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Information-theoretical quantities in the thermodynamical
transcription of the density functional theory
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The Ghosh-Berkowitz-Parr idea of density functional theory as local thermodynamics is revisited. It is emphasized that the kinetic energy
density and consequently the local temperature are not unique. It is highlighted that the extremal principle for the Shannon entropy and the
Fisher information leads to constant temperature. Relations for the phase-space Fisher information, fidelity and relative Rényi entropy are
summarized.
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1. Introduction

Information theoretical concepts have become very benefi-
cial in several fields in science. They have turned out to be
extremely fruitful in density functional theory (DFT). Here
a fascinating approach of Ghosh, Berkowitz and Parr [1] is
revisited. These authors showed that DFT can be considered
a local thermodynamics and introduced a local temperature
that varies from point to point. The theory, however, is not
unique because the kinetic energy density is not uniquely de-
fined. It has been shown [2, 3] that the phase-space Shannon
information entropy [4] takes its maximum and the Fisher in-
formation [5] attains its minimum for the case of constant
temperature. It has been pointed out [6] that for Coulomb
systems there is a simple relation between the total energy
and phase-space Fisher information. It has been revealed
that the phase-space fidelity between excited states is pro-
portional to the position-space fidelity, with a factor of pro-
portionality depending on the total energies. The phase-space
relative entropy has also been studied and found equal to the
position-space relative entropy plus a term depending only
on the total energies. The relationship between phase-space
fidelity susceptibility and Fisher information has also been
derived. Investigating the relative Rényi entropy [7] in the
special case of constant inverse temperature, the phase-space
relative Ŕenyi entropy is a sum of the position-space rela-
tive Rényi entropy and a term arising from the momentum
space [8]. This quantity can be considered a measure of sim-
ilarity. It includes more information than the position-space
measures, since it also incorporates momentum-space knowl-
edge. In this brief article these results are summarized.

2. Ghosh-Berkowitz-Parr theory

Ghosh, Berkowitz and Parr (GBP) [1] formulated density
functional theory (DFT) as a ‘thermodynamics’. Their main

idea was to find a phase-space distribution functionf(r,p)
that maximizes the phase-space information entropy

S = −k

∫
drdpf(ln f − 1), (1)

keeping the density
∫

dpf(r,p) = %(r), (2)

and the kinetic energy density
∫

dp
p2

2
f(r,p) = t(r), (3)

fixed. Taking into account the conditions (2) and (3) with r-
dependent Lagrange multipliersα(r) andβ(r), the variation
leads to a Maxwell-Boltzmann-like distribution function

f(r,p) = e−α(r)e−β(r)p2/2, (4)

wherek is the Boltzmann constant. Eqs. (3) and (4) result
familiar ideal gas expression

t(r) =
3
2

%(r)
β(r)

. (5)

So β(r) is called local inverse temperature. Eq. (4) can be
reshaped as

f(r,p) =
[

2π

β(r)

]−3/2

%(r)e−β(r)p2/2. (6)

Substituting Eq. (6) into Eq. (1) we arrive at the well-known
Sackur-Tetrode expression

S = −k

∫
%(r) ln %(r)dr

+
1
2
k

∫
%(r) [3 ln (2π/β) + 5] dr. (7)

It is worth emphasizing that the kinetic energy densityt(r) is
not unique. Adding a term that integrates to zero to a given
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form of t(r) provides the same kinetic energyEkin ast(r). It
has recently been shown [2, 3] that it is possible to select the
kinetic energy density that maximizes the phase-space Shan-
non entropy and minimizes the phase-space Fisher informa-
tion.

3. Extreme of phase-space Shannon entropy
and Fisher Information

Consider first the phase-space Shannon entropy (7). The vari-
ation

S − ζ

(∫
t(r)dr− Ekin

)
, (8)

gives the kinetic energy density

t =
3
2

k%

ζ
. (9)

Comparing Eqs. (5) and (9) we can observe thatβ = ζ, that
is, the inverse temperatureβ is constant as the Lagrange mul-
tiplier ζ in Eq. (8) is constant

β =
3
2

N

Ekin
. (10)

Turn now to the phase-space Fisher information

Ig(β) =
∫ [

∂g(r,p|β)
∂β

]2

g(r,p|β)
drdp, (11)

where the phase-space distribution function

g(r,p|β)=
1
N

f(r,p)=
1
N

[
β(r)
2π

]3/2

%(r)e−β(r)p2/2, (12)

normalized to 1 is applied. The integration forp leads to

Ig(β) =
3

2N

∫
%(r)

(β(r))2
dr. (13)

Minimizing Ig with keepingEkin fixed

Ig + ξ

(
Ekin − 3

2

∫
%(r)
β(r)

dr
)

, (14)

we obtain again that the inverse temperature is constantβ =
2/(Nξ) and the kinetic energy density is proportional to the
electron density. The relationship between the Fisher infor-
mation and the kinetic energy is

Ig =
2
3

(
Ekin

N

)2

. (15)

In the original GBP theory the non-interacting Kohn-
Sham approach was utilized. Observe that the derivation
above can be done in the true, interacting system, too. As
the interacting and the non-interacting kinetic energies are
different, the thermodynamic quantities will also be different

in these systems. The advantage of selecting the true, inter-
acting system is that in Coulomb systems and in equilibrium
nuclear geometry, the virial theorem

E = −Ekin, (16)

can be utilized.E andEkin are the true (interacting) total and
kinetic energies. Then Eq. (15) gives

Ig =
2
3

(
E

N

)2

, (17)

and obviously,E can be expressed withIg.
Though the GBP theory was originally formalized for the

ground state, it can also be applied for excited states. Uti-
lizing the extention of DFT to individual excited states in
Coulomb systems [9–11] the relationship between the Fisher
information and the true (interacting) total energy is [6]

Ii
g =

2
3

(
Ei

N

)2

. (18)

Then theith excitation energy can be written as

Ei − E0 = N

√
3
2

(√
I0
g −

√
Ii
g

)
, (19)

whereE0, I0
g andEi, Ii

g are total energy and Fisher informa-
tion of the ground and theith excited states.

In Coulomb systems the asymptotic decay of the excited
state density%i is governed by the vertical ionization poten-
tial EN−1

0 − E

lim
r→∞

∂ ln %̄(r)
∂r

= −
√

8(EN−1
0 − E) , (20)

whereEN−1
0 is the ground-state energy of theN−1 electron

system. In case of Coulomb external potential the excited
state density determines all properties of the system includ-
ing the phase-space distribution function and the phase-space
Fisher information.

4. Phase-space Ŕenyi and relative Rényi en-
tropies, fidelity and fidelity susceptibility

The Ŕenyi entropy of orderq is a one-parameter extension of
the Shannon entropy:

R
(q)
f =

1
1− q

ln
∫

[f(r)]qdr,

for 0 < q < ∞ and q 6= 1, (21)

for a density functionf(r). The limit q → 1 gives the Shan-
non entropy:

Sf = −
∫

f(r) ln f(r)dr. (22)
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The relative Ŕenyi entropy of orderq defined as

Rq
f,fref

=
1

q − 1
ln

∫
fq(r)

fq−1
ref (r)

dr, (23)

provides the deviation off(r) from a reference density
fref(r). The limit q → 1 leads to the relative or Kullback-
Leibler entropy or cross-entropy [12]

IKL(f, fref) =
∫

f(r) ln
f(r)

fref(r)
dr. (24)

In DFT the quantity

F (f, g) =
∫

f1/2g1/2dr, (25)

provides fidelity [13, 14]. It measures the ’difference’ be-
tween the densitiesf(r) andg(r).

Consider now a distribution function having a parameter
θ and takef(θ) andf(θ + δθ). Then expandingf(θ + δθ)
aroundf(θ) and substituting it into Eq. (25), we arrive at

F (θ, θ + δθ) = 1− 1
2
(δθ)2χ + ..., (26)

where

χ =
1
4

∫
1
f

(
∂f

∂θ

)2

, (27)

is the fidelity susceptibility [13, 14]. Comparing the defini-
tions ofχ and the Fisher information, we can notice that they
are proportional:χ = (1/4)I.

We can easily determine the relative Rényi entropy with
f(θ) andf(θ + δθ) as

Rq
f(θ),f(θ+δθ) ≈ 2qχ(δθ)2. (28)

The Kullback-Leibler entropy can be obtained with the limit
q → 1

IKL
f(θ),f(θ+δθ) ≈ 2χ(δθ)2. (29)

Observe that for smallδθ the relative Ŕenyi entropy is pro-
portional to the Kullback-Leibler entropy

Rq
f(θ),f(θ+δθ) ≈ qIKL

f(θ),f(θ+δθ). (30)

5. Phase-space relative Ŕenyi entropy

Applying the phase-space distribution function (12) the rela-
tive Rényi entropy takes the form

Rq
f,fref

=
1

q − 1
ln

∫
B(r)Q(r,p)drdp, (31)

where

B(r) =
(

β(r)
2π

)3q/2 (
βref(r)

2π

)3(1−q)/2

, (32)

and

Q(r,p) = σq(r)σ1−q
ref (r)e−[qβ(r)+(1−q)βref(r)]p

2/2. (33)

Here, the shape function [15]σ(r) = %(r)/N is used instead
of the density. Observe that the condition

qβ(r) + (1− q)βref(r) > 0, (34)

should be satisfied for the existence of the integral in
Eq. (31). Inequality (34) can be considered as a constraint
for selecting the kinetic energy density. Alternatively, in the
case of constant temperatures it is a constraint for selecting
the value of the Ŕenyi parameterq. The integration leads to

Rq
f,fref

=
1

q − 1

× ln
∫ (

βqβ1−q
ref

qβ + (1− q)βref

)3/2

σqσ1−q
ref . (35)

In the constant temperature case Eq. (35) gives

Rq
f,fref

= Rq
β,βref

+ Rq
σ,σref

, (36)

where

Rq
β,βref

=
3

2(q − 1)
ln

[(
βqβ1−q

ref

qβ + (1− q)βref]

)]
, (37)

and

Rq
σ,σref

=
1

q − 1
ln

[∫
σqσ1−q

ref dr
]
. (38)

The momentum-space termRq
β,βref

contains onlyβ, βref and
q. The second termRq

σ,σref
is the position-space relative Rényi

entropy.

6. Discussion

The phase-space relative Rényi entropy can be considered a
novel measure of similarity [8]. We can look at it as an ex-
tension of earlier quantum similarity measures to the phase
space. One of the most frequently used similarity indicators
is the Carb́o index [16]

RAB =
∫

dr%A(r)%B(r)√∫
dr%2

A(r)
∫

dr%2
B(r)

, (39)

showing resemblance of densities%A(r) and%B(r). A gener-
alization of this marker is the generalized quantum similarity
index (QSI) [17]

QSIγ =
∫

dr(%A(r)%B(r)γ/2

√∫
dr%A(r)γ

∫
dr%B(r)γ

, (40)

whereγ is a real number. Observe thatγ = 1 provides the fi-
delity andγ = 2 gives the Carb́o index. The phase-space rel-
ative Ŕenyi entropy can also be regarded as a similarity index
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[8]. Rq
f,fref

measures the difference of the phase-space distri-
bution functionf from the reference functionfref. In addi-
tion to the position-space term (38), it contains a momentum-
space term (37). So, this index is more general than the pre-
vious ones as it incorporates momentum-space information,
too. It can be used for systems having the same density. For
example, we can compare the true interacting and the non-

interacting Kohn-Sham systems. See details in [8].
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9. P. W. Ayers, M. Levy,Á. Nagy, Time-independent density-
functional theory for excited states of Coulomb systems,Phys.

Rev. A85 (2012) 042518,https://doi.org/10.1103/
physreva.85.042518

10. P. W. Ayers, M. Levy, A. Nagy, Kohn-Sham theory for excited
states of Coulomb systems,J Chem. Phys.143(2015) 191101,
https://doi.org/10.1063/1.4934963

11. P. W. Ayers, M. Levy, A. Nagy, Time-independent density-
functional theory for degenerate excited states of Coulomb sys-
tems,Theor. Chim. Acc. 137 (2015) 152,https://doi.
org/10.1007/s00214-018-2352-7

12. S. Kullback, R. A. Leibler, On information and Sufficiency,
Ann. Math. Stat.22 (1951) 79, https://doi.org/10.
1214/aoms/1177729694

13. S. J. Gu, Density-Functional Fidelity Approach to Quantum
Phase Transition,Chi. Phys. Lett.26 (2009) 026401,https:
//doi.org/10.1088/0256-307x/26/2/026401

14. A. Nagy, Fisher information and density functional theory,Int.
J. Quant. Chem.122 (2022) e26679,https://doi.org/
10.1002/qua.26679

15. P. W. Ayers, Density per particle as a descriptor of Coulom-
bic systems,Proc. Natl. Acad. Sci.97 (2000) 1959,https:
//www.pnas.org/content/97/5/1959

16. R. Carb́o, J. Leyda, M. Arnau, How similar is a molecule to an-
other? An electron density measure of similarity between two
molecular structures,Int. J. Quantum Chem.17 (1980) 1185,
https://doi.org/10.1002/qua.560170612
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