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A. Ferńandez T́ellez
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We discuss the conditions for QGP formation under the Color String Percolation Model (CSPM). Since the observables in the percolation
theory are sensitive to the system size, we expect that the finite size effects make a relevant contribution to the estimation of the CSPM
phenomenology, such as the transition temperature or the center of mass energy needed for the QGP formation. We observe that pp collisions
(small systems) require around 20 times bigger center of mass energy than heavy ion collisions. Our results are consistent with the energy of
those experiments in which the QGP has been observed.
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1. Introduction

In high energy physics experiments, such as those performed
at RHIC [1–3] and LHC [4–6], two projectiles (protons or
heavy nuclei) moving at velocities close to the speed of light
collide. Moments before the collision, due to the Lorentz
contraction, these projectiles resemble two thin disks from
which color flux tubes emanate. On the transverse plane,
these objects can be modeled as randomly distributed disks
of radiusr0 ∼ 0.2− 0.3 fm, called color strings.

The fundamental interaction between the color strings is
given by their overlapping promoting the formation of clus-
ters in the transverse plane, in a similar picture as the two-
dimensional continuum percolation theory. As the center-
of-mass energy

√
s or the number of nucleons of the pro-

jectiles increases, the number of color strings in the sys-
tem raises until reaching a critical density, as we depicted in
Fig. 1. At this point, a giant cluster of color strings emerges,
as Fig. 1c) shown. In the percolation context, it is possi-
ble to associate the formation of the percolating cluster with
the quarks confined-unconfined state, called Quark-Gluon
Plasma (QGP), which has been experimentally observed in
AuAu collisions at RHIC and PbPb at LHC.

This phenomenon can be well described by the Color
String Percolation Model (CSPM) [7–10], which is the im-
plementation of the two-dimensional continuous percolation
model with disks and the theory of quantum chromodynam-
ics.

FIGURE 1. a) Isolated color strings, b) clusters formation, c)
emerge of the spanning cluster associated to the QGP formation.

The rest of this manuscript is organized as follows. In
Sec. 2, we discuss the observables defined in the CSPM, for
example, the multiplicity, the average of the transverse mo-
mentum squared, and temperature, among others. Section 3
contains the discussion of the simulation method and data
analysis. In Sec. 4, we discuss the finite size effects on the
CSPM. In particular, we derive the minimal center of mass
energy required for QGP formation as a function of the nu-
cleus number. We summarize our findings in a phase diagram
that describes the QGP formation together with different pp
and AA collision experiments. Finally, Sec. 5 contains our
conclusions.

2. Observables in the CSPM

The interaction of the color strings through their overlap
gives rise to several color sources with different color field
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strengths [11, 12], which must satisfy the vectorial sum of
color charges. For example, in a cluster ofn color strings, we
can identify the color source with areaS

(i)
n wherei counts the

number of strings that overlap there. Thus, in such region, the

color charge isQ(i)
n =

√
iQ1

(
S(i)

n

S1

)
because the individual

color strings may be arbitrarily oriented with respect to each
other. Note that the resulting color charge is lower than the
linear superposition of the color fieldsiQ1 [13–15]. Because
of that, it is expected a reduction in the multiplicity of the
particles produced, and an increase of the mean transverse
momentum due to an increase in the string tension [11, 12].
Therefore, for a cluster ofn color strings

µn =
√

nSn

S1
µ1, (1)

〈p2
T 〉 =

√
nS1

Sn
〈p2

T 〉1, (2)

where Sn is the area covered by the cluster. Notice that
Eqs. (1) and (2) are between the extreme cases of minimal
and maximum overlap [16]. This means that forn strings
touching only at their bordersSn = nS1, then the total
multiplicity and average transverse momentum squared are
µn = nµ1 and 〈p2

T 〉 = 〈p2
T 〉1, respectively. On the other

hand, when then strings totally overlapSn = S1, and hence
µn =

√
nµ1 and〈p2

T 〉 =
√

n〈p2
T 〉1. In any case, the multipli-

cation of both quantities can be understood as a conservation
law [17,18].

In the CSPM, it is assumed thatN color strings are
uniformly distributed in the transverse plane to the colli-
sion. In this way, the fluctuations of the string density
η = NS1/S are described by a Poisson distribution with
averageη. Therefore, in the thermodynamic limit, the frac-
tion of covered area by the color stringsSn/S corresponds
to [19,20] ∑

n=1

Poissonn = 1− e−η. (3)

Thus, by considering the fluctuations in the number of
color strings at a fixed value ofη, Eq.(1) weighted byµ1 be-
comes

µ

µ1
=
〈√n〉
S1

S = N
〈√n〉

η
, (4)

where〈√n〉/η is a damping factor on multiplicity between 0
and 1 [15,17]. Then, in the thermodynamic limit approxima-
tion, it is found

F (η) =
〈√n〉

η
=

√
1− e−η

η
. (5)

Since the purpose of this work is to measure the finite size
effects on the observables of the CSPM, we will hold the def-
inition F (η) =

√
φ(η)

η , whereφ(η) is the area covered by the
color strings [20].

Finally, through the color suppression factorF (η), it is
possible to estimate the multiplicity and the mean transverse

momentum, which in the CSPM are given by

µ = Nµ1F (η), (6)

〈p2
T 〉 =

〈p2
T 〉1

F (η)
, (7)

respectively.

2.1. Temperature in the CSPM

In the Color String Percolation Model, it is possible to de-
fine a temperature for the color string systems through the
Schwinger mechanism, which dictates the transverse mo-
mentum distribution, given by

dN

dp2
T

∼ e−πp2
T /x2

, (8)

where〈x2〉 is the mean tension string. In Ref. [17] it is as-
sumed that such tension fluctuates according to a Gaussian
distribution

G(x) =
1√

2π〈x2〉e
− x2

2〈x2〉 . (9)

The convolution of (8) with the Gaussian fluctuations trans-
forms the Schwinger mechanism into a thermal distribution
as follows

dN

dp2
T

∼ e−pT β , (10)

with β =
√

2π
〈x2〉 . Notice the similarity of (10) to the Boltz-

mann distribution, where we directly identifyT = 1/β as the
temperature of color string systems. This temperature can
be extracted from the analysis of the transverse momentum
spectra, but its fundamental role is to connect the CSPM with
experimental data.

Therefore, by calculating〈p2
T 〉 through the normalized

Schwinger mechanism and comparing with Eq. (7) it is pos-
sible to define a temperature

T =

√
〈p2

T 〉1
2F (η)

, (11)

for the CSPM that we can relate toη and the cluster forma-
tion.

3. Methodology

It is well-accepted that the emergence of the spanning clus-
ter of color strings marks the onset of the QGP formation
[8, 10, 21, 22]. Thus, it is necessary to analyze the behavior
of the CSPM observables at the percolation threshold, which
can be done by computer simulation. For this purpose, we
adopt the Mertens-Moore simulation scheme [23]. In our im-
plementation, disks are added one by one and uniformly ran-
domly placed on a square of sideL until the spanning cluster
emerges. At this step, the number of disks added is stored.
Using the data obtained from105 simulations, we compute
the probabilitiesfn andFL(n) =

∑n
k=1 fk of observing the
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emergence of the spanning cluster after adding exactly and at
mostn disks, respectively. Then, the percolation probability
PL(η) is estimated as following

PL(η) =
∞∑

n=0

FL(n)Poisson(λ)n, (12)

where Poisson distribution withλ = ηL2/πr2
0 describes the

spatial allocation of the disks’ centers and its fluctuations
when a system is filled with a fixed density. Notice that in
Eq. (12) the calculation ofn! for large values ofn can bring
numerical difficulties, so the quotientsλn/n! are replacing
by Poisson weightwn, which are estimated with the recur-
sive form discussed in Ref. [23].

Thus, percolation probability is rewritten as

PL(η) = e−λ

NmÃ¡x∑

n=NmÃn

FL(N)wn

/ NmÃ¡x∑

n=NmÃn

wn , (13)

where the upper and lower limit of summation has been
bounded by using the5σ criterion. It is observed that the
simulation data exhibit a sigmoid shape transition, which can
be fitted by the function

PL(η) =
1
2

(
1 + tanh

(
η − ηcL

∆L

))
, (14)

whereηcL is the estimated percolation threshold for a system
of sizeL, and∆L corresponds to the width of the transition
region in which the percolation probability goes from 0 to
1 [18, 20]. We found the following scaling relations forηcL

and∆L

∆L ∝ L−1/ν , (15)

ηcL − ηc ∝ L−2/ν , (16)

whereν = 4/3 is the critical exponent associated with the
length correlation. Notice that Eqs. (15) and (16) are in
agreement with those scaling relations reported in the lit-
erature for percolation systems [24]. Moreover, by fitting
Eq. (16) our estimation of the percolation threshold in the
thermodynamic limit isηc = 1.1279(1), which is in good
agreement with the most precise determination ofηc for
2D-continuum percolation systems of fully overlapped disks
[23].

The observables of interest in CSPM can be estimated
at ηcL by using Eq. (13), where its estimations after adding
exactn-color strings are required. To avoid divergence and
dependence on undetermined parameters on the multiplicity,
mean transverse momentum and temperature, it is convenient
to define the following quantities

M =
M

M1
= NF (η), (17)

P =
〈p2

T 〉
〈p2

T 〉1
=

1
F (η)

, (18)

T ∗ =
T (η)√
〈p2

T 〉1
=

1√
2F (η)

, (19)

TABLE I. Critical values and exponents of the scaling law (20) for
the observables of interest.

ObservableX Xc Y

η 1.1279(1) -1.5

φ 0.6757(7) -2

F 0.7742(1) -1.3

M 0.8731(6) -1.66

P 1.2917(2) -1.33

T ∗ 0.80365(8) -1.32

whereM is a dimensionless multiplicity density,P is a di-
mensionless mean transverse momentum andT ∗ is a dimen-
sionless temperature, respectively. In Eq. (17), M = µ/L2,
andM1 = µ1/L2 is a constant.

By analyzing the behavior of all the observables at the
percolation threshold as a function ofL, we found that they
scale in the forms of power-laws as follows

XcL −Xc ∝ LY , (20)

whereXcL is the estimation of the observable as a function
of L, Xc is the corresponding estimation in the thermody-
namic limit, andY is an exponent. In Table I, we summarize
the value of the parametersXc (determination of the criti-
cal value in the thermodynamic limit) and its corresponding
exponentY of Eq. (20) for each observable.

4. Results

4.1. Finite Size Effects

In the CSPM are expected finite size effects since simula-
tions on percolation theory depend on the system size. This
implies perceptible differences in the CSPM observables for
pp collisions than AA ones. To describe a symmetric central
collision in terms of the model we enclose the impact surface
S in a square of side

L =
RA

r0
=

A
1/3
M r∗0
r0

, (21)

whereRA is the atomic radius,AM the nucleon number, and
r∗0 = 1.25 fm a constant. Then, by substituting Eq.(21) in
the scaling relation (20), the observables can be related to a
specific projectiles throughXcL − Xc ∝ 5A

Y/3
M . In Fig. 2

we show the estimations of the transition temperatureT ∗ as-
sociated to the QGP formation for pp and AA collisions. No-
tice thatT ∗ is higher for small systems, which implies higher
center-of-mass energy

√
s.
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FIGURE 2. Dimensionless transition temperature for pp and AA
collisions. Figures are simulation data.

4.2. String density and center-of-mass energy

It is possible to relateη and
√

s for a particular system by
determining the number of produced color strings in the col-
lision [25], which can be rewritten as a filling factor by mul-
tiplying by the ratio between the area of a single string and
the surface of the transverse area. Thus, we obtain [26]

ηpp(
√

s) =
π

25

[
2 + 4

(
r0

Rp

)2 (√
s

mp

)2λ
]

, (22)

for pp collisions, and

ηAA(
√

s) = ηpp(
√

s)Aα(
√

s)
M , (23)

for AA collisions, with

α(
√

s) =
1
3

[
1− 1

1 + ln(
√

s/s0 + 1)

]
, (24)

where Rp is the proton radius,mp the proton mass, and√
s0 = 245(29) GeV found in the fit of experimental data

[25,26].
The minimal center-of-mass energy required for QGP

formation is estimated by solving the equationηAA = ηcL

since the onset of the QGP formation is associated with the
emergence of the spanning cluster. By usingηcL instead of
ηc, we assure to take into account the finite size effects on the
percolation threshold. Figure 3 we show our results on the
estimation of the minimal center of mass required for QGP
formation as a function of the nucleon number (solid line).
We also plot the corresponding estimation whenηAA = ηc,
i.e., without considering the finite size effects. We found rel-
evant deviation for small systems as pp collision, where the
ratio is around 0.5. However, this difference vanishes asAM

increases because they correspond to large percolating sys-
tems.

FIGURE 3. Phase diagram of the Quark-Gluon Plasma formation,
where figures correspond to collisions at different center-of-mass
energies.

4.3. QGP phase diagram

The most important result presented in this work is the QGP
phase diagram in the space parameters

√
s - AM , where√

s = 200 GeV is the RHIC energy. In Fig. 3 solid line rep-
resents the critical curve for minimal center-of-mass energy
when finite size effects are taking account, splitting the re-
gions where QGP may (red shaded region) or may not (blue
shaded region) be observed. Dashed line correspond to the√

s minimal values when we assume that the spanning clus-
ter of color strings in each collision emerges at the perco-
lation threshold in the thermodynamic limitηc. Purple and
green regions are related to the errors in such estimations.

Notice that the obtained estimations are consistent with
the data experiment, in particular for AuAu (

√
s = 200 GeV)

and PbPb (
√

s = 2.76 TeV) collisions at RHIC and LHC re-
spectively, in which QGP signatures has been affirmed [27].
Also, pp collision performed at

√
s = 5.02 TeV in LHC is in

agreement with our estimation
√

scL = 3.7 TeV.

5. Conclusions

The Color String Percolation Model exhibits finite size ef-
fects in its observables that need to be taken into account,
and that can be expressed in terms of the nucleon number
AM . In particular, the transition temperature associated with
the QGP formation is higher for small systems than for large
ones. This implies that small systems like pp collisions re-
quire higher energy or higher multiplicity. Notice that our
estimations of minimal

√
s for QGP formation are consistent

with those reported in the literature.
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