Study of cLFV with $\ell_i\ell_j\gamma\gamma$ effective vertex

F. Fortuna

Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, 07000, Ciudad de México, México.

Received 15 May 2023; accepted 19 June 2023

In this work we analyze cLFV processes using a low-energy EFT that induces the effective interaction between two charged leptons of different flavor and two photons. We compute $\ell_i \rightarrow \ell_j\gamma$, $\ell_i \rightarrow \ell_j\gamma\gamma$ decays and $\ell_i \rightarrow \ell_j$ conversion in nuclei. We derived indirect upper limits on the double photon decays, which turned out to be below current experimental bounds. Our prediction for $\ell \rightarrow \tau$ conversion in nuclei is below the expected sensitivity of the NA64 experiment.

Keywords: Charged lepton flavor violation; effective theory.

DOI: https://doi.org/10.31349/SuplRevMexFis.4.021111

1. Introduction

In the SM, lepton flavor is conserved (which also holds in its minimally extended version, at the tree level, for the charged-lepton sector), therefore, any measurable signal of a process with lepton flavor violation in the charged sector (cLFV) would be a sign of new physics.

In this work we analyze the $\ell_i\ell_j\gamma\gamma$ effective interactions, in particular we study the cLFV decays of leptons to two photons, $\ell_i \rightarrow \ell_j\gamma\gamma$ [1–3], and consider its theoretical correlation with the $\ell_i \rightarrow \ell_j\gamma$ decays, which have been explored in more detail, both theoretically and experimentally than the former processes, specially decays involving the $\tau$ lepton [4–8].

In Table I, we show the current upper limits from direct experimental searches for both single and double photon decays. Notice that the upper bounds for the single photon processes are several orders of magnitude more stringent than for the double photon processes, and this difference is even larger in the $\tau$ sector. In fact, no direct experimental search exists for $\tau \rightarrow e\gamma\gamma$.

Any new physics scenario generating $\ell_i \rightarrow \ell_j\gamma\gamma$ would also generate a (model-dependent) contribution to $\ell_i \rightarrow \ell_j\gamma$ at the loop level. We analyzed this correlation within an EFT framework and derive general, model-independent indirect limits on the $\ell_i \rightarrow \ell_j\gamma\gamma$ decays, which turn out to be below current experimental bounds.

On the other hand, in the literature there are plenty of models proposed to describe the cLFV processes. If cLFV is discovered, observations or experimental bounds from multiple independent processes would be helpful to discriminate among those models.

A well-motivated scenario to study cLFV interactions is the $\ell_i \rightarrow \ell_j$ conversion in nuclei. Currently the strongest limit on $\mu \rightarrow e$ conversion in nuclei was set by Sindrum II [14]:

$$B^\text{Au}_{\mu e} = \frac{\Gamma(\mu^-\text{Au} \rightarrow e^-\text{Au})}{\Gamma_{\text{capture}}(\mu^-\text{Au})} < 7 \times 10^{-13}, \ 90\%\text{C.L.}$$

In general, cLFV processes involving the $\tau$ lepton, imply a greater experimental challenge. In fact, there are still no experimental limits for nuclei transitions involving $\tau$’s; however, at the CERN SPS, the NA64 experiment plans a search for $\ell \rightarrow \tau$ conversion in nuclei [15]. The conversion is expected to occur by deep inelastic scattering (DIS) of the lepton on the nucleus, as shown in Fig. 1. Using the stringent limits that we derived from $\ell_i \rightarrow \ell_j\gamma\gamma$, we compute upper bounds on the $\ell_i \rightarrow \ell_j$ transitions in nuclei with an EFT approach.

This work is organized as follows: in Sec. 2 we present the Lagrangian that we employ [2]. Then, in Sec. 3 we study the correlation between the single and double photon decays, and derived indirect limits on the latter. After that, in Secs. 4 and 5 we compute $\ell \rightarrow \tau$ and $\mu \rightarrow e$ conversion in nuclei, respectively. Finally, we give our conclusions in Sec. 6.

![Deep inelastic scattering of a lepton (l) on a hadron (h).](image)

**TABLE I.** Experimental upper bounds on the rates of the $\ell_i \rightarrow \ell_j\gamma(\gamma)$ decays.

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>Current upper limit on BR (90%CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu \rightarrow e\gamma$</td>
<td>$4.2 \times 10^{-13}$ MEG (2016) [9]</td>
</tr>
<tr>
<td>$\mu \rightarrow e\gamma\gamma$</td>
<td>$7.2 \times 10^{-11}$ Crystal Box (1986) [10]</td>
</tr>
<tr>
<td>$\tau \rightarrow e\gamma$</td>
<td>$3.3 \times 10^{-8}$ BaBar (2010) [11]</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu\gamma$</td>
<td>$4.2 \times 10^{-8}$ Belle (2021) [12]</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu\gamma\gamma$</td>
<td>$1.5 \times 10^{-4}$ ATLAS (2017) [13]</td>
</tr>
</tbody>
</table>
2. Effective operators

The effective $\ell_i \ell_j \gamma \gamma$ vertex is generated by the following low-energy, dimension-7 operators [2]

$$\mathcal{L}_{\text{int}} = \left( G_{SR}^{ij} \bar{\ell}_L \ell_R \right) + G_{SL}^{ij} \bar{\ell}_L \ell_L \right) F_{\mu\nu}$$

and using the experimental upper bounds on $\ell_i \rightarrow \ell_j \gamma$ from Table I, we derived indirect upper limits on $\ell_i \rightarrow \ell_j \gamma$ [1]:

$$\Gamma(\ell_i \rightarrow \ell_j \gamma) = \frac{m_i^3}{4\pi} \left( |D_R^{ij}|^2 + |D_L^{ij}|^2 \right) \lambda \left( \frac{E_{\text{cut}}}{m_i} \right),$$

with $E_{\text{cut}}$ an energy cut-off introduced to regularize the collinear and infrared divergences in the rate, and

$$\lambda(x) = \alpha m_i^2 + 6 \log^2 2 + 21 \log(2) + 6 \log(x) \log(4x) + 18 \log(2) + 6 \log(2) - 29$$

$$+ O(x^3).$$

We may again find a correlation between the rates in Eqs. (8) and (9).

$$\Gamma(\ell_i \rightarrow \ell_j \gamma) = \frac{\alpha m_i^3}{12\pi} \lambda \left( \frac{E_{\text{cut}}}{m_i} \right) \Gamma(\ell_i \rightarrow \ell_j \gamma).$$

Imposing $E_{\text{cut}} = 7\,50$ MeV for $\mu (\tau)$ decays, and using the upper limits on the rates for $\ell_i \rightarrow \ell_j \gamma$, we found the following indirect bounds:

$$\text{BR}(\mu \rightarrow e\gamma) < 2 \times 10^{-16},$$

$$\text{BR}(\tau \rightarrow e\gamma) < 8 \times 10^{-11},$$

$$\text{BR}(\tau \rightarrow \mu\gamma) < 1 \times 10^{-10}.$$
is favored when dimension-7 operators dominate, while it is very suppressed when the leading contribution is due to dimension-5 operators.

Notice that our indirect upper limits are significantly more stringent than the current experimental bounds (see Table I), regardless of the underlying physics generating the process $\ell_i \rightarrow \ell_j \gamma \gamma$.

Specifically, focusing on our indirect limits from dimension-7 operators, the upper bound on $\tau \rightarrow \mu \gamma \gamma$ is about four orders of magnitude stronger than the experimental bound used in the Crystal Box detector.

We want to highlight that our results in Eq. (7) show that $\tau \rightarrow \ell \gamma \gamma$ decays may be at reach of future experiments [16] and therefore motivate a dedicated experimental search. Also, future foreseeable sensitivities of Belle II searching for $\tau \rightarrow \ell \gamma$ and MEG II for $\mu \rightarrow e \gamma$ will improve our indirect bounds by about an order of magnitude.

Belle II might reach a sensitivity of $O(10^{-9})$ for the branching ratios $\tau \rightarrow \ell \gamma \gamma$, assuming that it could achieve the same sensitivity for single and double photon processes (as occurred for $\mu$ decays in the Crystal Box Detector [17]). In this case, Belle II will probe unexplored parameter space of the dimension-7 operators, and could possibly observe the decay $\tau \rightarrow \ell \gamma \gamma$, finding evidence of CLFV.

Directly from Eq. (5), using the experimental limits on $\ell_i \rightarrow \ell_j \gamma$, we can derive limits on the $G_{ij}$ effective couplings that we will use in the following:

$$|G_{\tau e}| \leq 8.4 \times 10^{-9} \left[1 + 0.25 \log \frac{\Lambda}{100 \ GeV}\right]^{-1} \ GeV^{-3},$$

$$|G_{\tau \mu}| \leq 9.5 \times 10^{-9} \left[1 + 0.25 \log \frac{\Lambda}{100 \ GeV}\right]^{-1} \ GeV^{-3},$$

$$|G_{\mu e}| \leq 1.2 \times 10^{-10} \left[1 + 0.15 \log \frac{\Lambda}{100 \ GeV}\right]^{-1} \ GeV^{-3}.$$  

$$\tag{13}$$

4. $\ell \rightarrow \tau$ conversion in nuclei

In the $\ell_i \rightarrow \tau$ experiments an electron or muon beam hits a fixed-target nucleus, if the beam energy is high enough, the leptons interact with the partons, i.e., quarks and gluons, by breaking the hadronic structure of the nucleons within the nucleus [15].

We will focus on inclusive processes, i.e., $\ell_i + N(A,Z) \rightarrow \tau + X$, whose products of interaction are a $\tau$ lepton plus any hadrons, and where we do not have information about $X$.

The low-energy non-perturbative QCD effects heavily influence the dynamics of the interacting parton living in the hadronic environment of the nucleus. This non-perturbative behavior is encoded in the so-called parton distribution functions (PDFs). We are interested in calculating the total cross section of the aforementioned process, and using QCD factorization theorems, we can obtain it by computing the convolution of the non-perturbative PDFs ($f$) with the perturbative cross-section ($\hat{\sigma}$)

$$\sigma_{\ell \rightarrow \tau} = f \otimes \hat{\sigma}. \tag{14}$$

Given that we compute the perturbative cross-section within the EFT framework, this calculation is valid up to a certain scale, the characteristic energy scale, usually taken as $Q^2 = -q^2$, being $q^2$ the transferred momentum of the system. Both the PDFs and the perturbative cross-sections are functions of $Q^2$ and, in addition, the PDFs are also characterized through the Lorentz invariant quantity, $\xi$, the fraction of the nucleus momentum carried by the interacting parton. Therefore, we express the PDFs as well as the perturbative cross-section as functions of the two discussed invariant quantities

$$\sigma_{\ell \rightarrow \tau} = \hat{\sigma}(\xi, Q^2) \otimes f(\xi, Q^2). \tag{15}$$

The PDFs dependence on the momentum fraction $\xi$ is directly extracted from the data, while to describe their evolution in terms of $Q^2$, the DGLAP evolution equations are used [18–20]. Since, in our case, we are dealing with heavy nuclei instead of free nucleons, it is more suitable to use the nuclear parton distribution functions (nPDFs) to describe the $\ell \rightarrow \tau$ conversion in nuclei. For this calculation we use the nCTEQ15-np fit of the nPDFs, provided by the group around the nCTEQ15 project [21], and incorporated within the ManeParse Mathematica package [22].

Using the dimension-7 operators in the Lagrangian in Eq. (1), we compute the following contributions to the perturbative cross-section:

(a) $\ell_i q \rightarrow \tau q$ process (see Fig. 3), that involves a loop with a quark and two photons.

(b) $\ell_i q \rightarrow \tau q\bar{q}$, that is the same process as in (a), but with antiquarks. The perturbative cross sections are different than those involving quarks, and also the non-perturbative behavior of antiquarks inside the nucleons is not the same as their opposite-charged partners.

There is a possible additional contribution to our cross section of interest, by the $\ell_i q \rightarrow \tau q$: starting from the diagram in Fig. 18, if we close the quark lines in an additional loop and we couple the initial and final gluons to it. However, it would be generated at two loop level by our dimension-7 operators and therefore we do not include it.

Considering the previously mentioned contributions to the perturbative cross-section, we derived the following matrix element squared, as a function of $Q^2$ and $\xi$.
where $\Gamma(\xi, Q^2)$ and $\tilde{\Gamma}(\xi, Q^2)$ are functions resulting from the calculation of the loops (see Fig. 3), and are shown Ref. [23].

Analogous expressions are obtained for the process with antiquarks except that the corresponding "$\Gamma(\xi, Q^2)$" functions are different. The interference term between operators with and without dual tensor vanishes, while we neglect the interference between left and right operators because is chirality suppressed.

From the matrix element squared in Eq. (16), the perturbative unpolarized differential cross sections can be computed as a function of $\xi$ and $Q^2$,

$$\frac{d\sigma(\ell q_i(\xi P) \to \tau q_i)}{d\xi dQ^2} = \frac{1}{16\pi \lambda(s(\xi), m_{q_i}^2, m_{\ell}^2)} |M_{qq}(\xi, Q^2)|^2,$$

$$\frac{d\sigma(\ell \bar{q}_j(\xi P) \to \tau \bar{q}_j)}{d\xi dQ^2} = \frac{1}{16\pi \lambda(s(\xi), m_{q_j}^2, m_{\ell}^2)} |M_{q\bar{q}}(\xi, Q^2)|^2,$$

(17)

where $i$ labels the quark flavor, $p_i = \xi P$ is the momentum of the interacting parton, $P$ the nucleus total momentum, and we have defined $m_q^2 = \xi^2 M^2$, being $M$ the nucleus mass; $\lambda(s(\xi), m_{q_i}^2, m_{\ell}^2)$ stands for the usual Källén function. Finally, at leading order (LO) in the QCD formalism, the total cross-section reads

$$\sigma(\ell N(P) \to \tau X) = \sum_i \int_{Q^2(\xi)} d\xi dQ^2 \left\{ \frac{d\sigma(\ell q_i(\xi P) \to \tau q_i)}{d\xi dQ^2} f_{q_i}(\xi, Q^2) + \frac{d\sigma(\ell \bar{q}_j(\xi P) \to \tau \bar{q}_j)}{d\xi dQ^2} f_{\bar{q}_j}(\xi, Q^2) \right\},$$

with $f_{q_i}(\xi, Q^2)$ and $f_{\bar{q}_j}(\xi, Q^2)$ the quark and antiquark nPDFs, respectively. In appendix E of Ref. [24] the integration limits can be found.

At this point, we can compute the ratio between the conversion probabilities

$$R_{\tau\ell} = \frac{\sigma(\ell N \to \tau X)}{\sigma(\ell N \to \ell X)},$$

(18)

that is our quantity of interest since we can compare our prediction with the expected sensitivity of the NA64 experiment, of $R_{\tau\ell} \sim [10^{-13}, 10^{-12}]$ [15]. The denominator in Eq. (18) is the lepton bremsstrahlung on nuclei, that is the dominant contribution to the inclusive $\ell + N$ process, and we took it from Ref. [15].

We set three benchmark scenarios for our numerical analysis

\begin{enumerate}
  \item $|G_{\tau\ell}|^2 = |G_{SR}^\ell|^2 + |G_{SL}^\ell|^2 = |\tilde{G}_{SR}^\ell|^2 + |\tilde{G}_{SL}^\ell|^2$,
  \item $|G_{\tau\ell}|^2 = |G_{SR}^\ell|^2 + |G_{SL}^\ell|^2; \tilde{G}_{SR}^\ell = \tilde{G}_{SL}^\ell = 0$,
  \item $|G_{\tau\ell}|^2 = |\tilde{G}_{SR}^\ell|^2 + |\tilde{G}_{SL}^\ell|^2; G_{SR}^\ell = G_{SL}^\ell = 0$,
\end{enumerate}

(19)

taking the upper limit on $|G_{\tau\ell}|^2$ from Eqs. (13).}

According to the prospects of the NA64 experiment [15], we use $E_\nu = 100$ GeV and $E_\mu = 150$ GeV in our analysis for the energies of the incident lepton beams, as well as for specific nuclei, Fe(56,26) and Pb(208,82).

We evaluate the integral in Eq. (18) in the three benchmark scenarios for $|G_{\tau\ell}|^2$ described above to obtain the $R_{\tau\ell}$ ratio in the different channels explored. Our results are shown in Fig. 4, and are compared with the expected sensitivity of the NA64 experiment, which is displayed as a gray area.

In fact, we also want to highlight the impact on the ratios $R_{\tau\ell}$ due to the stringent indirect limits on $|G_{\tau\ell}|$ derived in Eq. (13). If we compute limits on these effective couplings $|G_{\tau\ell}|$ directly from the tree level $\ell_i \to \ell_j \gamma\gamma$ decays —whose decay rates are shown in Eq. (3)—, and using the direct limits in Table I, we obtain the ratios $R_{\tau\ell}$ displayed in Fig. 5 —where the expected sensitivity of the NA64 experiment is also shown.

We see in Fig. 5 that using the direct limits on the $\ell_i \to \ell_j \gamma\gamma$ one might naively expect that the $\mu$Fe $\to \tau X$ and $\mu$Pb $\to \tau X$ could be within the reach of the NA64 experiment. However, we see in Fig. 4 that this is not the case,
because our predicted ratios $R_{\tau\ell}$ are several orders of magnitude below the expected sensitivity of the experiment.

Notice that the muon channels have larger predicted ratios $R_{\tau\ell}$ than the electron channels. In Ref. [24] Husek et al. also obtained larger results for $\mu \to \tau$ than for $e \to \tau$ transitions, and they explained that the reason is that the normalization channel (the bremsstrahlung cross section) in the ratio $R_{\tau\ell}$ is much smaller for muons than for electrons.

However, we obtain better results for the $\mu \to \tau$ conversion in lead than in iron, while Husek et al. found the opposite. In case of an eventual observation, these different results could help to probe the type of new physics inducing these transitions.

Using SMEFT would be more appropriate to study $\ell \to \tau$ conversions in nuclei, where our low-energy effective operators become $D = 8$ operators (to generate $SU(2) \times U(1)$ invariants), and there would be additional dimension-8 contributions. However, operators involving $Z$ bosons instead of photons would be negligible with respect to the di-photon ones. Besides, we do not expect the (soft) running of the Wilson coefficient to alter our results. On the other hand, we see from Fig. 4 that our predictions for $\ell \to \tau$ conversion in nuclei are not at reach of future foreseen experiments and the complete calculation of these processes with dimension-8 operators is beyond our scope.

5. $\mu \to e$ conversion in nuclei

Davidson et al. [3] analyzed $\mu \to e$ conversions using the dimension-7 operators. They found that the limit on $|G_{\mu e}|$ from $\mu \to e$ conversion in nuclei is about one order of magnitude more stringent than the limit from the $\mu \to e\gamma\gamma$ decay.

However, the indirect limits we derived in Sec. 3 from $\ell_i \to \ell_j\gamma\gamma$, are currently the most stringent bounds on the $|G_{ij}|$ effective couplings. In this section we will use our constraint on $|G_{\mu e}|$, in Eq. (13), to compute upper limits on $\mu \to e$ conversion in nuclei.

The $\mu \to e$ conversion in nuclei is explained in detail in Ref. [3]. Here we will only sketch the main contributions. Notice that the $F_{\mu\nu}F^{\mu\nu}$ operators are proportional to $\vec{E} \cdot \vec{B}$, which is negligibly small in the nucleus, and therefore we will neglect them in the calculation.

In Ref. [3], the authors explain that the $\mu \to e$ conversion in nuclei has two main contributions. First the interaction of the leptons with the classical electromagnetic field, that arises at momentum transfers $\sim m_\mu$ for a contact $\mu e\gamma\gamma$ interaction. Secondly, there is a surprisingly large "short distance" loop interaction of individual protons with two photons; stemming from the loop mixing of the $\bar{\nu}_\mu F_{\mu\nu}F^{\mu\nu}$ operator into the scalar proton operator, $O_{S,X} = (\bar{e}P_X\mu)(\bar{p}p)$ (X labeling the chirality). The naive expectation of a loop suppression is overcompensated by energy ratios, numerical factors and overlap integrals. Thus, we have [3]

$$\frac{BR(\mu A \to e A)}{\Gamma_{\text{cap}}|G_{\mu e}|^2} = \frac{4e^4}{\Gamma_{\text{cap}}} \left[ \frac{m_\mu F_A + 18\alpha m_p S^{(\mu)}_A}{\pi} \right]^2.$$  

(20)

where $S_A^{(N)}$ and $F_A$ are overlap integrals that can be found in [3,25], respectively, and $\Gamma_{\text{cap}}$ is the muon capture rate on nucleus A [26].

Using the upper limit derived for $|G_{\mu e}|$, in Eq. (13), and assuming conservatively that $A = 100$ GeV, we find upper limits on the $BR(\mu A \to e A)$, with $A =^{197}\text{Au}$, $^{27}\text{Al}$

$$\text{BR}(\mu \text{Au} \to e \text{Au}) \leq 2.7 \times 10^{-13} ,$$

$$\text{BR}(\mu \text{Al} \to e \text{Al}) \leq 6.9 \times 10^{-13}.$$  

(21)

Comparing the upper limit on $BR(\mu \text{Au} \to e \text{Au})$ by the SINDRUM II experiment [14] with the value obtained in Eq. (21), we see that the latter is slightly stronger.
In Eq. (21) we add our prediction for the $\mu \rightarrow e$ conversion in aluminum since the upcoming Mu2e [27] and COMET [28] experiments plan to start with an aluminum target.

6. Discussion and conclusions

In this work we first derive indirect upper limits on the $\ell \to \tau \gamma \gamma$ decays. We show that, in scenarios where the leading contribution is generated by dimension-7 operators, the rare $\ell_i \to \ell_j \gamma \gamma$ decays can be enhanced and even been within the reach of the Belle II experiment.

Concerning the $\mu - e$ sector, any improvement on $\mu \to e$ conversion in nuclei or $\mu \to e\gamma$, will enhance the sensitivity to the effective coupling $G_{\mu e}$.

The target sensitivity of the MEG II experiment for $\mu \to e\gamma$ will be $O(10^{-11})$ [29], and in the long term, it is widely expected that $\mu \to e$ conversion in nuclei experiments will reach sensitivities $O(10^{-18})$ [27, 30, 31] or lower. Therefore, in the future the more stringent constraints on the low-energy dimension-7 operators, in the $\mu - e$ sector, will be provided by $\mu \to e$ conversion in nuclei.

Concerning the $\tau$ sector, by comparing Figs. 4 and 5 we see that the big improvement in $|G_{\tau \ell}|$ from $\tau \to \ell\gamma\gamma$ precludes the early observation by the NA64 experiment of $\ell_i \ell_j \gamma \gamma$ effective interactions. However, future foreseen experiments such as the electron-ion collider (EIC) [32], the muon collider [33], circular colliders as LHeC [34] or the ILC [35] might search for this conversion in addition to the NA64 experiment. Another way to probe our effective di-photon vertex, $\ell_i \ell_j \gamma \gamma$, is

\begin{align*}
\Gamma_{qq}(\xi, Q^2) &= \frac{1}{64\pi} |F1(\xi, Q^2)|^2, \\
\hat{\Gamma}_{qq}(\xi, Q^2) &= \frac{1}{64\pi} |F2(\xi, Q^2)|^2, \\
\Gamma_{q\bar{q}}(\xi, Q^2) &= \frac{1}{64\pi} |F3(\xi, Q^2)|^2, \\
\hat{\Gamma}_{q\bar{q}}(\xi, Q^2) &= \frac{1}{64\pi} |F4(\xi, Q^2)|^2, \\
\end{align*}

Appendix

A. Functions from the loops evaluation in $\ell \to \tau$ conversion in nuclei

Here we display the relevant functions that appear in the matrix element squared in Eq. (16), which result from the evaluation of the loop in Fig. 5.

In particular, we define

\begin{align*}
F1 &= 2[m(Q^2) + M\xi]B_0(M^2\xi^2; m(Q^2), 0) + 2[m(Q^2) + m_i]B_0(m_i^2; m(Q^2), 0) \\
&\quad + 2[m(Q^2) - m_i]B_0(-Q^2; 0, 0) + 2m\xi B_1(M^2\xi^2; m(Q^2), 0) + 2[M\xi - m_i]B_1(-Q^2; 0, 0) \\
&\quad + 2m_i B_1(m_i^2; m(Q^2), 0) + 2[m^3(Q^2) + Mm_i m(Q^2)\xi - M^2m_i^2\xi + m(Q^2)Q^2 - Mm_i^2]\xi \\
C_0(m_i^2, -Q^2, M^2\xi^2; m(Q^2), 0, 0) + 2[m^3(Q^2) - m_i^2 + m_i m(Q^2) - m_i M\xi - M^2\xi^2 + Mm(Q^2)\xi] \\
&\quad (M\xi C_2(m_i^2, -Q^2, M^2\xi^2; m(Q^2), 0, 0) + m_i C_1(m_i^2, -Q^2, M^2\xi^2; m(Q^2), 0, 0)) \\
&\quad + m_i - 4m(Q^2) + M\xi. \\
F2 &= -2i\left(2[M\xi + m(Q^2)]B_0(M^2\xi^2; m(Q^2), 0) + 2[m_i + m(Q^2)]B_0(m_i^2; m(Q^2), 0) \\
&\quad + 2[M\xi + m_i - 2m(Q^2)]B_0(-Q^2; 0, 0) + 2M\xi B_1(M^2\xi^2; m(Q^2), 0) + 2m_i B_1(m_i^2; m(Q^2), 0) \\
&\quad + 2[m_i m^2(Q^2) - 2m^3(Q^2) + Mm_i m(Q^2)\xi - M^2m_i^2\xi + 2Mm_i m(Q^2) + m(Q^2)Q^2] \\
&\quad C_0(m_i^2, -Q^2, M^2\xi^2; m(Q^2), 0, 0) + 2[m_i^3 - 2m_i m(Q^2) - M^2\xi^2 + 2Mm(Q^2)\xi] \\
&\quad (m_i C_1(m_i^2, -Q^2, M^2\xi^2; m(Q^2), 0, 0) - M\xi C_2(m_i^2, -Q^2, M^2\xi^2; m(Q^2), 0, 0)) - 3(m_i + M\xi)\right). \\
\end{align*}
Roig for a fruitful collaboration and insightful discussions.

The function \( m(Q^2) \) represents the running of the quark mass in the loop. We used the RunDec package [25] for the computation of the quark masses at different energy scales. The standard notation for the Passarino-Veltman loop functions is employed.

We use Package-X [30] to analytically evaluate the loop integrals, and the CollierLink extension—that uses the COLLIER library [40]—to numerically evaluate the Passarino-Veltman functions.

### Acknowledgements

F. F. is grateful to Conacyt for funding. It is my pleasure to thank Alejandro Ibarra, Xabier Marcano, Marcela Marín and Pablo Roig for a fruitful collaboration and insightful discussions.

---

1. The running of these Wilson coefficients between the invariant mass of the nuclei conversions and the decaying lepton mass scale, that corresponds to their determination in Eqs. (13), is neglected. This small effect will not change our results and conclusions.

2. The validity of our EFT in these processes is addressed at the end of this section.

3. F. Fortuna et al., Indirect upper limits on \( \ell \rightarrow \ell \gamma \gamma \) from \( \ell \rightarrow \ell \gamma \), Phys. Rev. D 107 (2023) 015027, https://doi.org/10.1103/PhysRevD.107.015027

4. J. D. Bowman et al., New Upper Limit for \( \mu \rightarrow e \gamma \gamma \), Phys. Rev. Lett. 41 (1978) 442, https://doi.org/10.1103/PhysRevLett.41.442

5. S. Davidson et al., Probing \( \mu \rightarrow e \gamma \gamma \) contact interactions with \( \mu \rightarrow e \) conversion, Phys. Rev. D 102 (2020) 115043, https://doi.org/10.1103/PhysRevD.102.115043


8. J. I. Aranda et al., Higgs mediated lepton flavor violating tau decays \( \tau \rightarrow \mu \gamma \) and \( \tau \rightarrow \mu \gamma \gamma \) in effective theories, Phys. Rev. D 78 (2008) 017302, https://link.aps.org/doi/10.1103/PhysRevD.78.017302


10. D. A. Bryman, S. Ito, and R. Shrock, Upper limits on branching ratios of the lepton-flavor-violating decays \( \tau \rightarrow \ell \gamma \gamma \) and \( \tau \rightarrow \ell X \), Phys. Rev. D 104 (2021) 075032, https://doi.org/10.1103/PhysRevD.104.075032

11. A. M. Baldini et al., Search for the lepton flavour violating decay \( \mu^+ \rightarrow e^+ \gamma \) with the full dataset of the MEG experi-

10. D. Grosnick et al., Search for the Rare Decay $\mu^+ \rightarrow e^+\gamma\gamma$, Phys. Rev. Lett. 57 (1986) 3241, https://doi.org/10.1103/PhysRevLett.57.3241

11. B. Aubert et al., Searches for Lepton Flavor Violation in the Decays $\tau^+ \rightarrow e^+\gamma$ and $\tau^+ \rightarrow m_1^+\gamma$, Phys. Rev. Lett. 104 (2010) 021802, https://link.aps.org/doi/10.1103/PhysRevLett.104.021802

12. A. Abdesselam et al., Search for lepton-flavor-violating taulepton decays to $\ell\gamma$ at Belle, JHEP 10 (2021) 19, https://doi.org/10.1007/JHEP10(2021)019


Supl. Rev. Mex. Fis. 4 021111
