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High Energy collider experiments are moving to the highest precision frontier quickly. The predictions of observables are based on the
factorization formula, which helps to connect small to large distances. These predictions can be contrasted with experimental measurement
and the success of this phenomenological approach is based on the correct description of nature. The application of the method to proton
proton colliders brings new challenges due to the proton structure and the detectors efficiency on reconstructing hadrons. Furthermore, sinc
the non-perturbative distribution functions takes an important role to describe the experimental distributions, the presence of them makes the
information of the partons diluted. At Leading Order (LO) in perturbative calculations, the momentum fractions involved in hard scattering
processes are known exactly in terms of kinematical variables of initial and final states hadrons. However, at Next-to-Leading Order (NLO)
and beyond, a closed analytical formula is not available. Furthermore, from the pure theoretical calculation, the exact definition of the
momentum fraction is very challenging. In this work, we report a methodology based on Machine Learning techniques for the extraction
of momentum fractions fop + p — «* 4 ~ using a Monte Carlo simulation including quantum corrections up to Next-to-Leading Order

in Quantum Chromodynamics and Leading Order in Quantum Electrodynamics. Our findings point towards a methodology to find the
fundamental properties of the internal structure of hadrons because the reconstructed momentum fractions deeply relate our perturbativ
models with experimental measurements.
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1. Introduction As is well known, the Quantum Chromodynamics (QCD)
is a theory that studies the strong interactions between par-
important brealOns: but in hadronic collisions it is necessary to resort to

Technological advances have enabled cD th Calculating th tteri tion i
throughs in science, and in the case of high energy physic'%Q eory. Lajculaling the scattering cross-section 1S a

have allowed us to discover new particles and test modelé’.sefm measure to s_tudy 'Fhese interactions, S0 it is important
To mention some specific examples, technology has favorerc? know the accessible kinematic of the detector how to re-

perturbative Quantum Chromodynamics (pQCD) to achiev&onStrUCt_ the underlying partoniq _momentum fractions. In a
greater precision in computational calculations and to imperturbatlon theory, these quantities are only accurately de-

prove the efficiency of such calculations. The trend righttermlned when analytical calculations are computed up to

now points towards Atrtificial Intelligence (Al) and Machine the Lez_idlng Order (L_O) precision. Howeyer, obtam_ln_g the
Learning (ML) techniques applied to high energy eXperi_scattermg cross-section at LO accuracy is not sufficient to

ments in parton shower Monte Carlo (MC) reconstructiondescr'be precise experimental measurements. To achieve a

applied to jets physics [1], reconstruction of deep inelastid"°"® re!iable the phepomenological d(_ascription, higher-order
dispersion kinematics [2, 3], or more phenomenological analg:alculatlons are required. In pQCD, this feature happens even

. . L e for the first or second order, the so called Next-to-Leading
ysis, including the determination of partonic distribution den- ’ .
sities by the NNPDF collaboration [4-11]. Order (NLO) and Next-to-Next-to-Leading Order (NNLO)

respectively. Furthermore, the problem grows when we start
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combining the effects of the interaction of photons with par-probability of finding the partom inside the hadrom with
tons and the QCD interactions, since non-perturbative effeciiomentum fractionz and initial energy scalg;. Analo-
must be considered, hadronization. gously,déh) (z, ur) stands for the probability that the partibn

In this work, we propose a methodology based on Neuraproduced during the hard scattering, hadronizes in the hadron
Networks using Machine Learning (ML) to reconstruct the 4 with momentum fractior at a typical energy scajer. Fi-
partonic momentum fractions in photon-hadron productiomally, we cast inlé,, 4, —a; o, the differential partonic cross-
at colliders, including up to NLO QCD and LO QED correc- section of the interaction between the partapsnda, pro-
tion. We base our work on Refs. [12, 13], which we briefly ducing the partongs anda,. In practice, the nature of the de-
explain in Sec. 2. In Sec. 3 we report the phenomenologitected photons is indistinguishable, however, there are recon-
cal results of studying the hadronic differential cross-sectiorstructions algorithms that permit to retain a high proportion
distribution as a function of the phase-space of the systenmof photons expected to come directly from the parton-level
Finally, in Sec. 3.2 we show the Neural Network (NN) re- interaction {.e. from the hard-scattering). For this purpose,
sults for predicting the partonic momentum fractions of thewe impose a criterion to isolate photons [15] which allows
scattering process in the initial and final state at LO QED +us to obtain independence of the parton-to-photon fragmen-
NLO QCD accuracy. tation functiort and also to solve the collinear divergences.
Therefore, the differential cross-section of producing a pos-
itively charged pion plus a hard photon into proton-proton

2. Computational details e .
collision can be rewritten as follows,

The efforts in the scientific community to obtain greater ac- (o)
curacy into quarks and gluons distributions, had contributed ~ 99p: pa—ny = D /dﬂfld@d?«“ fart (z1, pr)

to solve the problem of the proton spin crisis. Still, there a1a203

is a long way to pursue and one direction is the precise de- X fP2) (29, up) d (2, pp)

termination of the partonic moments in the pQCD theory. : ?

In this context, studying the parton momentum fractions in X 6}, oy (1, T2, 2, 1R), 3)

hadronic collisions constitutes an advance towards the search L 1SO ) ) ) )
of greater precision since they carry an imprint of the partofVheredo is the differential cross-section to gener-

ai az—asz "y . . .
level kinematics. In our study, we are interested to perfornf\€ & partoru; and an isolated photon from the interaction
the MC simulation of the cross-section for the reaction,

between partong; anda, taking into account the isolation

algorithm. In our case, we perform the calculation consider-
pp— 7+, 1) ing including up to LO QED + NLO QCD. In this way, the

partonic cross-section is the sum of the QED plus the QCD

where the photon shall be produced by the direct interactiogontributions, namely,

of the original partons in the collision, which we will refer

to as the hard photon. Fortunately, the dispersion between d&{z??zzaasv = d&if?l;%%?v + d&tlzsl?z;%%?v : (4)

hadrons can be extracted by means of hard process fact

ization properties in the QCD [14]. Therefore, the differ-

ential cross-section of the proton-proton process is obtaine

through the convolution of the Parton Distribution Function

(PDF), Fragmentation Function (FF) and the differential par-

tonic cross-section. The non-perturbative part correspondsieanwhile, the channels in the QED interaction are,

to the PDF and the FF, which provide us the information

on the probabilities of finding the partons inside the collid- qaq =7y, 9Y — 9, (6)

ing hadrons and the probability of generating a given me-

son/hadron from a certain parton, respectively. Explicitly, theand’ finally, the processes-23 considered in the NLO con-

differential cross-section of producing a positively ChargedmbmIon of QCD are those as,
pion in addition with a photon in the proton-proton collisions

is given by,

Bnce we have applied the isolation criteria, the partonic chan-
Hels for the 2— 2 processes in QCD are,

qq — 9, 99— 9, 5)

qq — 99, 99 — 99, 99 — V44,

97 —1QQ, 9Q — 14Q. @)
Aoy, pyony = Y [ dwrdasdzd’ f) (w1, pr) _
41020304 3. Phenomenological results

™ !
X fof?) (w2, ) di7) (2, o) di) (2 o) The calculations described in Sec. 2 were implemented in the
X dGay ay—as as(T1,T2,2, 2", UR) (20  MCintegrator based in Ref. [12] and considered two different
scenarios for the scattering kinematics. In the first scenario,
where we sum over all flavors of quarks and gluansas we seek to study the kinematic configuration of PHENIX in
andas, féh) (z, uy) represents the PDF which indicates thethe RHIC experiment with a center-of-mass (c.m.) energy of
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V8o = 500 GeV, and considering the phenomenological — '*™
cuts,

NNPDF4.0
""" LO QCD
NNPDF4.0
= NLO QCD
NNPDF3.1luxQED
' LO QED + NLO QCD 3

IN

{1, "1} 0.35, 10-3
pr > 2 GeV,

—
|
IS

5GeV < pr <15 GeV, (8)

opiN [ptbarn]

wheren andpr are the pseudorapidity and transverse mo-
mentum, respectively. On the other hand, in the second sce:
nario we explore a c.m. energy @fScy = 13 TeV cor- LHOR 0

10-°F

. : - . VScar = 13 TeV VSear = 500 GeV :
responding to LHC RUN II configuration, keeping the same  1o- B TR TR R T R
cuts for the pion kinematics. However, motivated by studies [T ' 0 5 -5

about the photon detection efficiency in ATLAS and CMS in
different energies [17-19], we impose the following cuts on
the photon kinematics,

FIGURE 1. Cross-section as a function of the partonic momentum
fractions, for RHIC and LHC Run Il .

"l <25,

NNPDF4.0
LO QCD
NNPDF4.0
NLO QCD
NNPDF3.1luxQED
~~'LO QED + NLO QCD

1072

pr > 30 GeV. 9)

In addition, it is important to mention that we implementthe _ '"°f
restriction|¢™ — ¢”| > 2 on the azimuthal angles of the pion
and photon, in order to keepack-to-backconfiguration. Fi-
nally, we set the renormalization and factorization scales as &
the average of the pion and photon transverse momenta,

[pbarn]

IN
=
T

IS

1075

p? + p% LHC Run IT RHIC

— — — C Run . > B

KR =11 = PF = 2 ' (10) VScar =13 TeV f— V5o = 500 GeV o=
. . . O =4 5 6 7 8 9 2 3 45 67 89

3.1. Partonic kinematics analysis 2(x 107

FIGURE 2. Cross-section as a function of the partonic momentum

Now, we study the momentum fraction distributions with thefractions, tor RHIC and LHC Run IL.

purpose of imposing constraints on the NN training. As it is

well known, the momentum fractions are exactly determine%xpected from LO, the maximum limit imposed on the pho-
at LO accuracy, explicitly as follows, ton momentunp}. < 15 GeV at RHIC energies, manifests it-

2 7 £y selfin a peak of théo,, ., distribution atz ~ 2.5x1072,
T1o = pr(exp (n7") + exp (n77)) , (11)  both for the Born level and for higher-orders. Similarly, in
VScm

Eq. (11) the pr andy restrictions in RHIC, limit the range
' (12) that x can be computed te,,.. ~ 0.01. For this reason,
Py we limited our analysis to observing the LHC kinematics in
the same RHIC range. As a matter of fact, in Fig. 2 we show

To compute Eq.3), we use in the MC simulation the PDF 5, 541y sis of the differential cross-section distribution analo-
setNNPDF4.0NLO[10] for the NLO QCD prediction, while s +4'Fig. 1 but as a function of Here, we can see that the

for LO QED + NLO QCD quantum corrections we used the| i \inematics implies that cross-section decreases faster

setNNPDF3.1luxQEDNLO[20-23]. Likewise, we selected a the calculated with RHIC kinematics. The distributions
the most up-to-date FF of pions at NLO given by collabora-

. - =k show a peak atpeax ~ 0.35 in RHIC whereaseax =~ 0.25
tion DSS2014 [24, 25]. Additionally, by simplicity we de- o the | HC RUN II. It is important to mention that those

fine the same partonic momentum fraction for both protong, e s correspond to a greater extent to the constraints imple-

asr = {r1, ra}. . . _ __mented in the FF.
In Fig. 1 we display the differential cross-section per bin

of thepp — ©+ + v scattering process as a function of theg o NN prediction

partonic momentum fractiom, both for energies of RHIC

(right) and LHC RUN 11 (left) experiments. A significant Taking into account the effects of kinematical cuts on the
contribution to higher-order corrections is observed with re-cross-section distribution, we will focus our efforts on recon-
spect to the LO contribution in QCD (red dots). The effectsstructing the partonic momentum fractiomsand z. Since

of QED and QCD (blue dashed line) are smaller with respectve now know that in the LO case our phase-space is well-
to only NLO QCD contribution (black line). Furthermore, as defined, we will use this information to check the reliability
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TABLE |. Architecture for the MLP best fit parameters for the reconstruction of the momentum fractions at LO in2QgB(LO) and
Zrec(LO) (second and third columns), and for the momentum fractions at NLO QCD + LO Q&R (NLO) and Zrrc(NLO) (fourth
and fifth columns).

Xrec (LO) Zrec (LO) Xrec (NLO) Zrec (NLO)
# of hidden layers 2 1 5 5
# of neurons/layer 200 100 300 300
activation function RelLU RelLU RelLU RelLU
# iterations 1x 10° 1x 10° 1x 102 1 x 102
learning rate 1x 1073 1x 1073 1x 1074 1x 1074

of our method. In this task, we implement a NN with Python The results at LO are displayed in Fig. 3, where we have de-
3 library scikit-learn [26], specifically, we train a Mul-  fined the variables{rgar, and Zgrgar, as the variables ran-
tilayer Perceptron (MLP) whose architecture is shown in Ta-domly generated by our MC simulation. The color scale
ble I. For this purpose, we definérgc and Zrgc as target  indicates the probability that the Neural Network predicts
variables of the NN. For the training to predict thevari- {XRrECc, ZrEc} inthe same bin a§XgrgaL, ZrEar - With
able in the LO case, we set the MLP with two hidden layersthis architecture, the NN can access the momentum frac-
and 200 neurons per layer, usii@® interactions per event tions with probability greater than 90% fer< 6.9 x 1072,
number. In addition, we find some parameters sensitive tand a probability around 80% far > 6.9 x 1072, Mean-
the output variables, such as the maximum number of interwhile, the NN trained to predict fraction, have simpler ar-
actions and the learning rate. Finally, for all architectures, wechitecture and reconstructs the momentum fraction with suc-
use the Rectified Linear Unit (ReLU) activation function.  cess rate close to 100% in> 0.19. At the Born level,x

The methodology to train the NN consists of generatingis proportional to the photon transverse momentum, while
random points#, z), assigning them as the target variables.z is inversely proportional, so the imposed upper bound of
In this way, we use 20% of the data to test the results of thé’} < 15 GeV has repercussions on the reconstruction: of
NN and 80% for training the NN. In the LO case, the inputswhen large values aKrga1, and low values ogga;, are
values are the kinematic variables accessible in the experéxplored.

mental environment, this mean, Once we have checked the advantage of the NN, we train
it to perform predictions at NLO level. However, since hav-
Vexp = {pp, o7, 0", 0", cos(¢” — @)} . (13) ing a better fit becomes more complex, we opt for a more

robust architecture. By the nature of the process, the experi-
Conversely, due to the discussion in Sec. 3.1, the kinematiment is not able to distinguish between a LO and NLO con-
cutoffs imposed restrict the range in which we can measurég&ibution, therefore, for the NLO QCD + LO QED correction
x and z, therefore, we reconstruct the partonic momentumit is necessary to discretize the kinematic variables used as
fractions in the range € (0.015, 0.075) andz € (0.1, 1).  input values namely,

1.0 1.0
-l N‘r‘“"ﬁ"‘, Network 01 Neural Network
. LO QCD 3 LO QCD |
0.8 0.8
57 73
& Ff
S 06 T 0.6
—
X a5 X 55
E &
< 0.4 = 0.4
= = :
iy N
i 33 3.7
0.2 0.2
21 1.9
Lo —- 0.0
21 33 45 57 6.9 19 3.7 55 T3 9.1
a) Xpec (x1072 b) T
Xrec (X ) Zrrc (x1071)

FIGURE 3. Comparison of the momentum fractions at LO accuracy obtained with MLP neural networks with the parameters given in Table I.
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1.0 1.0

08 ) 0.8
6.4 73

i‘ 0.6 :; 0.6
E_ 50 X 55

E -04 E - 0.4
- N 37

s Lo.2
. 190

2 - s = e —00 19 37 55 73 9.1 0

a) Xne (x10-2) b) Zge (x1071)

FIGURE 4. Comparison of the momentum fractions at LO QED + NLO QCD accuracy obtained with MLP neural networks with the
parameters given in Table I.

us to use only approximate formulas in the calculation of the
LSV ST =Y ST e T - scattering cross-section. In this work, we seek to access the

p=A{pr P 77, €OS(07 — 67)} € Vi (14) partonic momentum fractions for the production of a hadron
wherea denotes the mean value of each variableVgf,  plus a direct photon in proton-proton collisions using ML
per bin. Now we discretize the space with ten binsger  tools. First, we calculated the cross-section differential dis-
five bins forn and six bins forcos (¢™ — ¢7). This leads us  tribution of the scattering procegp — 7+ + v with RHIC
to weigh the partonic momentum fractions with the averageand LHC RUN Il kinematics. The results indicated that the
cross-section corresponding to the bin of the ev&nt,. Ex-  kinematical cuts imposed by both experiments limit the range

plicitly, the target variables are now, of accessibility ofz. On the other hand, we noted that RHIC
do experiment has a peak in bathand z, which was observed
X1REC = Z (ﬂfl)ichi(Pj% (#1)i) , (15)  due to restrictions op. and pion fragmentation. Likewise,
i we have built a MLP NN to access the partonic momentum
do; fractions at NLO QCD + LO QED accuracy. In the first in-
X2,REC = Z (IQ)’:dTCQ(pj; (2)i). (16) stance, we obtained predictions with LO QCD accuracy to
’ compare the fitting efficiency of the NN, and we obtained
Zrpe = Z Zi@(pj; ), (17) nearly_ perfect results. Subseque_ntly, with the help _of Dee_zp
- dz Learning, we accessed the partonic momentum fractions with

The results at NLO QCD + LO QED accuracy are pre_NLO QCD + LO QE_D precision getting results with higher
sented in Fig. 4, for which we use a MLP whose parameterﬁ?curacy' Finally, th'§ vyork not iny lays the fou.ndauon for
are those of Table | (fourth and fifth columns). We gener- |ghera.ccurac.y pl’edICtIOI’lS'Of High Energy Physics, b.Ut also,
ated10° events for LO case, from which only 30% passedas mennoned in Ref. [27], it can help to find constraints on
the kinematic cuts. In addition, the discretization of the in-the final states of heavy hadrons.

put and output values at NLO led to generate 15000 variables

in our phase-space. For bathandz, the NN showed favor-
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