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This paper explores various perspectives on Quantum Detailed Balance and the Entropy Production Rate within the framework of Quan-
tum Markov Semigroups. Using the generators of these semigroups, formulated according to the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) theorem, and their respective adjoints, we identify two contrasting families of Quantum Markov Semigroups. The first family
demonstrates a situation where the condition for Quantum Detailed Balance is violated, yet the entropy production rate is zero. In contrast,
the second family reveals cases where the quantum entropy production rate aligns with an interpretation of Quantum Detailed Balance. These
findings provide insights into the relationship between quantum detailed balance and entropy production rate in open systems.
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1. Introduction

The concept of equilibrium states in physical systems is
well established, with several conditions characterizing such
states, including detailed balance and zero entropy produc-
tion. In the case of classical Markov chains, Qianet al.
[18] demonstrated the equivalence of these two equilibrium
criteria using Kalpazidou’s cycle representation for Markov
chains [14]. In contrast, in the quantum case the notion of
non-equilibrium states is far more intricate, as it encompasses
a wide range of complex behaviors.

In the theory of open quantum systems, the Lindblad
master equation, also known as the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) equation, is integral to this the-
ory, as it represents the most general framework for describ-
ing Markovian quantum dynamics. A wonderful reference
where the derivation of this important equation, both from the
completely positive, trace preserving framework and from the
microscopic dynamics one, can be found in [16]. The semi-
groups arising from this equation, namely, Quantum Markov
Semigroups (QMS), are the key object describing the evolu-
tion of an open quantum system. This note aims to present
the main results of the Quantum Entropy Production Rate
(QEPR) as a means to characterize the equilibrium or Quan-
tum Detailed Balance in the framework of QMS.

The full details of the exposition encompass the span
of [4, 5] and [9–12] which form part of the program outlined
in Reference [1], namely,to look for some interesting GKSL
generators with properties that are rich enough to go beyond
the equilibrium situation, but concrete enough to allow ex-
plicit study and, in some cases, explicit solutions. In the
last section we present recent developments forG-circulant
QMS that generalize known results of circulant QMS, where
the underlying group structure isZn, to a general, possibly
non-commutative, finite groupG. This family, recently in-
troduced in Ref. [6], admits non-equilibrium steady states but
exhibits nice symmetries that allow explicit computation of

the QEPR. The symmetry properties of our semigroups arise
from the group structure on the state space of the associated
classical Markov chain.

2. Entropy production rate for Markov chains

According to Qianet al. [18], the Classical Entropy Produc-
tion Rate of an irreducible Markov chainξ = (ξt)t∈R with in-
tensity transition matrixQ = (qij)i,j∈S and stationary mea-
sureπ = (πi)i∈S , over a finite state spaceS is given by

ep =
d

dt
H

(
Pt,P−t

) ∣∣∣
t=0

, (1)

whereH is the Kullback-Leibler divergence or relative en-
tropy for probability distributions andPt,P−t are the restric-
tion to [0, t] of the distributions ofξ and the reverse chain
ξ−, respectively. TheQ-matrix of the chainξ−is given by
Q− = (πiqij/πj)i,j . This chain is also known as the adjoint
chain with respect toπ. A closed explicit expression of the
entropy production rate may be derived

ep =
1
2

∑

i,j∈S

(πiqij − πjqji) log
πiqij

πjqji
.

It is immediate to see that the reversibility of the process,
which is equivalent to the well-known detailed balance con-
dition

πiqij = πjqji, i, j ∈ S, (2)

may be characterized by the zero entropy production rate
ep = 0.

3. Quantum detailed balance

A Quantum Markov Semigroup (QMS) is a family of trace
preserving, completely positive mapsT = (Tt)t≥0 acting
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on the bounded operatorsB(h) of a Hilbert spaceh satisfy-
ing the semigroup properties and a continuity condition. The
celebrated Gorini-Kossakowski-Sudarshan and Lindblad the-
orem establishes the structure of the infinitesimal generatorL
of a uniformly continuos QMSTt = etL.

L(x) = i[H, x]− 1
2

∑

k≥1

(L∗kLkx

− 2L∗kxLk + xL∗kLk), (3)

whereH = H∗, Lk ∈ B(h) and the series
∑

k≥1 L∗kLk is
convergent in norm. The QMS in the Schrödinger picture is
obtained via the duality relation

Tr
(
ρL(x)

)
= Tr

(L∗(ρ)x
)
, x ∈ B(h), ρ ∈ L1(h).

The operatorL∗ defined by the above is referred to as the
generator of the predual semigroupT∗ = (T∗t)t≥0. A state
ρ is said to be a stationary state forT if L∗(ρ) = 0, equiva-
lently Tr

(
ρL(x)

)
= 0 for all x ∈ B(h).

Several notions of quantum detailed balance for QMS
have been proposed. Roughly speaking, all of these condi-
tions are based on a notion of dual or adjoint. Indeed, for uni-
formly continuous QMS onB(h) with h a separable Hilbert
space, a notion of detailed balance was introduced first by
Agarwal [2], see also the works of Alicki [3] and Frigerio-
Gorini-Kossakowski-Verri [15]. A QMS satisfies the quan-
tum detailed balance condition in the sense of [3, 15] with
respect to a stationary stateρ, if there exists an operator̃L
onB(h) and a self-adjoint operatorK on h such that for all
x, y ∈ B(h) the following relations hold:

Tr(ρL̃(x)y) = Tr(ρxL(y)),

L̃(x)− L(x) = 2i[K, x]. (4)

The operatorL̃ is called theρ-adjoint ofL. For a wide
class of GKSL generators, including those deduced from the
stochastic limit of quantum theory, theρ-adjoint coincides
with the time-reversed generator if quantum detailed balance
holds. Therefore,̃L can be considered as an extension of the
time-reversed GKSL generator to the non-equilibrium situ-
ation, see Accardi-Fagnola-Quezada [1] and the references
therein.

Other notions of quantum detailed balance have been
introduced by Fagnola and Umanità [11, 12]. The main
idea is to decompose the invariant stateρ into two pieces
or, equivalently, define theρ-adjoint using the inner prod-
uct 〈a, b〉s = Tr(ρ1−sa∗ρsb) for 0 ≤ s ≤ 1/2, and replace
relations (4) by

Tr(ρ1−sL′(x)ρsy) = Tr(ρ1−sxρsL(y)),

L′(x)− L(x) = 2i[K,x]. (5)

Due to the non-commutativity, these two definitions are not
equivalent in general. Clearly, detailed balance in the sense
of (4) corresponds with the cases = 0 in (5).

It has been proved [12] that among alls ∈ [0, 1/2], the
two cases above are the two prototypical values:s = 0 ob-
taining L̃ ands = 1/2 obtainingL′. The latter corresponds
with the KMS symmetry discussed by Petz, [17] Goldstein
and Lindsay [13] and Cipriani [7,8]i.e., the QMST is KMS
symmetric if and only ifT = T ′.
Definition 1. We sayL and a faithful invariant stateρ satisfy

1. theSQDBcondition if

L(x)− L′(x) = i[K,x], K = K∗,

whereL′ is the generator of the KMS-adjoint semi-
groupT ′ defined by

Tr
(
ρ

1
2 T ′t (x)ρ

1
2 y

)
= Tr

(
ρ

1
2 xρ

1
2 Tt(y)

)
,

for all x, y ∈ B(h).

3.1. TheΘ-KMS adjoint QMS

Associated with an anti-unitary operatorθ, a reversing op-
eration on the observables is defined asΘ(x) = θx∗θ. This
reversing operation allows us to incorporate in the KMS sym-
metry, typical quantum notions such as that of parity of ob-
servables. We include some useful properties of anti-unitary
operators in the Appendix A.
Definition 2. A uniformly continuous QMS(T )t≥0 with
a faithful invariant stateρ and a KMS adjoint semigroup
(T ′)t≥0, generated byL′, satisfies a Standard Quantum De-
tailed balance condition with respect to the reversing opera-
tion Θ (namelyΘ-SQDB) if

Tt = Θ ◦ T ′t ◦Θ.

whereΘ-SQDB seems to be the most appropriate extension
of detailed balance to the non-commutative case; we present
a notion of adjoint associated withΘ-SQDB condition as fol-
lows.
Definition 3. Given a reversing operationΘ and a uni-
formly continuous QMST = (Tt)t≥0 onB(h) with a faith-
ful invariant stateρ, we say thatT admits aΘ-KMS adjoint
(or dual) QMS with respect to the stateρ if there exists a
QMST Θ = (T Θ

t )t≥0 satisfying the duality relation for all
x, y ∈ B(h)

Tr
(
ρ

1
2 Θ(x∗)ρ

1
2 Tt(y)

)
= Tr

(
ρ

1
2 Θ(T Θ

t (x∗))ρ
1
2 y

)
. (6)

In the above case, it can be seen thatT Θ = Θ ◦ T ′t ◦ Θ.
Conditions for the existence of the uniformly continuos QMS
T Θ have been studied, for instance the weighted detailed bal-
ance condition introduced in Ref. [1].

From now on, we consider the class of uniformly con-
tinuous QMST that admits a uniformly continuousΘ-KMS
adjoint QMST Θ

t . We denote byT∗t andT Θ
∗t the correspond-

ing predual semigroups.
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3.2. States associated with to trace-preserving CP maps

In this section we present a variation of the Choi-
Jamiołkowski where (in the infinite dimensional case) a state
ρ is used to control any possible divergences. It was first in-
troduced in see [4].
Definition 4. The Fagnola-Rebolledo entangled stateωρ on
B(h⊗ h) is defined as

ωρ =
∣∣∣∣
∑

i

ρ
1
2 ei ⊗ ei

〉〈 ∑

j

ρ
1
2 ej ⊗ ej

∣∣∣∣.

Clearly ωρ depends both onρ and the chosen orthonor-
mal basis. A simple computation shows that it is a state, in-
troduced for the first time by Fagnola and Rebolledo [9] in
2009.
Definition 5. Let ρ be a state inB(h), {ei}i an orthonor-
mal basis ofh and takeΦ∗ ∈ CP(

L1(h)
)
, the space of all

bounded CP maps onL1(h). We define the stateEρ(Φ∗) in
B(h⊗ h) as

Eρ(Φ∗) = (1⊗ Φ∗)(ωρ).

If one considers the trace stateρ = (1/n)1, the above
reduces to the usual Choi-Jamiołkowski isomorphism.

Thus, we can associate to each mapT∗t andT Θ
∗t a state

Eρ(T∗t) andEρ(T Θ
∗t ) respectively, inh⊗ h.

The von-Neumann relative entropy or Quantum Relative
Entropy, is well known in the literature as a generalization
of the classical Relative Entropy which is also known as the
Kullback-Leibler divergence.
Definition 6. The Quantum Relative Entropy (QRE) of two
statesη andσ is defined as

S(η, σ) = tr
(
η log η − η log σ)

)
,

if ker(σ) ⊂ ker(η) and∞ otherwise.
It is well known thatS(η, σ) ≥ 0 for all η, σ. Moreover,

S(η, σ) = 0 if and only if η = σ. In the following section,
we define the Quantum Entropy Production Rate in analogy
to (1).

3.3. Quantum entropy production rate

The relative entropyS(Eρ(T∗t), Eρ(T Θ
∗t )) is a measure of the

deviation fromΘ-SQDB of the semigroupT . Moreover, one
can define the rate of change of relative entropy as follows.
Definition 7. The Quantum Entropy Production Rate of the
uniformly continuos QMST∗, with respect to the invariant
stateρ, is defined as

ep(T∗, ρ) =
d

dt
S(Eρ(T∗t), Eρ(T Θ

∗t ))
∣∣∣∣
t=0

. (7)

Notice that in the last definition there is no reference to
the orthonormal basis used to compute theEρ states ofT∗ and
T Θ
∗ , this is justified by the following theorem.

Theorem 8. Let {ei}i be an orthonormal basis ofh, Φ∗, Ψ∗
two CP trace preserving maps acting onL1(h), andEρ(Φ∗),
Eρ(Ψ∗), theEρ states onB(h ⊗ h), associated withΦ∗ and
Ψ∗, respectively. The relative entropyS

(Eρ(Φ∗), Eρ(Ψ∗)
)

does not depend on the orthonormal basis{ei}i.
Proof. It suffices to prove that if{e′i}i is another orthonormal
basis ofh andE ′ρ(Φ∗), E ′ρ(Ψ∗) are the corresponding states
associated withΦ∗ andΨ∗, then

S
(E ′ρ(Φ∗), E ′ρ(Ψ∗)

)
= S

(Eρ(Φ∗), Eρ(Ψ∗)
)
. (8)

Using the properties of the anti-unitary operatorθ, it fol-
lows thatUθU∗θ ⊗ 1 is a unitary operator, this identity fol-
lows from an application of the well known invariance of rel-
ative entropy with respect to unitary conjugations, which is
a consequence of its monotonicity with respect to CP maps
(Petz-Uhlmann Theorem).¤

Thus, in practice one uses the basis ofρ and takesθ to be
the conjugation with respect to this basis, which results in the
following commutation, ifu ∈ h then

θρu =
∑

i

ρi〈u, ei〉ei =
∑

i

ρi〈ei, θu〉ei = ρθu.

Theorem 9. Let (Tt)t≥0 be a QMS with a faithful invariant
stateρ such thatImρ1/2 = h andΘ-KMS adjointT Θ

t , then
the following are equivalent:

i) (Tt)t≥0 satisfies aΘ-SQDB condition.

ii) The Quantum Relative Entropy vanishes

S
(
Eρ(T∗t), Eρ(T∗Θt )

)
= 0 for all t ≥ 0.

Consequently, the Θ-SQDB condition implies that
ep(T∗, ρ) = 0.

As a consequence of the above theorem, we call a non-
equilibrium steady state any invariant stateρ of T for which
ep(T∗, ρ) 6= 0.

It turns out that the converse of Theorem 9 does not hold.
Indeed, consider the semigroup onh = C2 with GKSL gen-
erator given by

L(x) = L∗1xL1 + L∗2xL2 + G∗x + xG, (9)

whereL1 = |e2〉〈e1|, L2 = |e1〉〈e2|, G = −(1/2)1 − iH
and andH = ik(L1 − L2), k ∈ R − {0}. Let θ be the con-
jugation w.r.t. the canonical basis andρ = (1/2)1, which
is a faithful invariant state ofL. On the one hand, it can be
checked that theΘ-SQDB condition is satisfied byL if and
only if G = G∗, which directly fails. On the other hand, the
explicit computation of the QEPR yields thatep(T∗, ρ) = 0.

We finish this section by a condition under which theΘ-
KMS adjoint and the KMS adjoint coincide, rendering the
computation of the QEPR simpler.
Definition 10. A CP operatorΦ is called parity preserv-
ing, with respect to the anti-unitary operatorθ, if it com-
mutes with the time reversing operationΘ(x) = θx∗θ, i.e.,
Θ(Φ(x)) = Φ(Θ(x)) for all x ∈ B(h).

Supl. Rev. Mex. Fis.6 011309
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A QMS(Tt)t≥0 is parity-preserving w.r.t.θ if and only if
Tt is parity preserving w.r.t.θ for everyt ≥ 0.
Corollary 11. The QMS is parity-preserving, the Quantum
Relative Entropy satisfies

S(T∗t, T Θ
∗t ) = S(T∗t, T ′∗t).

In other words, the QEPR can be computed using either the
usual KMS adjoint or theΘ-KMS adjoint.
Proof. Recall thatθ2 = 1, it is then immediate thatT ′t = T Θ

t

when the QMS is parity-preserving.¤

4. G-circulant QMS

Let G be a finite group and consider`2(G), the Hilbert space
of all functionsα : G → C with point-wise addition and in-
ner product〈α, β〉 =

∑
g∈G αgβg. Denote by(eg)g∈G the

orthonormal basis of̀2(G) whereeg(h) = 1, if g = h, and
eg(h) = 0, otherwise. Each elementα ∈ `2(G) can be then
written asα =

∑
g∈G αgeg.

The left regular representationof G is the unitary repre-
sentation that maps each group elementg ∈ G to the operator
Ug : `2(G) → `2(G) determined byUg(eh) = egh for every
h ∈ G. Note thatUg andU∗

g can be written in terms of the
matrix units|ek〉〈el| as

Ug =
∑

k∈G

|ek〉〈eg−1k| and U∗
g =

∑

k∈G

|ek〉〈egk|. (10)

Theright regular representationof G is the unitary represen-
tation that maps everyg ∈ G to the operatorVg : `2(G) →
`2(G) determined byVg(eh) = ehg for everyh ∈ G. Note
that Vg andV ∗

g can be written in terms of the matrix units
|ek〉〈el| as

Vg =
∑

k∈G

|ek〉〈ekg−1 | and V ∗
g =

∑

k∈G

|ek〉〈ekg|. (11)

The families of leftG-circulant (resp. rightG-circulant) ma-
trices are defined as the matrix algebra generated by{Ug :
g ∈ G} (resp.{Vg : g ∈ G}). These two families commute
with each other and coincide whenever theG is abelian. In
particular, whenG = Zn the algebra of circulant matrices is
recovered.
Definition 12. A linear mapL : B(`2(G)) → B(`2(G))
is said to be a leftG-circulant GKSL generator if there is
a vector (αg)g∈G ∈ `2(G) with αg ≥ 0 for g 6= e and
αe = −1 = −∑

g 6=e αg andH = H∗ such that

L(x) = i[H,x] +
∑

g∈G

αgU
∗
g xUg for all x ∈ B(`2(G)).

TakingLk =
√

αkUk for k ∈ G \ {e}, we can express
the above in the GKSL standard form (3). Moreover, since
they act on finite dimensional algebrasB(`2(G)), left G-
circulant GKSL generators are bounded operators, and, con-
sequently, give rise to uniformly continuous quantum Markov
semigroups.

Definition 13. A uniformly continuous QMS(Tt)t≥0 acting
on a matrix algebraB(`2(G)) is said to be leftG-circulant if
Tt = exp(tL) for all t ≥ 0 for some leftG-circulant GKSL
generatorL.

The circulant generatorsL(x) =
∑n−1

k=0 αn−kJ∗kxJk

from [5] correspond to leftZn-circulant GKSL generators in
the above definition; in particular, each shift matrixJk =∑n−1

i=0 |ei〉〈ei+k| ∈ Matn(C) corresponds to the unitary op-
eratorU∗

k for eachk in the cyclic groupZn.
A key feature of leftG-circulant generators is that their

preduals are of the same type. Namely, ifL(x) is a left
G-circulant GKSL with vector(αg)g∈G, then its predual
L∗ is also a leftG-circulant GKSL generator with vector
(αg−1)g∈G and−H.

A wide study of the structure of the invariant states, in-
variant subspaces and some spectral properties ofG-circulant
semigroups can be found in [6]. We recall that if the leftG-
circulant matrix associated toL is irreducible, then the set of
invariant states is precisely the set of rightG-circulant states,
i.e.,

L∗(ρ) = 0 ⇔ ρ =
∑

g∈G

βgV
∗
g and is a state.

Theorem 14. A faithful invariant stateρ and an irreducible
G-circulant GKSL generatorL satisfy theSQDB condition
if and only ifαg = αg−1 .
Proof. If ρ is an invariant state, then it commutes withUg

and thusρ1/2 commutes withUg as well. This implies that
T ′t = T∗t andL′ = L∗, thus

L − L′ = 2i[H, x] +
∑

g∈G

(αg − αg−1)U∗
g xUg.

Recall that the GKSL generatorL(x) = i[H,x] −
(1/2)

∑
j(L

∗
jLjx + xL∗jLj − 2L∗jxLj) can be written as

L(x) = G∗x +
∑

j

L∗jxLj + xG,

whereG = −(1/2)(
∑

j L∗jLj − iH), and its predual is

L∗(x) = xG∗ +
∑

j

LjxL∗j + Gx.

Let θ : `2(G) → `2(G) be an anti-unitary operator satisfying
θ2 = 1, say the conjugation w.r.t. the basis(eg)g∈G and the
time reversal operationΘ(x) = θx∗θ, we will assume that
θG∗θ = G andθρ = ρθ.

The assumptionθρ = ρθ is known to be equivalent
to ρ being symmetricρ = ρT . In our case, sinceρ =∑

g∈G βgV
∗
g must be rightG-circulant we have the following

equivalent condition:

βg = 〈ek, ρekg〉 = 〈ekg, ρek〉 = βg−1 .

Theorem 15. A faithful invariant stateρ and an irreducible
G-circulant GKSL generatorL satisfy theΘ− SQDB con-
dition if and only ifαg = αg−1 .
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Using that(θxθ)∗ = θx∗θ direct computations show that

Θ ◦ L ◦Θ(x)=θ
(
G∗θx∗θ+

∑

g∈G

αgU
∗
g θx∗θUg+θx∗θG

)∗
θ

= θ
(
θxθG +

∑

g∈G

αgU
∗
g θxθUg + G∗θxθ

)
θ

= θ2xθGθ +
∑

g∈G

αgθU
∗
g θxθUgθ + θG∗θxθ2

= xG∗ +
∑

g∈G

αgU
∗
g xUg + Gx,

thus, sinceL′ = L∗ then

Θ ◦ L ◦Θ(x)− L′(x) =
∑

g∈G

(αg − αg−1)U∗
g xUg.

This condition for reversibility coincides with the one ob-
tained from the classical detailed balance condition (2) of a
left G-circulant Markov chainξ.

5. Conclusion

The concept of equilibrium has long served as a cornerstone
in both classical and quantum statistical mechanics. In clas-
sical settings, conditions such as detailed balance and van-
ishing entropy production are known to be equivalent charac-
terizations of equilibrium behavior. However, in the quantum
setting, this equivalence breaks down in subtle but fundamen-
tal ways.

In this work, we have studied the Quantum Entropy Pro-
duction Rate (QEPR) as a tool to characterize and quan-
tify the departure from equilibrium in quantum systems
governed by Quantum Markov Semigroups (QMS). These
semigroups arise from the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) equation, which provides a general frame-
work for modeling the evolution of open quantum systems
under Markovian dynamics.

While it is true that a QMS satisfying theΘ-Standard
Quantum Detailed Balance (Θ-SQDB) condition has vanish-
ing QEPR, the converse fails. We exhibited (see (9)) an ex-
plicit example of a QMS acting on a two-level system where
the entropy production vanishes, yet the generator does not
satisfy theΘ-SQDB condition. This highlights the richer
and more nuanced structure of non-equilibrium phenomena
in quantum systems, where symmetry or reversibility at the
level of entropy production does not necessarily reflect a full
equilibrium structure.

Our study contributes to the broader program of going
beyond equilibrium, a research direction that seeks to un-
derstand and classify open quantum systems that, while not
in thermal equilibrium, still exhibit enough structure to al-
low explicit mathematical and physical analysis. Within this
framework, we explored a recently introduced family ofG-
circulant QMS, which generalizes circulant QMS to a finite
(possibly non-abelian) group. These systems support non-
equilibrium steady states and display sufficient symmetry to

permit explicit calculation of entropy production, a rare fea-
ture in quantum dynamics.

Future lines of research include extending these results
to broader classes of group-indexed semigroups, examin-
ing whether other notions of quantum reversibility corre-
spond more closely with QEPR. An ambitious direction
would be to study experimental realizations of such struc-
tured non-equilibrium quantum processes, potentially pro-
viding a testbed for the concepts explored here.

Appendix

A. Anti-unitary Operators

We recover some useful properties regarding anti-unitary op-
erators.
Definition 16. A bijective, anti-linear operatorθ : h −→ h
is called anti-unitary if

〈θu, θv〉 = 〈v, u〉, for all x, y ∈ h.

It is immediate from the definition that anti-unitary oper-
ators are bounded operators. Even more, they are antilinear
isometries, and so they send orthonormal bases on orthonor-
mal bases. The most used anti-unitary operators in physics
are those satisfyingθ2 = 1, a property that we assume from
now on.

The following properties are straightforward.
Proposition 17.An anti-unitary operatorθ has the following
properties:

(i) Its adjoint θ∗ is also antilinear and it is defined by
〈u, θv〉 = 〈v, θ∗u〉. If θ2 = 1, thenθ = θ∗.

(ii) θθ∗ = θ∗θ = 1.

(iii) θxθ is a linear operator satisfying(θxθ)∗ = θ∗x∗θ∗.
If θ2 = 1, then(θxθ)∗ = θx∗θ.

(iv) The composition of two anti-unitary operators is uni-
tary.

(v) The composition of a unitary and an anti-unitary oper-
ator is an anti-unitary operator.

(vi) Each anti-unitary operatorθ is the composition of an
unitary and a conjugation w.r.t. an orthonormal basis.

Due to(vi), when dealing with an anti-unitary operator
and an orthonormal basis{ei}i, up to a unitary transforma-
tion we can identifyθ with the conjugation w.r.t.{ei}i. So
thatθei = ei and foru =

∑
i uiei, θu =

∑
i ūiei.

As we have seen, one needs to be careful when operat-
ing with anti-unitary operators, since their behaviour can be
rather counter-intuitive. Some final properties that are found
to be useful in practice are:

(i) θ|ei〉〈ej |θ = |θei〉〈θej | = |ei〉〈ej |.
(ii) θ|ei〉〈ej | = |ei〉〈ej |θ.
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