
https://dx.doi.org/10.1007/JHEP04(2021)129�
https://dx.doi.org/10.3390/sym14122571�
https://dx.doi.org/10.3390/sym14122571�
https://dx.doi.org/10.1103/PhysRevLett.122.111603�
https://dx.doi.org/10.1103/PhysRevLett.122.111603�
https://dx.doi.org/10.1103/PhysRevD.101.116014�
https://dx.doi.org/10.1103/PhysRevD.101.116014�
https://dx.doi.org/10.1007/JHEP04(2020)096�
https://dx.doi.org/10.1007/JHEP04(2020)096�
https://dx.doi.org/10.1103/PhysRevLett.123.151602�
https://dx.doi.org/10.1103/PhysRevLett.123.151602�
https://dx.doi.org/10.1007/JHEP04(2021)183�
https://dx.doi.org/10.1007/JHEP04(2021)183�
http://dx.doi.org/10.1140/epjc/s10052-021-09235-0�
http://dx.doi.org/10.1140/epjc/s10052-021-09235-0�
https://dx.doi.org/10.1103/PhysRevD.104.036014�
https://dx.doi.org/10.1103/PhysRevD.104.036014�
https://dx.doi.org/10.1103/PhysRevD.107.L051902�
https://dx.doi.org/10.1103/PhysRevD.107.L051902�
https://dx.doi.org/10.1007/JHEP05(2022)100�
https://dx.doi.org/10.1007/JHEP05(2022)100�
https://arxiv.org/abs/2210.13240�
https://arxiv.org/abs/2210.13240�
https://dx.doi.org/10.1063/1.1703676�
https://dx.doi.org/10.1063/1.1703676�
http://arxiv.org/abs/2109.07808�
https://dx.doi.org/10.1103/PhysRevD.101.094015�
https://dx.doi.org/10.1103/PhysRevD.101.094015�
https://arxiv.org/abs/2101.05618�
https://arxiv.org/abs/2101.05618�
https://arxiv.org/abs/2012.14514�
https://arxiv.org/abs/2012.14514�
https://dx.doi.org/10.1103/PhysRevD.106.036021�
https://dx.doi.org/10.1103/PhysRevD.106.036021�
https://arxiv.org/abs/2205.02814�
https://arxiv.org/abs/2205.02814�
https://arxiv.org/abs/2208.06750�
https://arxiv.org/abs/2208.06750�
https://dx.doi.org/10.1140/epjc/s10052-021-09674-9�
https://dx.doi.org/10.1140/epjc/s10052-021-09674-9�
https://dx.doi.org/10.1103/PhysRevD.103.034027�
https://dx.doi.org/10.1103/PhysRevD.103.034027�
https://dx.doi.org/10.1103/PhysRevD.105.095004�
https://dx.doi.org/10.1103/PhysRevD.105.095004�


GEOMETRICAL CAUSALITY: CASTING FEYNMAN INTEGRALS INTO QUANTUM ALGORITHMS 7

47. G. Agliardi, M. Grossi, M. Pellen and E. Prati, Quantum
integration of elementary particle processes,Phys. Lett. B
832 (2022) 137228,https://dx.doi.org/10.1016/
j.physletb.2022.137228

48. J. J. M. de Lejarza, M. Grossi, L. Cieri and G. Rodrigo,
Quantum Fourier Iterative Amplitude Estimation, https://
arxiv.org/abs/2305.01686 .

49. H. A. Chawdhry and M. Pellen,Quantum simulation of
colour in perturbative quantum chromodynamics, https://
arxiv.org/abs/2303.04818 .

50. L. K. Grover, Quantum computers can search rapidly by using

almost any transformation,Phys. Rev. Lett.80 (1998) 4329,
http://dx.doi.org/10.1103/PhysRevLett.80.
4329

51. L. K. Grover, Quantum mechanics helps in searching for a
needle in a haystack,Phys. Rev. Lett.79 (1997) 325,http:
//dx.doi.org/10.1103/PhysRevLett.79.325

52. J. Tilly et al., The Variational Quantum Eigensolver: A review
of methods and best practices,Phys. Rept.986 (2022) 1,
http://dx.doi.org/10.1016/j.physrep.2022.
08.003

Supl. Rev. Mex. Fis.4 021103

https://dx.doi.org/10.1016/j.physletb.2022.137228�
https://dx.doi.org/10.1016/j.physletb.2022.137228�
https://arxiv.org/abs/2305.01686�
https://arxiv.org/abs/2305.01686�
https://arxiv.org/abs/2303.04818�
https://arxiv.org/abs/2303.04818�
http://dx.doi.org/10.1103/PhysRevLett.80.4329�
http://dx.doi.org/10.1103/PhysRevLett.80.4329�
http://dx.doi.org/10.1103/PhysRevLett.79.325�
http://dx.doi.org/10.1103/PhysRevLett.79.325�
http://dx.doi.org/10.1016/j.physrep.2022.08.003�
http://dx.doi.org/10.1016/j.physrep.2022.08.003�

