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cDepartamento de F́ısica Fundamental e IUFFyM, Universidad de Salamanca,

37008 Salamanca, Spain.
dEscuela de Ciencias, Ingenierı́a y Disẽno, Universidad Europea de Valencia,
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High Energy collider experiments are moving to the highest precision frontier quickly. The predictions of observables are based on the
factorization formula, which helps to connect small to large distances. These predictions can be contrasted with experimental measurements
and the success of this phenomenological approach is based on the correct description of nature. The application of the method to proton-
proton colliders brings new challenges due to the proton structure and the detectors efficiency on reconstructing hadrons. Furthermore, since
the non-perturbative distribution functions takes an important role to describe the experimental distributions, the presence of them makes the
information of the partons diluted. At Leading Order (LO) in perturbative calculations, the momentum fractions involved in hard scattering
processes are known exactly in terms of kinematical variables of initial and final states hadrons. However, at Next-to-Leading Order (NLO)
and beyond, a closed analytical formula is not available. Furthermore, from the pure theoretical calculation, the exact definition of the
momentum fraction is very challenging. In this work, we report a methodology based on Machine Learning techniques for the extraction
of momentum fractions forp + p → π+ + γ using a Monte Carlo simulation including quantum corrections up to Next-to-Leading Order
in Quantum Chromodynamics and Leading Order in Quantum Electrodynamics. Our findings point towards a methodology to find the
fundamental properties of the internal structure of hadrons because the reconstructed momentum fractions deeply relate our perturbative
models with experimental measurements.
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1. Introduction

Technological advances have enabled important break-
throughs in science, and in the case of high energy physics
have allowed us to discover new particles and test models.
To mention some specific examples, technology has favored
perturbative Quantum Chromodynamics (pQCD) to achieve
greater precision in computational calculations and to im-
prove the efficiency of such calculations. The trend right
now points towards Artificial Intelligence (AI) and Machine
Learning (ML) techniques applied to high energy experi-
ments in parton shower Monte Carlo (MC) reconstruction
applied to jets physics [1], reconstruction of deep inelastic
dispersion kinematics [2,3], or more phenomenological anal-
ysis, including the determination of partonic distribution den-
sities by the NNPDF collaboration [4-11].

As is well known, the Quantum Chromodynamics (QCD)
is a theory that studies the strong interactions between par-
tons, but in hadronic collisions it is necessary to resort to
pQCD theory. Calculating the scattering cross-section is a
useful measure to study these interactions, so it is important
to know the accessible kinematic of the detector how to re-
construct the underlying partonic momentum fractions. In a
perturbation theory, these quantities are only accurately de-
termined when analytical calculations are computed up to
the Leading Order (LO) precision. However, obtaining the
scattering cross-section at LO accuracy is not sufficient to
describe precise experimental measurements. To achieve a
more reliable the phenomenological description, higher-order
calculations are required. In pQCD, this feature happens even
for the first or second order, the so called Next-to-Leading
Order (NLO) and Next-to-Next-to-Leading Order (NNLO)
respectively. Furthermore, the problem grows when we start
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combining the effects of the interaction of photons with par-
tons and the QCD interactions, since non-perturbative effects
must be considered, hadronization.

In this work, we propose a methodology based on Neural
Networks using Machine Learning (ML) to reconstruct the
partonic momentum fractions in photon-hadron production
at colliders, including up to NLO QCD and LO QED correc-
tion. We base our work on Refs. [12, 13], which we briefly
explain in Sec. 2. In Sec. 3 we report the phenomenologi-
cal results of studying the hadronic differential cross-section
distribution as a function of the phase-space of the system.
Finally, in Sec. 3.2 we show the Neural Network (NN) re-
sults for predicting the partonic momentum fractions of the
scattering process in the initial and final state at LO QED +
NLO QCD accuracy.

2. Computational details

The efforts in the scientific community to obtain greater ac-
curacy into quarks and gluons distributions, had contributed
to solve the problem of the proton spin crisis. Still, there
is a long way to pursue and one direction is the precise de-
termination of the partonic moments in the pQCD theory.
In this context, studying the parton momentum fractions in
hadronic collisions constitutes an advance towards the search
of greater precision since they carry an imprint of the parton
level kinematics. In our study, we are interested to perform
the MC simulation of the cross-section for the reaction,

p p → π+ + γ , (1)

where the photon shall be produced by the direct interaction
of the original partons in the collision, which we will refer
to as the hard photon. Fortunately, the dispersion between
hadrons can be extracted by means of hard process factor-
ization properties in the QCD [14]. Therefore, the differ-
ential cross-section of the proton-proton process is obtained
through the convolution of the Parton Distribution Function
(PDF), Fragmentation Function (FF) and the differential par-
tonic cross-section. The non-perturbative part corresponds
to the PDF and the FF, which provide us the information
on the probabilities of finding the partons inside the collid-
ing hadrons and the probability of generating a given me-
son/hadron from a certain parton, respectively. Explicitly, the
differential cross-section of producing a positively charged
pion in addition with a photon in the proton-proton collisions
is given by,

dσp1 p2→π γ =
∑

a1a2a3a4

∫
dx1dx2dzdz′ f (p1)

a1
(x1, µI)

× f (p2)
a2

(x2, µI) d(π)
a3

(z, µF )d(γ)
a4

(z′, µF )

× dσ̂a1 a2→a3 a4(x1, x2, z, z′, µR) , (2)

where we sum over all flavors of quarks and gluonsa1, a2

anda3, f
(h)
a (x, µI) represents the PDF which indicates the

probability of finding the partona inside the hadronh with
momentum fractionx and initial energy scaleµI . Analo-
gously,d(h)

b (z, µF ) stands for the probability that the partonb
produced during the hard scattering, hadronizes in the hadron
h with momentum fractionz at a typical energy scaleµF . Fi-
nally, we cast indσ̂a1 a2→a3 a4 the differential partonic cross-
section of the interaction between the partonsa1 anda2 pro-
ducing the partonsa3 anda4. In practice, the nature of the de-
tected photons is indistinguishable, however, there are recon-
structions algorithms that permit to retain a high proportion
of photons expected to come directly from the parton-level
interaction (i.e. from the hard-scattering). For this purpose,
we impose a criterion to isolate photons [15] which allows
us to obtain independence of the parton-to-photon fragmen-
tation functioni and also to solve the collinear divergences.
Therefore, the differential cross-section of producing a pos-
itively charged pion plus a hard photon into proton-proton
collision can be rewritten as follows,

dσp1 p2→π γ =
∑

a1a2a3

∫
dx1dx2dz f (p1)

a1
(x1, µI)

× f (p2)
a2

(x2, µI) d(π)
a3

(z, µF )

× dσ̂ISO
a1 a2→a3 γ(x1, x2, z, µR), (3)

wheredσ̂ISO
a1 a2→a3 γ is the differential cross-section to gener-

ate a partona3 and an isolated photon from the interaction
between partonsa1 anda2 taking into account the isolation
algorithm. In our case, we perform the calculation consider-
ing including up to LO QED + NLO QCD. In this way, the
partonic cross-section is the sum of the QED plus the QCD
contributions, namely,

dσ̂ISO
a1 a2→a3 γ = dσ̂ISO, QED

a1 a2→a3 γ + dσ̂ISO, QCD
a1 a2→a3 γ . (4)

Once we have applied the isolation criteria, the partonic chan-
nels for the 2→ 2 processes in QCD are,

qq̄ → γg, qg → γq , (5)

meanwhile, the channels in the QED interaction are,

qq̄ → γγ, qγ → γq , (6)

and, finally, the processes 2→ 3 considered in the NLO con-
tribution of QCD are those as,

qq̄ → γgg , qg → γgq , gg → γqq̄ ,

qq̄ → γQQ̄ , qQ → γqQ . (7)

3. Phenomenological results

The calculations described in Sec. 2 were implemented in the
MC integrator based in Ref. [12] and considered two different
scenarios for the scattering kinematics. In the first scenario,
we seek to study the kinematic configuration of PHENIX in
the RHIC experiment with a center-of-mass (c.m.) energy of
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√

SCM = 500 GeV, and considering the phenomenological
cuts,

{|ηπ|, |ηγ |} ≤ 0.35 ,

pπ
T ≥ 2 GeV ,

5GeV ≤ pγ
T ≤ 15 GeV, (8)

whereη andpT are the pseudorapidity and transverse mo-
mentum, respectively. On the other hand, in the second sce-
nario we explore a c.m. energy of

√
SCM = 13 TeV cor-

responding to LHC RUN II configuration, keeping the same
cuts for the pion kinematics. However, motivated by studies
about the photon detection efficiency in ATLAS and CMS in
different energies [17–19], we impose the following cuts on
the photon kinematics,

|ηγ | ≤ 2.5 ,

pγ
T ≥ 30 GeV. (9)

In addition, it is important to mention that we implement the
restriction|φπ − φγ | ≥ 2 on the azimuthal angles of the pion
and photon, in order to keep aback-to-backconfiguration. Fi-
nally, we set the renormalization and factorization scales as
the average of the pion and photon transverse momenta,

µR = µI = µF =
pπ

T + pγ
T

2
. (10)

3.1. Partonic kinematics analysis

Now, we study the momentum fraction distributions with the
purpose of imposing constraints on the NN training. As it is
well known, the momentum fractions are exactly determined
at LO accuracy, explicitly as follows,

x1,2 =
pγ

T (exp (η±π) + exp (η±γ))√
SCM

, (11)

z =
pπ

T

pγ
T

. (12)

To compute Eq. (3), we use in the MC simulation the PDF
setNNPDF4.0NLO[10] for the NLO QCD prediction, while
for LO QED + NLO QCD quantum corrections we used the
setNNPDF3.1luxQEDNLO [20–23]. Likewise, we selected
the most up-to-date FF of pions at NLO given by collabora-
tion DSS2014 [24, 25]. Additionally, by simplicity we de-
fine the same partonic momentum fraction for both protons
asx = {x1, x2}.

In Fig. 1 we display the differential cross-section per bin
of thepp → π+ + γ scattering process as a function of the
partonic momentum fractionx, both for energies of RHIC
(right) and LHC RUN II (left) experiments. A significant
contribution to higher-order corrections is observed with re-
spect to the LO contribution in QCD (red dots). The effects
of QED and QCD (blue dashed line) are smaller with respect
to only NLO QCD contribution (black line). Furthermore, as

FIGURE 1. Cross-section as a function of the partonic momentum
fractions, for RHIC and LHC Run II .

FIGURE 2. Cross-section as a function of the partonic momentum
fractions, for RHIC and LHC Run II.

expected from LO, the maximum limit imposed on the pho-
ton momentumpγ

T ≤ 15 GeV at RHIC energies, manifests it-
self in a peak of thedσpp→π+γ distribution atx ≈ 2.5×10−2,
both for the Born level and for higher-orders. Similarly, in
Eq. (11) the pT andη restrictions in RHIC, limit the range
that x can be computed toxmax ≈ 0.01. For this reason,
we limited our analysis to observing the LHC kinematics in
the same RHIC range. As a matter of fact, in Fig. 2 we show
an analysis of the differential cross-section distribution analo-
gous to Fig. 1 but as a function ofz. Here, we can see that the
LHC kinematics implies that cross-section decreases faster
than the calculated with RHIC kinematics. The distributions
show a peak atzpeak ≈ 0.35 in RHIC whereaszpeak ≈ 0.25
for the LHC RUN II. It is important to mention that those
peaks correspond to a greater extent to the constraints imple-
mented in the FF.

3.2. NN prediction

Taking into account the effects of kinematical cuts on the
cross-section distribution, we will focus our efforts on recon-
structing the partonic momentum fractionsx and z. Since
we now know that in the LO case our phase-space is well-
defined, we will use this information to check the reliability
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TABLE I. Architecture for the MLP best fit parameters for the reconstruction of the momentum fractions at LO in QCD:XREC(LO) and
ZREC(LO) (second and third columns), and for the momentum fractions at NLO QCD + LO QED:XREC(NLO) andZREC(NLO) (fourth
and fifth columns).

XREC (LO) ZREC (LO) XREC (NLO) ZREC (NLO)

# of hidden layers 2 1 5 5

# of neurons/layer 200 100 300 300

activation function ReLU ReLU ReLU ReLU

# iterations 1× 105 1× 105 1× 1012 1× 1012

learning rate 1× 10−3 1× 10−3 1× 10−4 1× 10−4

of our method. In this task, we implement a NN with Python
3 libraryscikit-learn [26], specifically, we train a Mul-
tilayer Perceptron (MLP) whose architecture is shown in Ta-
ble I. For this purpose, we defineXREC andZREC as target
variables of the NN. For the training to predict thex vari-
able in the LO case, we set the MLP with two hidden layers
and 200 neurons per layer, using105 interactions per event
number. In addition, we find some parameters sensitive to
the output variables, such as the maximum number of inter-
actions and the learning rate. Finally, for all architectures, we
use the Rectified Linear Unit (ReLU) activation function.

The methodology to train the NN consists of generating
random points (x, z), assigning them as the target variables.
In this way, we use 20% of the data to test the results of the
NN and 80% for training the NN. In the LO case, the inputs
values are the kinematic variables accessible in the experi-
mental environment, this mean,

VExp = {pγ
T , pπ

T , ηγ , ηπ, cos(φπ − φγ)} . (13)

Conversely, due to the discussion in Sec. 3.1, the kinematic
cutoffs imposed restrict the range in which we can measure
x and z, therefore, we reconstruct the partonic momentum
fractions in the rangex ∈ (0.015, 0.075) andz ∈ (0.1, 1).

The results at LO are displayed in Fig. 3, where we have de-
fined the variablesXREAL andZREAL as the variables ran-
domly generated by our MC simulation. The color scale
indicates the probability that the Neural Network predicts
{XREC, ZREC} in the same bin as{XREAL, ZREAL}. With
this architecture, the NN can access the momentum frac-
tions with probability greater than 90% forx < 6.9 × 10−2,
and a probability around 80% forx > 6.9 × 10−2. Mean-
while, the NN trained to predictz fraction, have simpler ar-
chitecture and reconstructs the momentum fraction with suc-
cess rate close to 100% inz > 0.19. At the Born level,x
is proportional to the photon transverse momentum, while
z is inversely proportional, so the imposed upper bound of
P γ

T ≤ 15 GeV has repercussions on the reconstruction ofx
when large values ofXREAL and low values ofZREAL are
explored.

Once we have checked the advantage of the NN, we train
it to perform predictions at NLO level. However, since hav-
ing a better fit becomes more complex, we opt for a more
robust architecture. By the nature of the process, the experi-
ment is not able to distinguish between a LO and NLO con-
tribution, therefore, for the NLO QCD + LO QED correction
it is necessary to discretize the kinematic variables used as
input values namely,

FIGURE 3. Comparison of the momentum fractions at LO accuracy obtained with MLP neural networks with the parameters given in Table I.
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FIGURE 4. Comparison of the momentum fractions at LO QED + NLO QCD accuracy obtained with MLP neural networks with the
parameters given in Table I.

p = {p̄γ
T , p̄π

T , η̄γ , η̄π, cos(φπ − φγ)} ∈ V̄Exp , (14)

where ā denotes the mean value of each variable ofVExp

per bin. Now we discretize the space with ten bins forpT ,
five bins forη and six bins forcos (φπ − φγ). This leads us
to weigh the partonic momentum fractions with the average
cross-section corresponding to the bin of the eventV̄Exp. Ex-
plicitly, the target variables are now,

X1,REC =
∑

i

(x1)i
dσj

dx1
(pj ; (x1)i) , (15)

X2,REC =
∑

i

(x2)i
dσj

dx2
(pj ; (x2)i) , (16)

ZREC =
∑

i

zi
dσj

dz
(pj ; zi) , (17)

The results at NLO QCD + LO QED accuracy are pre-
sented in Fig. 4, for which we use a MLP whose parameters
are those of Table I (fourth and fifth columns). We gener-
ated109 events for LO case, from which only 30% passed
the kinematic cuts. In addition, the discretization of the in-
put and output values at NLO led to generate 15000 variables
in our phase-space. For bothx andz, the NN showed favor-
able results and a remarked improvement over the work made
in Ref. [12]. The prediction forx is excellent in the lowest
rank bin, while in the rest bins the probability of reconstruc-
tion oscillates around 80%. On the other hand, the fraction
z achieves the best prediction in the rangez ∈ (0.28, 1); on
the other hand, we find that for low values ofz, our result
continues to show a strong correlation.

4. Conclusions and outlook

In the context of hadron collisions, it is difficult to obtain
closed analytical formulae to related parton momenta frac-
tion and experimentally-accessible variables. This fact leads

us to use only approximate formulas in the calculation of the
scattering cross-section. In this work, we seek to access the
partonic momentum fractions for the production of a hadron
plus a direct photon in proton-proton collisions using ML
tools. First, we calculated the cross-section differential dis-
tribution of the scattering processpp → π+ + γ with RHIC
and LHC RUN II kinematics. The results indicated that the
kinematical cuts imposed by both experiments limit the range
of accessibility ofx. On the other hand, we noted that RHIC
experiment has a peak in bothx andz, which was observed
due to restrictions ofpγ

T and pion fragmentation. Likewise,
we have built a MLP NN to access the partonic momentum
fractions at NLO QCD + LO QED accuracy. In the first in-
stance, we obtained predictions with LO QCD accuracy to
compare the fitting efficiency of the NN, and we obtained
nearly perfect results. Subsequently, with the help of Deep
Learning, we accessed the partonic momentum fractions with
NLO QCD + LO QED precision getting results with higher
accuracy. Finally, this work not only lays the foundation for
higher accuracy predictions of High Energy Physics, but also,
as mentioned in Ref. [27], it can help to find constraints on
the final states of heavy hadrons.
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