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Information-theoretical quantities in the thermodynamical
transcription of the density functional theory
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The Ghosh-Berkowitz-Parr idea of density functional theory as local thermodynamics is revisited. It is emphasized that the kinetic energy
density and consequently the local temperature are not unique. It is highlighted that the extremal principle for the Shannon entropy and the
Fisher information leads to constant temperature. Relations for the phase-space Fisher information, fidelity andé@elaterBpy are
summarized.
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1. Introduction idea was to find a phase-space distribution functfon p)
that maximizes the phase-space information entropy

Information theoretical concepts have become very benefi-

cial in several fields in science. They have turned out to be S = —k/drdpf(lnf —1), (1)

extremely fruitful in density functional theory (DFT). Here

a fascinating approach of Ghosh, Berkowitz and Parr [1] id€eping the density

revisited. These authors showed that DFT can be considered

a local thermodynamics and introduced a local temperature /dpf(r, p) = o(r), @)

that varies from point to point. The theory, however, is not o )

unique because the kinetic energy density is not uniquely de2nd the kinetic energy density

fined. It has been shown [2, 3] that the phase-space Shannon p?

information entropy [4] takes its maximum and the Fisher in- /dp?f(r, p) = t(r), ®3)

formation [5] attains its minimum for the case of constant,_ N " .
temperature. It has been pointed out [6] that for Coulombﬂxed‘ Taking into account the conditiori) @nd @) with r-

systems there is a simple relation between the total ener ependent Lagrange multlpllemf?r) af‘d@@)z the varl_atlon
and phase-space Fisher information. It has been reveal ads to a Maxwell-Boltzmann-like distribution function
that the phase-space fidelity between excited states is pro- f(r,p) = e—a(r)e—ﬁ(r)pz/{ (4)
portional to the position-space fidelity, with a factor of pro-
portionality depending on the total energies. The phase-spad#herek is the Boltzmann constant. Eqs3)(nd @) result
relative entropy has also been studied and found equal to tfamiliar ideal gas expression
position-space relative entropy plus a term depending only 3 o(r)
on the total energies. The relationship between phase-space t(r) = 5 % (5)
fidelity susceptibility and Fisher information has also been
derived. Investigating the relativeéRyi entropy [7] in the S0 /(r) is called local inverse temperature. E#) ¢an be
special case of constant inverse temperature, the phase-spdgghaped as
relative Renyi entropy is a sum of the position-space rela- op 173/ ‘
tive Rényi entropy and a term arising from the momentum f(r,p) = { ] o(r)ePxIP*/2, (6)
space [8]. This quantity can be considered a measure of sim- p(r)
ilarity. It includes more information than the position-spaceSubstituting Eq./&) into Eq. (1) we arrive at the well-known
measures, since it also incorporates momentum-space knowgackur-Tetrode expression
edge. In this brief article these results are summarized.

S = —k/g(r) In o(r)dr

2. Ghosh-Berkowitz-Parr theory + %k/g(r) [3In(27/B) + 5] dr. (7)

Ghosh, Berkowitz and Parr (GBP) [1] formulated densitylt is worth emphasizing that the kinetic energy dens(ty) is
functional theory (DFT) as a ‘thermodynamics’. Their main not unique. Adding a term that integrates to zero to a given



2

form of ¢(r) provides the same kinetic ener@" ast(r). It
has recently been shown [2, 3] that it is possible to select th
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in these systems. The advantage of selecting the true, inter-
acting system is that in Coulomb systems and in equilibrium

kinetic energy density that maximizes the phase-space Shanuclear geometry, the virial theorem
non entropy and minimizes the phase-space Fisher informa-

tion.

3. Extreme of phase-space Shannon entropy
and Fisher Information

Consider first the phase-space Shannon entffjpyrbe vari-

ation
S —¢ </t(r)dr - Eki”> , (8)
gives the kinetic energy density
t= ;% 9)

Comparing Egs.5) and ) we can observe that = ¢, that
is, the inverse temperatufds constant as the Lagrange mul-
tiplier ¢ in Eq. {8) is constant

3 N
9 Ekin”
Turn now to the phase-space Fisher information

5= (10)
[Dg(r’p\ﬁ)] 2

g(r,p|B)

where the phase-space distribution function

[ﬁ(r)

normalized to 1 is applied. The integration foteads to

1,(8) = / drdp, (11)

1

3/2 ,
22| sz, 2

(e, p18)= - Fr.p) = |

_ 3 [ o)
L3 =5y | Gt (13)
Minimizing I, with keepingE*" fixed
I, +¢ <Eki” — g / g((i:))dr) , (14)

we obtain again that the inverse temperature is congtant
2/(N¢) and the kinetic energy density is proportional to the
electron density. The relationship between the Fisher infor
mation and the kinetic energy is

> 2

(

In the original GBP theory the non-interacting Kohn-

Ekin
N

2

Ig:3

(15)

E = —E"" (16)
can be utilized E and EX" are the true (interacting) total and
kinetic energies. Then E¢18) gives

) 2
and obviouslyE' can be expressed witly.

Though the GBP theory was originally formalized for the
ground state, it can also be applied for excited states. Uti-
lizing the extention of DFT to individual excited states in

Coulomb systems [9—-11] the relationship between the Fisher
information and the true (interacting) total energy is [6]

E

N (17)

. 2 (BN’
I, = 3 (N) . (18)
Then theith excitation energy can be written as
3 ;
B~ By = N\/g (Vio- /1), (19)

whereE), I andE;, I} are total energy and Fisher informa-
tion of the ground and thih excited states.

In Coulomb systems the asymptotic decay of the excited
state density; is governed by the vertical ionization poten-
tial EY ' - E

lim 76 lr(l{);oj(r)

T—00

= —\/8(E) ' - E), (20)
whereEY ! is the ground-state energy of the— 1 electron
system. In case of Coulomb external potential the excited
state density determines all properties of the system includ-
ing the phase-space distribution function and the phase-space
Fisher information.

4. Phase-space &yi and relative Renyi en-
tropies, fidelity and fidelity susceptibility

The Renyi entropy of ordey is a one-parameter extension of
the Shannon entropy:

R = i [ [f)ar,

for 0<g<oo and g#1, (21)

for a density functionf(r). The limitqg — 1 gives the Shan-

Sham approach was utilized. Observe that the derivationon entropy:
above can be done in the true, interacting system, too. As

the interacting and the non-interacting kinetic energies are

different, the thermodynamic quantities will also be different
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Sy = —/f(r) In f(r)dr. (22)
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The relative Rnyi entropy of ordeg defined as and

RY, = Y AR (23) Q(r,p) = 0 (r)oyg * (x)e~ 1T )Bei®/2(33)
fvfref q_ 1 fQ*l(r) )

Here, the shape function [156]r) = o(r)/N is used instead
provides the deviation off(r) from a reference density Of the density. Observe that the condition
fret(r). The limit¢g — 1 leads to the relative or Kullback-

Leibler entropy or cross-entropy [12] qB(r) + (1 — q)Bret(r) > 0, (34)
(r) should be satisfied for the existence of the integral in
Ik (f, fret) = /f Sy awey dr. (24)  Eq. 31). Inequality B4) can be considered as a constraint
ref for selecting the kinetic energy density. Alternatively, in the

In DFT the quantity case of constant temperatures it is a constraint for selecting
the value of the Bnyi parametey. The integration leads to
F(f.9) = [ 1292, (25) .1
fofret g—1

provides fidelity [13, 14]. It measures the 'difference’ be-

tween the densitieg(r) andg(r). 3969 3/2 o iq
Consider now a distribution function having a parameter X ln/ 4B+ (L — q)Bret oo (35)
6 and takef () and f (6 + §6). Then expanding (6 + 60)
aroundf(0) and substituting it into Eql26), we arrive at In the constant temperature case E35) @ives
F(0,0+60) =1— %(59)%( ¥ (26) R} = B oy T Bl (36)
where
where
3 5 Bret
1 (1 (0f\° Ry, = In < re )] (37)
== [=(Z et T 2(g — 1 1-
=1/3(5) @) G0 " |\ a5+ 0 - el
is the fidelity susceptibility [13, 14]. Comparing the defini- 2"
tions ofy and the Fisher information, we can notice that they ¢ _ 1 n / | (38)
are proportionaly = (1/4)I. Tt g — ] 'ef
We can easily determine the relativéii entropy with
£(0) andf(0 + (my) as wy by The momentum-space terﬁ?léﬁref contains only3, G and
q- The second term®f , is the position-space relativeeRyi
R} gy po100) = 20x(56)°. (28)  entropy.

;h_e) I1<ullback—Le|bIer entropy can be obtained with the limit 6. Discussion
KL 5 The phase-space relativieRyi entropy can be considered a
I50),(0+50) 2x(60)". (29) novel measure of similarity [8]. We can look at it as an ex-
tension of earlier quantum similarity measures to the phase
space. One of the most frequently used similarity indicators
is the Carlo index [16]

q ~ KL
R o), r0+60) = L5 (6).£(6+50)- (30) Rap — Jdroa(r)op(r)
\/fdrgA (r) [ dro%(r)

. o _ showing resemblance of densitigs(r) andop(r). A gener-
/-.\pply'mg .the phase-space distribution functidi(the rela- alization of this marker is the generalized quantum similarity
tive Rényi entropy takes the form index (QSI) [17]

Observe that for smalif the relative Rnyi entropy is pro-
portional to the Kullback-Leibler entropy

(39)

5. Phase-space relative &yi entropy

R =-—In / B(r)Q(r,p)drdp,  (31) osr — L drleal (r)op(r)"/? (40)

\/fdrgA 7 [drop(r)Y ,

where
3¢/2 3(1—q)/2 wherey is a real number. Observe that= 1 provides the fi-
B(r) = <ﬁ()> <5F ef(r )> ’ (32) delity andy = 2 gives the Carb index. The phase-space rel-
2 2 ative Renyi entropy can also be regarded as a similarity index
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but|0n funct|0nf from the reference functioffies. In addi-
tion to the position-space teri@d), it contains a momentum-
space term37). So, this index is more general than the pre-Acknowledgement
vious ones as it incorporates momentum-space information,
too. It can be used for systems having the same density. Fdhis research was supported by the University of Debrecen
example, we can compare the true interacting and the norf2rogram for Scientific Publication.
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