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Atomic systems subjected to external confinement exhibit a range of intriguing physical properties. In this work, we employ a well-
established work-function-based Kohn-Sham density functional theory (DFT) within a generalized pseudospectral (GPS) method to de-
termine the energy eigenvalues and eigenfunctions of Hookium (a two-electron system bound by a harmonic potential). We consider the
two cases,viz. (i) Hookium and (ii) Hookium under the influence of a spherical cavity confinement. Two correlation energy functionals
like Wigner and Lee-Yang-Parr (LYP) are considered to include explicit correlation energy in the calculation. Furthermore, we provide a
comprehensive analysis of the quantum information-theoretic aspects of confined systems by examining the position-space Shannon and
Fisher entropies.
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1. Introduction

The study of confined quantum systems has been a fascinat-
ing area of research since the advent of quantum mechanics.
In particular, quantum dots (QDs), where particles are con-
fined within nanoscale cavities, have emerged as a promis-
ing research frontier [1-8]. QDs have attracted consider-
able interest across various scientific and technological do-
mains due to their tunable electronic properties, making them
strong candidates for qubits [9]. A wide range of confinement
potentials–such as harmonic, finite oscillator, rectangular,
parabolic, and Woods-Saxon models–have been employed to
trap electrons in QDs [3,4,10-21]. Among these, harmonic
confinement stands out due to its analytical tractability and
effectiveness in modeling few-electron systems, particularly
two-electron configurations [22-29]. Moreover, the quadratic
nature of the harmonic potential makes it a reliable approx-
imation for describing the confinement of multiple electrons
in a QD. A two-body fermionic system, such as two electrons
under harmonic confinement, presents a valuable opportunity
to gain deeper insights into electronic interactions. Despite
the presence of a positively charged nucleus at the center,
two electrons in a harmonic potential can form a bound state,
leading to such systems often being referred to asartificial
atoms. In the literature, a two-electron system under the ef-
fect of harmonic potential rather than a Coulomb potential
is commonly referred to as aharmoniumor Hookiumatom
[24,30-32]. But, here we use the term as Hookium as sug-
gested by Pupyshev and Montgomery [24]. First, Eden and
Emery [33] introduced such a model in order to study the
nuclei. Extensive studies on such systems have primarily
emphasized energetic properties, while relatively fewer in-
vestigations have explored quantum information character-
istics [34-38]. Furthermore, the ability to externally ma-

nipulate such a system has generated significant interest in
quantum information measures. These measures are often
quantified using entropic descriptors such as Shannon and
Fisher entropy, particularly in the context of geometrically
tunable few-electron systems [36,39,40]. The Shannon en-
tropy (Sr), which is often known as a global measure of in-
formation entropy, provides statistical information about the
de-localization of the system. In contrast, Fisher entropy (Ir)
popular as the local measure of the information entropy indi-
cates the localization of a quantum system.

In this work, we investigate the properties of Hookium
by solving the non-relativistic Kohn-Sham (KS) equation,
which has proven to be highly effective in determining the
energy spectrum of many-electron atoms. To achieve high-
precision solutions for the eigenvalue equations, we employ
a specialized generalized pseudospectral (GPS) method [41].
Additionally, we explore the effects of impenetrable spherical
cavity confinement by placing Hookium at the center of the
spherical cavity. The position-space Shannon and Fisher en-
tropies of Hookium are then analyzed by tuning bothK (the
force constant) andrc (the cavity radius). The manuscript is
structured as follows: Sec. 2 provides a brief overview of the
present method, followed by a detailed discussion of results
in Sec. 3. Finally, our conclusions are summarized in Sec. 4.

2. Methodology

The fundamental framework of the work-function-based den-
sity functional method is first outlined for an atomic system
confined by the combined influence of a harmonic poten-
tial and an impenetrable spherical cage. This is followed
by a concise discussion of the GPS scheme [41], which is
employed to compute the eigenvalues and eigenfunctions of
the target KS equation. The starting point involves formulat-
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ing the non-relativistic, single-particle, time-independent KS
equation under impenetrable confinement as,

Ĥ(~r)ψi(~r) = εi(~r)ψi(~r), (1)

whereψi andεi refer to the eigenfunction and eigenenergy
corresponding to theith orbital. Here,Ĥ refers to the effec-
tive KS Hamiltonian, given by,

Ĥ(~r) = −1
2
∇2 + veff (~r),

veff (~r) = vne(~r) +
∫

ρ(~r′)
|~r − ~r′|d~r′

+
δExc[ρ(~r)]

δρ(~r)
+ vconf (~r), (2)

where,vne(~r) is the external electron-nuclear attraction po-
tential, whereas the second and third terms in the right-
hand side of the above equation represent classical Coulomb
(Hartree) repulsion and XC potentials, respectively. In the
above and what follows, the equations are presented in
atomic units (a.u.). The confinement potential has the form,

vconf (~r) =

{
1
2Kr2, for r ≤ rc,

+∞, elsewhere.
(3)

Here, K and rc denote the force constant and radius of
the spherical cavity, respectively. A highly accurate work-
function-based potential,vx(~r), is employed [42,43]. Using
this potential, the exchange energy is evaluated by interpret-
ing it as the interaction energy between an electron at~r and
its Fermi-Coulomb hole charge density,ρx(~r, ~r′), at~r′. The
explicit form is given by [42,43],

Ex[ρ(~r)] =
1
2

∫ ∫
ρ(~r)ρx(~r, ~r′)
|~r − ~r′| d~rd~r′. (4)

Here, we impose a specific local exchange potential,vx(~r),
that corresponds to a given state. Consequently, the work-
function potential can be understood as the work required to
bring an electron from infinity to a point~r within the elec-
tric field generated by its Fermi-Coulomb hole density. Its
explicit form is given by,

vx(~r) = −
∫ r

∞
Ex(~r).d~l, (5)

where

Ex(~r) =
∫

ρx(~r, ~r′)(~r − ~r′)
|~r − ~r′|3 d~r

′
. (6)

The electron density is evaluated in terms of occupied orbitals
M , as,

ρ(~r) =
M∑

i=1

ni|ψi(~r)|2. (7)

whereni denotes the number of electrons in theith orbital,
while M is the number of electrons in the system.

In this work, to account exchange only case, we use the
abovevx(~r), while the correlation effect is underscored with

simple Wigner [44] and slightly involved LYP [45] energy
functionals. Therefore, we solve the KS equation in a self-
consistent manner. The adaptation of the GPS method for
the accurate and efficient solution of the KS equation re-
sults in a non-uniform, optimally spaced spatial discretiza-
tion. The present method relies on approximating anexact
functionf(x) ∈ [−1, 1] with the help of aN th-order polyno-
mial fN (x) as,

f(x) ∼= fN (x) =
N∑

j=0

f(xj)gj(x), (8)

in a way such that,

fN (xj) = f(xj), (9)

and it signifies that each of our estimation points is precise
at the collocation point. Due to the impenetrable nature of
the spherical cavity of radiusrc, we expand the radial re-
gion within the range[0, rc]. Therefore, we have mapped
rc (r ∈ [0, rc]) onto the interval[−1, 1] by utilizing a non-
linear mapping function,

r = r(x) = L
1 + x

1− x + α
, (10)

where,L andα = 2L/rc refer to two mapping parameters.
In the Legendre pseudo-spectral method,x0 andxN take

the values of−1 and 1, respectively, while all other roots
xj(j = 1, ...., N − 1) are determined from the first-order
derivative of the Legendre polynomialPN (x) following the
equation,

P ′N (xj) = 0. (11)

The cardinal functionsgj(x) (see Eq. (8)) are evaluated from,

gj(x) = − 1
N(N + 1)PN (xj)

(1− x2)P ′N (x)
(x− xj)

, (12)

which satisfy the condition

gj(xj′) = δj′,j . (13)

Hence, we end up with a symmetric eigenvalue problem,
which is then solved by standard software to accurately
determine the eigenvalues and eigenfunctions of a system
(F02BBF from NAG Fortran Library Routine [46]). For fur-
ther in-depth calculation, we refer the reader to go through
[47-51] and references therein.

The impenetrable nature of the spherical cavity on the
system is achieved by ensuring the total electron density dis-
sipates at the cavity boundary, and it satisfies the Dirichlet
boundary conditionψnl(0) = ψnl(rc) = 0. Equation (7)
follows the normalization criterion,

∫
ρ(~r)d~r = M. (14)
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All calculations are done with unit-normalized density. The
explicit knowledge of unit-normalized densitỹρ(~r) is used to
quantify the Shannon entropy and Fisher entropy following
the definitions,

Sr = −
∫

ρ̃(~r) ln[ρ̃(~r)] d~r, (15)

and

Ir =
∫ |∇ρ̃(~r)|2

ρ̃(~r)
d~r. (16)

All calculations in this report are carried out numerically, en-
suring convergence by systematically varying grid parame-
ters, including the total number of radial points and the max-
imum grid range. Notably, convergence is achieved more
readily in regions of lowerrc or higherK, whereas it be-
comes a little bit tricky as the system approaches the free-
space limit (rc → ∞). All data reported in this work are
checked rigorously through a convergence test. A general
convergence criteria in energy (10−6) and potential (10−5)
during the iterative process were employed throughout the
whole confinement region.

3. Results and discussion

Here, we represent the ground state energy of a two-electron
system under impenetrable harmonic confinement. We are
confining the system by varying the radius cavityrc and force
constantK. In Table I the total energy is shown with differ-
ent grid points for convergence purposes for X-Only and XC-
Wigner. Here the convergence can be seen up to four decimal
places.

In Table II the total energy is shown, where X-only rep-
resents near-Hartree-Fock energy, and exchange with corre-
lation energy is modeled by XC-Wigner functional and XC-
LYP functional. The present results are in good agreement
with Ref. [29]. In this work, we have utilized the Ritz vari-
ational method with an explicitly correlated multi-exponent
Hylleraas basis to calculate the ground state energy of Hook-
ium in the free limit ofrc → ∞. For instance, it is reported
that EXC is 2.72617 at K = 0.5, while the values of the
same are 2.74 and 2.73 for the Wigner and LYP correlation
functional.

The qualitative nature of the two-electron Hookium atom
is shown in the given plots. In Fig. 1a) represents the varia-
tion of energyE as a function of force constantK, in which

TABLE I. EnergyE of the Hookium atom as a function ofrc andK for different grid points (N). All quantities are in a.u.

E

X-only XC-Wigner

rc K N = 100 N = 200 N = 250 N = 300 N = 350 N = 100 N = 200 N = 250 N = 300 N = 350

0.2 0.5 255.6625 255.6619 255.6618 255.6618 255.6618255.5211 255.5205 255.5204 255.5204 255.5204

5 255.7136 255.7131 255.7130 255.7130 255.7130255.5722 255.5717 255.5716 255.5716 255.5716

1 0.5 11.7868 11.7867 11.7866 11.7866 11.786611.7223 11.7221 11.7221 11.7221 11.7221

5 13.0668 13.0666 13.0666 13.0666 13.066613.0015 13.0014 13.0014 13.0014 13.0014

10 0.5 2.7664 2.7662 2.7662 2.7662 2.7662 2.7379 2.7377 2.7377 2.7377 2.7377

5 7.8747 7.8744 7.8744 7.8744 7.8744 7.8282 7.8280 7.8279 7.8279 7.8279

FIGURE 1. EnergyE of the Hookium atom as a function ofK andrc.
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TABLE II. EnergyE of Hookium atom as a function ofrc andK.
All quantities are in a.u.

E

rc K X-only XC-Wigner XC-LYP

0.5 255.6618 255.5204 256.2546

1.0 255.6675 255.5261 256.2602

0.2 5.0 255.7130 255.5716 256.3057

10.0 255.7699 255.6285 256.3625

100.0 256.7925 256.6511 257.3839

0.5 43.0722 42.9746 43.2880

1.0 43.1080 43.0104 43.3237

0.5 5.0 43.3942 43.2965 43.6092

10.0 43.7512 43.6534 43.9651

100.0 50.0310 49.9323 50.2286

0.5 11.7866 11.7221 11.8460

1.0 11.9311 11.8664 11.9899

1.0 5.0 13.0666 13.0014 13.1212

10.0 14.4386 14.3726 14.4883

100.0 32.5615 32.4828 32.5904

0.5 2.7662 2.7377 2.7322

1.0 3.7715 3.7383 3.7395

5.0 5.0 7.8744 7.8279 7.8536

10.0 10.8786 10.8255 10.8656

100.0 32.4956 32.4171 32.5208

0.5 2.7662 2.7377 2.7322

1.0 3.7715 3.7383 3.7395

10.0 5.0 7.8744 7.8279 7.8536

10.0 10.8786 10.8255 10.8656

100.0 32.4956 32.4171 32.5208

0.5 2.7662 2.7377 2.7322

1.0 3.7715 3.7383 3.7395

100.0 5.0 7.8744 7.8279 7.8536

10.0 10.8786 10.8255 10.8656

100.0 32.4956 32.4171 32.5208

the energy increases monotonically withK, implying that
the system goes to a high energy level under strong confine-
ment. In Fig. 1b) shows how the energyE varies withrc

at fixed values ofK. For weaker confinementK, energy
decreases significantly as the radius of cavityrc increases.
Whenrc . 2, the energy gradually increases. Whereas, for
largerK, the energy demonstrates minimal dependence onrc

and persists relatively very high. Hence, we can observe that
the effect of the radius cavity is negligible when the harmonic
potential dominates. This behavior is crucial in understand-
ing quantum confinement effects in nanoscale devices, such
as quantum dots, where both external potential and spatial
boundaries determine electronic properties.

The information-theoretic study further helps to under-
stand these observations in a more effective way. Table III
reportsSr and Ir for the ground state of Hookium under

confinement. The values ofSr andIr for the X-only, XC-
Wigner, and XC-LYP approximations exhibit subtle differ-
ences for small cavity radiirc . 5 but start to show differ-
ences for larger cavitiesrc & 5. Also, it shows the variation
of the force constantK. This behavior brings attention to the
role of correlation effects in the system and the effect of har-
monic confinement on electron distribution in the absence of
a central positive charge.

For small cavity sizesrc . 5, the external harmonic po-
tential dominates, forcing the electrons into a highly local-
ized region. Under such strong confinement, the electron
density remains sharply peaked, and correlation effects are
suppressed. As a result, the electron density distributions
obtained from X-only, XC-Wigner, and XC-LYP approxi-
mations are nearly identical, withSr and Ir differing only
slightly beyond the third decimal place. Since the electrons
have limited spatial freedom, their ability to rearrange due to
mutual repulsion is constrained, meaning that exchange inter-
actions alone (X-only) are sufficient to describe the system,
without significant correlation corrections.

However, as the radius cavity size increases beyondrc &
5, the electron cloud tends to spread more, allowing electron-
electron repulsion to play a more significant role in shaping
the density distribution. In this regime, due to higher uncer-
tainty in electron positions, the system indicates delocaliza-
tion. Hence,Sr interprets increased nature. Meanwhile, lo-
calization of the system decreases, resulting in a decline inIr.
The appearance of differences between X-only and XC func-
tionals in this region indicates that correlation effects become
important when confinement weakens. In Fig. 2a)Sr varies
with respect to the cavity radiusrc for different fixed values
of K. The results demonstrate that for smallK, Sr increases
asrc increases. This increase implies the rising spatial de-
localization of the electron density, as a larger radius cavity
allows us to spread more of the electronic cloud. When con-
finement is weak, the probability distribution extends over a
broader spatial region, leading to a higher uncertainty in elec-
tron position, which corresponds to an increase inSr. For
largeK, however,Sr remains relatively low even asrc in-
creases. The stronger harmonic potential restricts the elec-
trons to a well-defined region, suppressing delocalization. In
this regime, the spatial confinement imposed by the harmonic
potential is more dominant than the finite size of the cavity,
leading to a localized electron density with lowerSr. There-
fore,Sr serves as a measure of the balance between delocal-
ization due to spatial freedom and localization due to confine-
ment strength. In Fig. 2b),Ir changes with cavity radiusrc

for different fixed valuesK. Note thatIr measures localiza-
tion, meaning higher values indicate a more sharply confined
electron density, while lower values suggest a more spread-
out distribution. In the low regime ofrc, Ir increases rapidly,
signifying that the system is highly localized in this region.
In the low regime ofrc the system experiences strong con-
finement, which restricts the electron in a highly localized
area. Due to the enhancement of localization, the electron
density distribution becomes highly structured, which leads
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TABLE III. Sr (a.u.) andIr (a.u.) in the ground state of Hookium.

Sr Ir

rc K X-only XC-Wigner XC-LYP X-only XC-Wigner XC-LYP

0.5 −4.15 −4.15 −4.15 987.02 987.02 987.02

1 −4.15 −4.15 −4.15 987.02 987.02 987.02

0.2 5 −4.15 −4.15 −4.15 987.01 987.01 987.01

10 −4.15 −4.15 −4.15 987.01 987.01 987.01

100 −4.15 −4.15 −4.15 986.99 986.99 986.99

0.5 −1.39 −1.39 −1.39 157.97 157.97 157.97

1 −1.39 −1.39 −1.39 157.96 157.96 157.96

0.5 5 −1.39 −1.39 −1.39 157.95 157.95 157.95

10 −1.39 −1.39 −1.39 157.94 157.94 157.94

100 −1.45 −1.45 −1.45 158.25 158.25 158.25

0.5 0.70 0.70 0.70 39.52 39.52 39.52

1 0.70 0.70 0.70 39.51 39.50 39.51

1 5 0.66 0.66 0.66 39.49 39.49 39.49

10 0.61 0.61 0.61 39.65 39.65 39.65

100 −0.20 −0.20 −0.20 58.77 58.81 58.78

0.5 3.95 3.94 3.95 3.68 3.71 3.69

1 3.40 3.39 3.40 5.31 5.35 5.32

5 5 2.14 2.13 2.13 12.34 12.39 12.35

10 1.60 1.59 1.60 17.68 17.73 17.69

100 −0.18 −0.18 −0.18 57.63 57.67 57.64

0.5 3.95 3.94 3.95 3.68 3.71 3.69

1 3.40 3.39 3.40 5.31 5.35 5.32

10 5 2.14 2.13 2.13 12.35 12.39 12.36

10 1.60 1.59 1.60 17.68 17.73 17.69

100 −0.18 −0.18 −0.18 57.63 57.68 57.64

0.5 3.95 3.94 3.95 3.68 3.71 3.69

1 3.40 3.39 3.40 5.32 5.35 5.33

100 5 2.13 2.13 2.13 12.35 12.39 12.36

10 1.60 1.59 1.60 17.69 17.73 17.69

100 −0.18 −0.18 −0.18 57.64 57.68 57.64

FIGURE 2. Shannon entropySr and Fisher informationIr of the Hookium atom as a function ofrc.
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FIGURE 3. Panels a) and b) show the Shannon entropySr and Fisher informationIr of the Hookium atom as a function ofK in the free
limit of rc. Panel c) shows variation of Pressure (in atm) withrc and with differentK.

TABLE IV. PressureP (in atm) in the ground state of the Hookium atom as a function ofrc andK.

P

rc K X-only XC-Wigner XC-LYP

0.5 1.45(+12) 1.45(+12) 1.45(+12)

0.2 1 1.45(+12) 1.45(+12) 1.45(+12)

5 1.45(+12) 1.45(+12) 1.45(+12)

10 1.45(+12) 1.45(+12) 1.45(+12)

0.5 1.93(+11) 1.93(+11) 1.93(+11)

0.3 1 1.93(+11) 1.93(+11) 1.93(+11)

5 1.93(+11) 1.93(+11) 1.93(+11)

10 1.92(+11) 1.92(+11) 1.93(+11)

0.5 1.52(+10) 1.52(+10) 1.53(+10)

0.5 1 1.52(+10) 1.52(+10) 1.53(+10)

5 1.51(+10) 1.51(+10) 1.52(+10)

10 1.50(+10) 1.50(+10) 1.50(+10)

0.5 4.91(+8) 4.90(+8) 4.94(+8)

1 1 4.84(+8) 4.83(+8) 4.88(+8)

5 4.33(+8) 4.32(+8) 4.37(+8)

10 3.76(+8) 3.75(+8) 3.80(+8)

0.5 1.36(+7) 1.35(+7) 1.38(+7)

2 1 1.09(+7) 1.08(+7) 1.11(+7)

5 1.66(+6) 1.64(+6) 1.72(+6)

10 1.70(+5) 1.68(+5) 1.79(+5)

to a sharp rise inIr. As rc increases,Ir starts to decline,
which highlights the picture of the dominating behavior of
the delocalization, and the density distribution is becoming
smoother.

As K increases, the harmonic potential dominates,
pulling the electrons toward the center and making the den-
sity more concentrated, which raisesIr.

Furthermore, Fig. 3 showsSr andIr variation with force
constantK in the free limit. In Fig. 3a), the effect of con-
finement on the electron density now comes solely fromK.
As K increases,Sr decreases, indicating that the system be-

comes more localized whenK increases. WhenK is small,
the electron cloud spread is wider, tending toSr, and rises
sharply forK . 3 due to increased positional uncertainty.
As K increases, the harmonic potential becomes stronger.
Hence, the confinement effect on the system increases the
sharpness or concentration of the electronic charge density.
The decreasing nature ofSr reflects that the electron den-
sity shrinks asK increases,i.e., it shows that the system is
becoming localized for a stronger confinement regime. In
Fig. 3b) presents the variation ofIr with K. Ir increases
monotonically asK increases, which indicates that a stronger

Supl. Rev. Mex. Fis.6 011310
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harmonic confinement enhances localization. Therefore,Ir

serves as a direct measure of how sharply localized the elec-
tronic distribution is. SinceIr exhibits the property of local-
ization of the system, its increase withK confirms that the
system becomes more confined for the strong harmonic po-
tential. The system is more delocalized for smaller values of
K. Overall, there is a clear interplay between cavity radius
rc andK in determining localization. The system becomes
more localized whenrc decreases andK increases, as both
stronger external confinement and a smaller available space
force the electrons into a compact region. On the contrary,
whenrc increases andK decreases, the electron cloud spread
increases, which yields delocalization.

Additionally, we have estimated the thermodynamic pres-
sure experienced by the Hookium atom utilizing the first law
of thermodynamics. Under an adiabatic approximation, the
pressure can be expressed as [52],

P = − 1
4πr2

c

dE

drc
. (17)

To evaluate the numerical derivative in the above equation,
we use the finite difference method, implemented by the
numpy gradient function of Python . Moreover, we
have taken∆rc = 10−5 and calculated the corresponding∆E
around a particularrc to estimate the pressure inside the cav-
ity, which is shown in Table IV. A detailed variation of the
same is illustrated in Fig. 3c) of Fig. 3. We note that the
pressure increases monotonically as we go to the strong con-
finement regime (rc → 0) as well as with the increase ofK.

4. Conclusions

We employ a simple work-function-based Kohn-Sham model
to investigate the ground state of the Hookium atom using
an accurate GPS method for the spatial discretization. Addi-
tionally, we examine the effect of an impenetrable spherical
cavity of varying radius (rc) on the energy and information
entropy (Sr and Ir) of the Harmonium atom. Our results
reveal that the ground state energy of the Hookium atom in-
creases quadratically asK increases for a large cavity radius
(rc → ∞). For smallerrc, the energy sharply decreases
for rc . 2, but remains constant for largerrc. As K in-
creases, the energy curve shifts to more positive values. Both
Sr andIr indicate that for smallerrc, the system becomes
more squeezed at constantK, while for rc →∞, the system
becomes more localized asK increases. We hope that this
work enhances our understanding of confined atomic systems
and lays the foundation for the quantum information theory
of such systems.
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