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This paper explores various perspectives on Quantum Detailed Balance and the Entropy Production Rate within the framework of Quan-
tum Markov Semigroups. Using the generators of these semigroups, formulated according to the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) theorem, and their respective adjoints, we identify two contrasting families of Quantum Markov Semigroups. The first family
demonstrates a situation where the condition for Quantum Detailed Balance is violated, yet the entropy production rate is zero. In contrast,
the second family reveals cases where the quantum entropy production rate aligns with an interpretation of Quantum Detailed Balance. Thes:
findings provide insights into the relationship between quantum detailed balance and entropy production rate in open systems.

Keywords: Quantum markov semigroups; entropy production; equilibrium; detailed balance; reversibility; circulant; G-circulant.

DOI: https://doi.org/10.31349/SuplRevMexFis.6.011309

1. Introduction the QEPR. The symmetry properties of our semigroups arise

o ) ] _from the group structure on the state space of the associated
The concept of equilibrium states in physical systems ig|assical Markov chain.

well established, with several conditions characterizing such

states, including detailed balance and zero entropy produc- . .
tion. In the case of classical Markov chains, Qiainal. 2. Entropy prOdUCt'On rate for Markov chains

[1?3] Qemo.nstrated the eq'uwalence of these .tWO equlllbrlumAccording to Qiaret al. [18], the Classical Entropy Produc-
criteria using Kalpazidou's cycle representation for Markov

; : 8 ion Rate of anirreducible Markov chajn= (&;):er With in-
chains [14]'. In contrast, in the qgan_tum case the notion OEensny transition matrix) = (¢;;):,jes and stationary mea-
non-equilibrium states is far more intricate, as it encompasses o N T

. . Surer = (m;);es, Over a finite state spaceis given by
a wide range of complex behaviors.

In the theory of open quantum systems, the Lindblad o d _ 1
master equation, also known as the Gorini-Kossakowski- ep = 51 (B, PYy) ’t:o’ @

dt
Sudarshan-Lindblad (GKSL) equation, is integral to this the- . . . .
ory, as it represents the most general framework for describV-VhereH is the Kullback-Leibler divergence or relative en-

ing Markovian quantum dynamics. A wonderful referencei_romi fo(r) ptrobfa :)r:l|tyd(_jlft_gb$_tlons ant;, dPi_h are the rest;:c_—
where the derivation of this important equation, both from theon 10 [0, }.o € distrioutions of an .e_r.ever.se chain
, respectively. The&)-matrix of the chainrt~is given by

completely positive, trace preserving framework and from thé __ = . i 7
microscopic dynamics one, can be found in [16]. The semi&@~ = (7i4ij/7;), ; - This chain is also known as the adjoint
hain with respect tar. A closed explicit expression of the

groups arising from this equation, namely, Quantum Markov’ . ;
Semigroups (QMS), are the key object describing the evolu_entropy production rate may be derived

tion of an open quantum system. This note aims to present 1 Tidij
the main results of the Quantum Entropy Production Rate =35 Y (migi; — mi;1) log Tt
- e i,j€S Jdgi
(QEPR) as a means to characterize the equilibrium or Quan- J
tum Detailed Balance in the framework of QMS. It is immediate to see that the reversibility of the process,

The full details of the exposition encompass the spafyhich is equivalent to the well-known detailed balance con-
of [4, 5] and [9-12] which form part of the program outlined djtion

in Reference [1], namelyp look for some interesting GKSL

generators with properties that are rich enough to go beyond Tiij = TjQji, 4, J € 5, (2)

the equilibrium situation, but concrete enough to allow ex-

plicit study and, in some cases, explicit solutions the — May be characterized by the zero entropy production rate
last section we present recent developmentsGfairculant € = 0.

QMS that generalize known results of circulant QMS, where

the underlying group structure i, to a general, possibly 3, Quantum detailed balance

non-commutative, finite groug:. This family, recently in-

troduced in Ref. [6], admits non-equilibrium steady states buA Quantum Markov Semigroup (QMS) is a family of trace
exhibits nice symmetries that allow explicit computation of preserving, completely positive mafis = (7;);>o acting
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on the bounded operatoh) of a Hilbert spacéh satisfy- It has been proved [12] that among alke [0,1/2], the
ing the semigroup properties and a continuity condition. Thewo cases above are the two prototypical values: 0 ob-
celebrated Gorini-Kossakowski-Sudarshan and Lindblad thetaining £ ands = 1/2 obtaining£’. The latter corresponds
orem establishes the structure of the infinitesimal genefator with the KMS symmetry discussed by Petz, [17] Goldstein

of a uniformly continuos QMYE; = et~. and Lindsay [13] and Cipriani [7, 8]e., the QMST is KMS
1 symmetric if and only if7 = 7.
L(z)=14[H,z] — 3 Z(L;ka Definition 1. We sayC and a faithful invariant state satisfy
k>1
— 2Lz Ly + xLj Ly), 3) 1. the SQDB condition if
whereH = H*, L € B(h) and the seried ., L;Ly is L) = L) = i[K,z], K=K,

convergent in norm. The QMS in the Sélinger picture is

. - .
obtained via the duality relation where £’ is the generator of the KMS-adjoint semi-

group7”’ defined by
Tr (pL(z)) = Tr (L.(p)x), x € B(h), p € Li(h). . s L
_ _ Tr (pﬂ; (x)pr) =Tr <p2$0272(y)),
The operatorL, defined by the above is referred to as the

generator of the predual semigrotip = (7.¢):>0. A state forall 2,y € B(h).
p is said to be a stationary state forif £.(p) = 0, equiva-
lently Tr (pL(z)) = 0for all z € B(h). 3.1. The©-KMS adjoint QMS

Several notions of quantum detailed balance for QMS
have been proposed. Roughly speaking, all of these condjassociated with an anti-unitary operatér a reversing op-
tions are based on a notion of dual or adjoint. Indeed, for unieration on the observables is definedads’) = #z*6. This
formly continuous QMS oB(h) with h a separable Hilbert  reversing operation allows us to incorporate in the KMS sym-
space, a notion of detailed balance was introduced first byhetry, typical quantum notions such as that of parity of ob-
Agarwal [2], see also the works of Alicki [3] and Frigerio- servables. We include some useful properties of anti-unitary
Gorini-Kossakowski-Verri [15]. A QMS satisfies the quan- operators in the Appendix A.
tum detailed balance condition in the sense of [3, 15] withDefinition 2. A uniformly continuous QMST),>o with
respect to a stationary state if there exists an operata® 3 fajthful invariant statep and a KMS adjoint semigroup
on B(h) and a SE|f-adj0int Operatd( on h such that for all (T/)t>01 generated b)C’, satisfies a Standard Quantum De-
z,y € B(h) the following relations hold: tailed balance condition with respect to the reversing opera-

Te(pl(2)y) = Tr(prL(y)), tion © (namely©-SQDB) if

L(z) — L(z) = 2i[K, x]. (4) T, =00T/00O.

The operatotC is called thep-adjoint of £. For a wide where©-SQDB seems to be the most appropriate extension
class of GKSL generators, including those deduced from thef detailed balance to the non-commutative case; we present
stochastic limit of quantum theory, theadjoint coincides a notion of adjoint associated wieSQDB condition as fol-
with the time-reversed generator if quantum detailed balanclWs-
holds. Thereforef can be considered as an extension of theDefinition 3. Given a reversing operatio® and a uni-
time-reversed GKSL generator to the non-equilibrium situ-formly continuous QMS™ = (7;);>0 on B(h) with a faith-
ation, see Accardi-Fagnola-Quezada [1] and the referencdd! invariant statep, we say thatZ” admits a©-KMS adjoint
therein. (or dual) QMS with respect to the stageif there exists a

Other notions of quantum detailed balance have beeRMST® = (7,°);>¢ satisfying the duality relation for all
introduced by Fagnola and Umait[11, 12]. The main 2.y € B(h)
idea is to decompose the invariant staténto two pieces . ) . .
or, equivalently, define the-adjoint using the inner prod-  Tr (pﬁ@(x*)pﬁﬁ(yﬁ =Tr (ﬂf@(ﬁe(l‘*))ﬂfy)- (6)
uct (a,b)s = Tr(p*~*a*p®b) for 0 < s < 1/2, and replace

relations /4) by In the above case, it can be seen th& = © 0 7, 0 O.
e . e . Conditions for the existence of the uniformly continuos QMS
Te(p L' (2)py) = Tr(p" " 2p°L(y)), T© have been studied, for instance the weighted detailed bal-
£(z) - L(z) = 2i[K, 2. (5) ance condition introduced in Ref. [1].

From now on, we consider the class of uniformly con-
Due to the non-commutativity, these two definitions are notinuous QMST that admits a uniformly continuoud-KMS
equivalent in general. Clearly, detailed balance in the sensadjoint QMS7Z,°. We denote byZ,; andZ.9 the correspond-
of (4) corresponds with the case= 0 in (5). ing predual semigroups.
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3.2. States associated with to trace-preserving CP maps Theorem 8. Let{e;}; be an orthonormal basis ¢f, @, U,

two CP trace preserving maps acting éa(h), and&,(2.),
In this section we present a variation of the Choi-¢ ,(0,), the&, states onB(h © h), associated withb, and
Jamiotkowski where (in the infinite dimensional case) astatel,* respect|vely The relative entrogy(&,(®.), &,(T.))

P is used to control any pOSSIb|e leergenceS It was first i |n'does not depend on the orthonormal bdﬁs}

troduced in see [4]. Proof. It suffices to prove that ife} }; is another orthonormal
Definition 4. The Fagnola-Rebolledo entangled stafgon  pasis ofh and&)(®.), £,(P.) are the corresponding states
B(h ® h) is defined as associated witl®,. and ¥, then
1 1 / / —
N ’2026i®6i><2p2ej®ej . S(gp((p*)’gp(\p*)) *S(EP((I)*)’EP(\II*))' (®)

Y Using the properties of the anti-unitary operaioit fol-
lows thatU U0 & W is a unitary operator, this identity fol-

mal basis. A simple computation shows that it is a state, InIows from an application of the well known invariance of rel-

troduced for the first time by Fagnola and Rebolledo [9] in&tVe entropy with respect to unitary conjugations, which is
2009 a consequence of its monotonicity with respect to CP maps

(Petz-Uhlmann Theoremi]

Clearly w, depends both op and the chosen orthonor-

Definition 5. Let p be a state inB(h), {e;}; an orthonor-

mal basis ofh and take®. € CP(L;(h)), the space of all th Thu_s, intpracti_ct:ﬁ one ustets ttr;? bssig;afnc:]_tahkeﬁ ttl)tb(.a th
bounded CP maps oh; (h). We define the statg, (@, ) in e conjugation with respect to this basis, which results in the
B(h®h) as following commutation, ifu € h then

Opu = pilu,e;)e; piles, u)e; = pbu.
£,(0.) = (1® 2.)(w,). 2 >

If one considers the trace stagte= (1/n)1, the above Theorem 9. Let (7;);>0 be a QMS with a faithful invariant
reduces to the usual Choi-Jamiotkowski isomorphism. statep such that/mp!/2 = h and ©-KMS adjointZ,®, then
Thus, we can associate to each nfapand7Z,§ a state the following are equivalent:
E,(T.) and&,(T.2) respectively, irh ® h. . o -
The von-Neumann relative entropy or Quantum Relative ) (7¢)¢>o satisfies 8-SQDB condition.

Entropy, is well known in the literature as a generalization jjy The Quantum Relative Entropy vanishes
of the classical Relative Entropy which is also known as the

Kullback-Leibler divergence. S(E,)(T*t),gp(ﬂf)» =0 forallt>0.
Definition 6. The Quantum Relative Entropy (QRE) of two
states ando is defined as Consequently, the ©-SQDB condition implies that
eP(IH p) =0.
S(n,o)=tr (77 logn —nlog U))» As a consequence of the above theorem, we call a non-
equilibrium steady state any invariant statef 7" for which
if ker(o) C ker(n) andoo otherwise. ep(Te,p) # 0.
It is well known thatS(n, o) > 0 for all n, 0. Moreover, It turns out that the converse of Theorem 9 does not hold.

S(n,o) = 0ifand only if » = 0. In the following section, Indeed, consider the semigroup lon= C? with GKSL gen-
we define the Quantum Entropy Production Rate in analoggrator given by
to (2).

@ L(x) = LizLy + LyzLo + G*z + 2G, 9)
3.3.  Quantum entropy production rate whereL, = |es){er], Lo = |e1)(ea], G = —(1/2)1 — iH
and andH = ik(Ly; — L2), k € R — {0}. Letd be the con-
jugation w.r.t. the canonical basis apd= (1/2)1, which
is a faithful invariant state of. On the one hand, it can be
checked that th€®-SQDB condition is satisfied by if and
only if G = G*, which directly fails. On the other hand, the
explicit computation of the QEPR yields thgf(7., p) = 0.

We finish this section by a condition under which the
d o KMS adjoint and the KMS adjoint coincide, rendering the
ep(ZTi,p) = %S(gp(,]—*t)a Ep(T,7)) : () computation of the QEPR simpler.
=0 Definition 10. A CP operator® is called parity preserv-
Notice that in the last definition there is no reference toing, with respect to the anti-unitary operatay, if it com-
the orthonormal basis used to computedpstates of7, and  mutes with the time reversing operatiér{z) = 6z*6, i.e,
7.9, this is justified by the following theorem. O(®(x)) = ®(O(x)) for all z € B(h).

The relative entropy(£,(7..), £,(7.S)) is a measure of the
deviation fromO-SQDB of the semigroufd. Moreover, one
can define the rate of change of relative entropy as follows.
Definition 7. The Quantum Entropy Production Rate of the
uniformly continuos QM%,,, with respect to the invariant
statep, is defined as

Supl. Rev. Mex. Fis6 011309
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A QMS(7;),>¢ is parity-preserving w.r.td if and only if
T, is parity preserving w.r.té for everyt > 0.

Definition 13. A uniformly continuous QM8T;),> acting
on a matrix algebra3(¢>(G)) is said to be left-circulant if

Corollary 11. The QMS is parity-preserving, the Quantum 7; = exp(tL£) for all ¢ > 0 for some leftG-circulant GKSL

Relative Entropy satisfies

S(ﬂtaﬂ?) = S(,];tv */t)'

In other words, the QEPR can be computed using either th

usual KMS adjoint or th&®-KMS adjoint.
Proof. Recall tha#? = 1, itis then immediate thaf, = 7,°
when the QMS is parity-preservingl

4. G-circulant QMS

Let G be a finite group and considér(G), the Hilbert space
of all functionsa : G — C with point-wise addition and in-
ner produc(c, 8) = 3_ .o @3, Denote by(ey)yec the
orthonormal basis of,(G) wheree,(h) = 1, if g = h, and
eq(h) = 0, otherwise. Each element € ¢»(G) can be then
written asa = . ; agéeg.

Theleft regular representationf G is the unitary repre-
sentation that maps each group elemgeatG to the operator
Uy : 42(G) — £2(G) determined by, (es,) = ey, for every
h € G. Note thatU, andU,; can be written in terms of the
matrix units|ey ) (e;| as

U= leidle, el and U7 =3 lew)eqil (10)

keG keG

Theright regular representationf G is the unitary represen-
tation that maps every € G to the operatol/, : (>(G) —
¢5(G) determined by, (es) = enq for everyh € G. Note
that V, and V* can be written in terms of the matrix units
|€k><€l‘ as

Vo= lexdeng1l and Vg =3 lex)(engl. (11)

keG keG

The families of leftG-circulant (resp. righGG-circulant) ma-
trices are defined as the matrix algebra generatedilhy:

g € G} (resp.{V, : g € G}). These two families commute
with each other and coincide whenever thds abelian. In
particular, wherG = Z,, the algebra of circulant matrices is
recovered.

Definition 12. A linear mapL : B({:(G)) — B(¢2(G))
is said to be a leftz-circulant GKSL generator if there is
a vector (ag)gec € {2(G) with oy > 0 for g # e and
ae=—-1=-3%, asandH = H* such that

L(z)=i[H,2]+ Y a,UszU, forallz e B(ly(G)).
geqG

Taking L, = \/a,Uy for k € G\ {e}, we can express

the above in the GKSL standard fori8)( Moreover, since
they act on finite dimensional algebr&g/;(G)), left G-

generator..

The circulant generator§(z) = Y720 cn i J* g
from [5] correspond to lefZ,,-circulant GKSL generators in
the above definition; in particular, each shift matid¥ =

?;01 le;){ei+x| € Mat,(C) corresponds to the unitary op-
eratorU;; for eachk in the cyclic groufZ,,.

A key feature of leftG-circulant generators is that their
preduals are of the same type. Namely/Lifx) is a left
G-circulant GKSL with vector(ag)sec, then its predual
L. is also a leftG-circulant GKSL generator with vector
(ag-1)gec and—H.

A wide study of the structure of the invariant states, in-
variant subspaces and some spectral properti€saifculant
semigroups can be found in [6]. We recall that if the I8t
circulant matrix associated 0 is irreducible, then the set of
invariant states is precisely the set of rightcirculant states,
ie.,

L.(p)=0%p=Y_ p,V; andis astate
geG

Theorem 14. A faithful invariant statep and an irreducible
G-circulant GKSL generatof satisfy theSQ D B condition
ifand only ifay = ag-1.

Proof. If p is an invariant state, then it commutes witl
and thusp!/? commutes withl/, as well. This implies that
7] = T, andL' = L., thus

L—L =2i[H 2]+ Y (0 — ag1)UszU,.
geG

Recall that the GKSL generatof(x) i[H, x| —
(1/2)>°,;(LjLjz +xLjL; — 2LjxL;) can be written as

L(x)=G'z+ Y LixzL;+2G,
J

whereG = —(1/2)(3_; LjL; — iH), and its predual is

L.(z)=2G"+ ZijL;‘- + Gz.

J

Letd : {»(G) — {5(G) be an anti-unitary operator satisfying
6% = 1, say the conjugation w.r.t. the basis,),cc and the
time reversal operatio®(z) = 6z*¢, we will assume that
0G*0 = G andbp = pb.

The assumptiortp pd is known to be equivalent
to p being symmetrico = p”. In our case, since =
>_gec BV, must be rightG-circulant we have the following
equivalent condition:

By = (ek, perg) = (€rg, per) = Pg-1.

circulant GKSL generators are bounded operators, and, coff-heorem 15. A faithful invariant statep and an irreducible
sequently, give rise to uniformly continuous quantum MarkovG-circulant GKSL generator: satisfy the® — SQ DB con-

semigroups.

dition if and only ifay = ag-1.
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Using that(dz0)* = 62*6 direct computations show that permit explicit calculation of entropy production, a rare fea-
o o . * ture in quantum dynamics.

O o0 Lo O(x)=0 (G 0270+  agUs 020U, +0a 9G> 0 Future lines of research include extending these results
9eq to broader classes of group-indexed semigroups, examin-

_ N " ing whether other notions of quantum reversibility corre-

o Q(QMGJF Z%UQQ"MUQ +G 9379)9 spond more closely with QEPR. An ambitious direction

geG . . .
would be to study experimental realizations of such struc-

= 0%220G0 + Z g 0U020U,0 + 0G* 0102 tured non-equilibrium quantum processes, potentially pro-

e viding a testbed for the concepts explored here.
:xG*—&—ZagU;‘ng—i—G:m .
= Appendix
thus, sinceC’ = L, then A. Anti-unitary Operators
/ _ _ *
©0LoO(r) — L'(w) =Y _(ag — ag-1)Uyaly. We recover some useful properties regarding anti-unitary op-

9€@ erators.

This condition for reversibility coincides with the one ob- Definition 16. A bijective, anti-linear operatof : h — h
tained from the classical detailed balance condit@jnof a s called anti-unitary if

left G-circulant Markov chairg.
(Qu, Ov) = (v,u), forallz,y € h.

5. Conclusion It is immediate from the definition that anti-unitary oper-

Th t of ilibrium has | d ‘ ators are bounded operators. Even more, they are antilinear
€ concept of equitibrium has long served as a Comerstong , etries, and so they send orthonormal bases on orthonor-

in both classical and quantum statistical mechanics. In clagy, o pases. The most used anti-unitary operators in physics
sical settings, conditions such as detailed balance and Valia those éatisfyin@z .

- . . = 1, a property that we assume from
ishing entropy production are known to be equivalent charac- propefty

L. h ilibri behavi H in th now on.
terizations of equilibrium behavior. However, In the quantum The following properties are straightforward.

setting, this equivalence breaks down in subtle but fundameq:—,roposition 17. An anti-unitary operatod has the following

tal ways. o
. . roperties:
In this work, we have studied the Quantum Entropy Pro-p P

duction Rate (QEPR) as a tool to characterize and quan- (i) Its adjoint #* is also antilinear and it is defined by
tify the departure from equilibrium in quantum systems (u, Ov) = (v,0*u). If 62 = 1, thend = 6*.
governed by Quantum Markov Semigroups (QMS). These . . .
semigroups arise from the Gorini-Kossakowski-Sudarshan- (i) 66% =676 = 1.
Lindblad (GKSL) equation, which provides a general frame- (jii) ¢z¢ is a linear operator satisfyingfz6)* = 6*z*9*.
work for modeling the evolution of open quantum systems If 62 = 1, then(6z6)* = 6.
under Markovian dynamics.

While it is true that a QMS satisfying th@-Standard (iv) The composition of two anti-unitary operators is uni-
Quantum Detailed Balanc®¢{SQDB) condition has vanish- tary.
ing QEPR, the converse fails. We exhibited (<89 &n ex-
plicit example of a QMS acting on a two-level system where
the entropy production vanishes, yet the generator does not
satisfy the©-SQDB condition. This highlights the richer  (vi) Each anti-unitary operato# is the composition of an
and more nuanced structure of non-equilibrium phenomena unitary and a conjugation w.r.t. an orthonormal basis.
in quantum systems, where symmetry or reversibility at the ) ) ) o
level of entropy production does not necessarily reflect a full DU o (vi), when dealing with an anti-unitary operator
equilibrium structure. gnd an orthqnormal ba_s{sei}i, up _to a gmtary transforma-

Our study contributes to the broader program of goingt'on we can identifyd with the conjugatlonj/v.r.t.{ei}i. So
beyond equilibrium, a research direction that seeks to unthatfe: = e and foru =37, wie;, Ou = 3, wie;.
derstand and classify open quantum systems that, while not AS We have seen, one needs to be careful when operat-
in thermal equilibrium, still exhibit enough structure to al- ing with antl-unltary_operators, since their _behawour can be
low explicit mathematical and physical analysis. Within this rather count_er-lntwt_lve. Some final properties that are found
framework, we explored a recently introduced family@f 10 be usefulin practice are:
circulant QMS, which generalizes circulant QMS to a finite (i) Oles)(e;10 = |0e;) (Be;| = Je){e;-
(possibly non-abelian) group. These systems support non-
equilibrium steady states and display sufficient symmetry to (i) 0le;){e;| = |es){e;|0.

(v) The composition of a unitary and an anti-unitary oper-
ator is an anti-unitary operator.
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