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Entanglement entropy in high energy collisions of electrons and protons
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We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering of electrons
and proton in the region of low Bjorkenx. Using their proposed relation between parton number and entanglement entropy, we determine the
latter using both conventional parton distribution functions and parton distribution functions obtained from an unintegrated gluon distribution
subject to next-to-leading order Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution as well as from a dipole cross-section, subject to running
coupling Balitsky-Kovchegov (rcBK) evolution. We compare our results to hadronic entropy obtained from final state hadron multiplicity.
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1. Introduction

Deep Inelastic Scattering (DIS) of electrons on protons is for
more than 60 years a key process for the exploration of nu-
clear structure, in particular of the proton. It was in the anal-
ysis of this process where for the first time the presence of
point-like particles inside the proton manifested itself. When
a highly virtual photon with virtualityq2 = −Q2, exchanged
between scattering electron and proton, hits the proton, the
photon seems to scatter on quasi-free particles, instead of a
strongly bound state, usually associated with the proton.

In the DIS reaction, the proton can therefore be described
as a collection of partons, where each parton is subject to
a certain distribution function, called the parton distribution
function or short ”PDF”. From a modern point of view,
this simple parton model can be understood as a conse-
quence of asymptotic freedom and collinear factorization. At
high renormalization scales, the running coupling constant of
Quantum Chromodynamics (the fundamental gauge theory of
strong interactions) turns weak (asymptotic freedom) which
then explains the observation of quasi-free partons, when the
the proton is hit by a highly virtual photon; nowadays these
partons are identified as quarks and gluons. Collinear factor-
ization provides on the other hand a factorization framework,
which factorizes the cross-section of the DIS reaction into a
partonic cross-section (interaction of the electron with quarks
and gluons through the exchange of a virtual photon) and cor-
responding PDFs, defined as certain matrix elements of quark
and gluon field operators.

While this framework turns out to be very robust (result-
ing from a continuous development during various decades)
and is now also applied to the description of more compli-
cated reactions, such as proton-proton collisions, there re-
mains at least one last concern: the proton is known to be
a pure quantum state, albeit with its wave function in general
unknown. Pure states are known to have vanishing von Neu-
mann entropy and one therefore expects this to the case also
for the proton. On the other hand, the parton model describes

the proton as a lost collection of several quasi-free particles,
which are only constrained by their corresponding parton dis-
tribution functions. Such a system of quasi-free particles is
clearly no longer a pure quantum state, but it corresponds to a
mixed state which non-zero von Neumann entropy. Now it is
of course clear that the parton model does not provide a com-
plete description of the proton; it only applies to the descrip-
tion of the proton structure within the DIS process, whenever
the proton is probed by a highly virtual photon. Nevertheless
there is a need to systematically coincide both pictures.

In Ref. [1] Kharzeev and Levin made an interesting pro-
posal on how to reconcile both pictures, which we will study
in some detail in the following. They proposed that the en-
tropy observed in the parton model arises due to entangle-
ment of colored degrees of freedom in the proton and should
be therefore identified with entanglement entropy. Refer-
ring to the classical analysis by Gribov, Ioffe and Pomer-
anchuck [2], they recall that the virtual photon resolves in
the DIS reaction only an area of a size inversely proportional
to the photon virtualityAresolved∼ 1/Q2. Depending on the
value ofQ2, there remains therefore a significant region of
the proton which is unobserved. Such a partial observation of
a pure state is known to lead to entanglement entropy [3–5].
In simple terms, summing for the density matrix of a pure but
entangled state over unobserved components, one obtains the
density matrix of a mixed state. The latter is characterized
by non-vanishing von Neumann entropy. Technically the de-
scription of the transition of the pure quantum state towards
a mixed state is very challenging: perturbative QCD tools
work only well in the presence of aQ2 À ΛQCD2 , where
ΛQCD2 denotes the QCD characteristic scale of the order of a
few hundred MeV. A description of the pure state, expected
for Q2 ' 0 is therefore not possible using these kinds of
methods. Kharzeev and Levin proposed therefore the use of
a certain 1+1 dimensional dipole model, to get a first glimpse
on the transition from the pure towards the mixed state. This
model turns out to catch surprisingly well the essential fea-
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tures of this transition, in particular if confronted with data.
In the following we will present a few details on this model
as well its applications to phenomenology. For more details
we refer the interested reader to the publications [6,7] as well
as our recent preprint [8], which deals with the extension of
the formalism to diffractive DIS.

2. Review of the theoretical framework

In Ref. [1] the following model, original proposed for a dif-
ferent purpose in Refs. [9, 10] has been used. The model
is based on the lowx description of the DIS reaction, see
also Fig. 1. In this kinematic limit, the center of mass en-
ergyW with W 2 ' (1− x/x)Q2 is large and the scattering
virtual photon and proton are separated by a large relative
boost factor. If one then turns to the proton rest frame, the
proton degrees of freedom do not evolve ifx is decreased:
the entire evolution takes place within the virtual photon. In
this picture, the virtual photon forms first a color dipole (a
quark-antiquark pair) before finally interacting with the pro-
ton, i.e., the formation of the dipole is time dilated in the pro-
ton rest frame. Decreasingx further, one increases the center
of mass energy which in turn leads to the subsequent emis-
sion of gluons; seen from the proton rest frame, the original
color dipole, develops a cascade of quarks and gluons. In the
large color approximation, this partonic cascade can be cast
into a cascade of color dipoles. This cascade can then be de-
scribed within a simple 1+1 dimensional model, which is the
basis for the following analysis. Within this model, such a
cascade can be described through the following simple equa-
tion,

d

dy
pn(y) = −∆npn(y)−∆(n− 1)pn−1(y), (1)

wherepn(y) denotes the probability to encountern dipoles
at a certain value ofy and∆ yields the BFKL intercept in
the (1+1) dimensional model whiley = ln 1/x. Evolving to-
wards smaller values ofx requires therefore the emission of
another dipole with probability∆ multiplied by the number
of dipoles,i.e. , each dipole is a potential source of a new

FIGURE 1. Schematic DIS reaction with the kinematic variables
Q2 and Bjorkenx.

dipole. Imposing finally the requirement thatp1(0) = 1 and
pn>1(0) = 0, one finds

pn(y) = e−∆y
(
1− e−∆y

)n−1
, (2)

as a solution. The above initial condition imply that aty = 0
corresponding tox = 1 the system consists of a single dipole,
which is the analog of a pure quantum state. Decreasingx,
one encounters on the other hand the above mentioned mixed
state. Von Neumann entropy is then obtained from there, us-
ing

Spart. = −
∑

pn ln pn. (3)

The mean number of dipoles is on the other hand found as

〈n〉 =
∑

n

npn = e∆y. (4)

In Ref. [1] identify this mean number of dipoles as the gluon
PDF, while in Ref. [6] this mean number of dipoles has been
taken as the sum of quark and gluon PDFs, corresponding to
the mean number of partons in the proton. Note that taking
into account that PDFs have a certain interpretation as num-
ber densities,i.e., their integral over momentum fractionx
yields the expectation value of the parton number operator,
it is somehow natural to interpret Eq. (4) as the gluon distri-
bution. Even thoughxg(x) usually denotes the momentum
fraction carried by gluons, while the number density is as-
sociated with the integral ofg(x), the above identification is
correct, since one really determines the mean value of the
number of partons perln(1/x), i.e., 〈dn/dy〉, see also the
discussion in Ref. [7].

The above expression allows us to determine partonic
entropy as a function of the average number of partons in
the system. In the lowx-regionx → 0, corresponding to
y →∞, one finds finally

Spart.' ln〈n〉, (5)

i.e. partonic entropy coincides with the logarithm of the av-
erage parton number. Note that if one assumes thatn =
1, . . . , nmax andnmax ' 〈n〉, it is possible to identify this
entropy as the entropy of a homogeneous distribution, which
yields the maximal value of entropy. This observation is then
the origin of the statement that the proton probed in DIS
is “maximally entangled”. Combining both results Eq. (4)
and Eq. (5) it is then possible to arrive at phenomenological
predictions and to compare to hadronic entropy, determined
from final state multiplicities in DIS experiments, such as H1
at HERA.

Since the detection of neutral hadrons is experimentally
challenging, this hadronic multiplicity distribution is usually
only extracted for charged hadrons. Since pions are the pre-
dominantly produced hadron species, one can as a first es-
timate assume that the total number of produced hadrons
is roughly 3/2 times the number of charged hadrons ob-
served in experiment, if one assumes that final state gluons
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turn with equal probabilities into positively, negatively, and
neutral pion states. The number of gluons and possibly sea
quarks which yield charged hadrons is therefore approximate
the fraction2/3 of the total parton number. This suggests
correcting the partonic entropy by a corresponding factor,

Spart. → Scharged= Spart. + ln(2/3). (6)

Clearly this factor is not exact, but merely an estimate of or-
der of magnitude.

3. Numerical results

To compare to hadronic entropy extracted from H1 data in
Ref. [11], we require suitable sets of parton distribution func-
tions. In this work, our comparison uses two lowx frame-
works with and without high density or saturation effects. In-
vestigating the relevance of such effects is of particular in-
terest, if one probes the regionQ2 → 0 for small values of
x. While this is not precisely the region where the proton
turns again into a pure state, it is nevertheless a region of
phase space where the area probed by the photon is large;
seen from the lowx perspective, one also expects that the
dominant contributions to the DIS process arise from a) the

FIGURE 2. Partonic entropy corrected for charged hadrons only
ln (xg + xΣ) + ln(2/3) versus Bjorkenx. Results are compared
to the final state hadron entropy derived from the charged mul-
tiplicity distributions measured by the H1 collaboration [11] for
track pseudo-rapiditiesη∗ in the hadronic centre-of-mass frame re-
stricted to the range0 < η∗ < 4.

splitting of the virtual photon into a color dipole (consisting
of a quark anti-quark pair) which subsequently scatters b) on
a coherent gluonic field, which characterizes the proton tar-
get. One would then expect for this case a reduction in the
observed entropy. Our comparison is then based on the unin-
tegrated gluon distribution obtained from the HSS fit [12,13],
which provides an unintegrated gluon distribution subject to
NLO BFKL evolution (which does not contain high density
effects) as well as the AAMQS fit [14], which contains high
density effects and which solves the leading order running
coupling improved BK equation (rcBK). Last but not least, as
an additional cross-check of our results, we will also employ
leading order HERA PDFs [15] for a comparison to data. To
determine PDFsi.e. integrated parton densities from their
unintegrated counterparts, we employ the Catani-Hautmann
procedure [16]: The gluon density is obtained from

xg(x, µF ) =

µ2
F∫

0

dk2F(x, k2), (7)

whereF(x,k2) is the unintegrated gluon distribution, while
for the quark PDF one uses

xΣ(x,Q) =

∞∫

0

d∆2

∆2

∞∫

0

dk2

∫ 1

0

dz

×Θ
(

Q2 − ∆2

1− z
− zk2

)
P̃qg

(
z,

k2

∆2

)

×F(x/z, k2), (8)

where the splitting function reads [16]

P̃qg

(
z,

k2

∆2

)
=

αs2nf

2π
TF

∆2

[∆2 + z(1− z)k2]2

×
[
z2 + (1− z)2 + 4z2(1− z)2

k2

∆2

]
, (9)

andµF denotes the factorization scale which we identify for
the current study with the photon virtualityQ. k denotes the
gluon transverse momentum and∆ = q − zk with q the
t-channel quark transverse momentum;TF = 1/2.

Our results, including a comparison to data are then
shown in Figs. 2 and 3. For this comparison we obtain the
relevant mean number of partons through the following aver-
age over the bin size inQ2,

〈n̄(x,Q2)〉Q2 =
1

Q2
max−Q2

min

×
Q2

max∫

Q2
min

dQ2
[
xg(x,Q2) + xΣ(x,Q2)

]
, (10)

which finally yields

〈S(x,Q2)〉Q2 = ln〈n̄(x,Q2)〉Q2 . (11)
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FIGURE 3. Same as Fig. 2, but for the bins20 < Q2/GeV2 < 40 and40 < Q2/GeV2100.

FIGURE 4. Partonic entropy corrected for charged hadrons only,ln (xg + xΣ) + ln(2/3) versus Bjorkenx, calculated for lowQ2 bins. The
result demonstrates saturation of entropy at lowQ2 and lowx.

In this expression,g(x, µ2
f ) denotes the gluon distribu-

tion function at the factorization scaleµf andΣ(x, µ2
f ) =∑nf

a=1

(
qa(x, µ2) + q̄a(x, µ2)

)
the quark flavor singlet distri-

bution, withq(x, µ2) andq̄(x, µ2) quark and antiquark distri-
bution functions for flavora. We find in general a very good
agreement of both the NLO BFKL (HSS) and rcBK frame-
work. While the growth obtained from leading order HERA
PDF is slightly too steep, the general features of the data are
also well described.

In Fig. 4 we finally show our predictions for lowQ2

values. As somehow expected we find that thex depen-
dence found for leading order HERA PDFs agrees qualita-
tively with the one found for NLO BFKL (since both assume
a linear, perturbativex-dependence) while the rcBK frame-
work leads to a flatterx-dependence.

4. Conclusions

The currently presented results are certainly subject to as-
sumptions and certain approximations. In particular a direct
identification of entropy (which is a physical observable) and
the logarithm of the parton distribution functions (which is a
matrix element of certain QCD field operators) is somehow

not possible as an all order result. PDFs are subject to renor-
malization and are therefore at first unphysical. The proposed
relation can be therefore at best serve as a leading order re-
lation, similar to the relation between the structure function
F2 and the sum over quark PDFs times the charge squared
of the corresponding quark. In general it is therefore needed
to make this framework more robust and to derive at an ul-
timate all order definition of this relation. Nevertheless, the
results obtained from the 1+1 dimensional model are at the
very least impressive. Relating PDFs to entropy in the above
simple way, gives us indeed a possibility to describe correctly
H1 data. We find this observation very encouraging and be-
lieve that it justifies further investigations into this direction.
For further discussion of related aspects and a new proposal
related to diffractive DIS, we refer the interested reader to the
publications [6,7] as well as our recent preprint [8].
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