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Shannon entropy as an indicator for the orbital shape manipulation
of a hydrogen atom under a repulsive single barrier potential
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The effect of a penetrable repulsive single-barrier potential on the structural properties of the hydrogen atom in ground and different excited
(n,l) statesf = 1 — 3,1 = 0 — 2] is studied. The Lagrange mesh method is adopted to solve the correspondiigiSgér equation
numerically for energy eigenvalues and eigenfunctions. Different novel features and phenergersdrinking the size of the atom,

atomic swelling, orbital fusion and fissioetc, are noted when the strength of the barrier is changed by tuning its position and height. It is
remarkable that all such alterations of the atomic orbital are well articulated from the Shannon entropy profile.
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1. Introduction external pressure. To model this pressure, a repulsive spheri-
cal potential with finite height and thickness was introduced.

The structural and spectral properties of an atomic system nd{otably, as the applied pressure increases, the atom initially
only undergo significant modifications under compressiorPehaves as expected, contracting in size. However, beyond
due to spatial confinement but also reveal several importari critical pressure threshold, an unexpected phenomenon oc-
new characteristics. The study of confined atomic system§urs; rather than continuing to shrink, the atom undergoes a
has long been an active area of research since the pioneerifigdden expansion. This process is termed as atomic swelling.
works of Michelset al. [1] and Sommerfeld and Welker [2], |n addition to this, atoms subjected to extreme pressure may
where a hydrogen atom was p|aced under an impenetrab@(hibit several other remarkable quantum effects, such as
Spherica| Ca\/ity with an adjustab|e radius to simulate the efDrbital breathing, orbital ﬁSSion, orbital fUSion, orbital re-
fect of pressure and address various spectroscopic prope?dering,etc. These effects on various atomic systems un-
ties of astrophysical interest. Over time, researchers hav@er pressure confinement, modeled using single and double
explored spatially confined one-electron systems from difbarrier repulsive potentials, have been extensively studied in
ferent perspectives to develop a comprehensive understante literature, primarily through the analysis of orbital en-
ing of confined atomic behaviour. Intriguingly, such a sys-ergy and wavefunctions [8, 9]. However, incorporatiqugn-

tem also offers a potential opportunity to manipulate atomidum information-theoretic measur¢IM) into such investi-
properties by adjusting the external confinement and therebgations could provide deeper insights into atomic properties
paving the way for novel technologies based on atomic conunder pressure confinement. QIM, which quantifies the sta-
finement. Theoretically, the confining environments can bdistical correlations within an atomic system, offers valuable
well simulated by considering various model potenteltg, insights into the degree of localization (or delocalization) of
impenetrable spherical potential, spheroidal potential, opeA quantum system. Over the years, QIM has emerged as a
boundary potential, oscillator potential, fullerene-cage potenpowerful analytical approach in various domains, including

tial, potentials limited by conoidal boundaries, Debye potenduantum entanglement, entropic uncertainty relations, elec-
tial, etc.[3-7]. tron correlation, and orbital-free density functional theory,

detc.[lO—16]. Moreover, QIM finds extensive applications in
quantum information theory, quantum computing, quantum
_communication, teleportation, and telecommunication tech-
t%ologies [17-20]. The theoretical formulation of QIM relies

Dolmatov [8, 9] demonstrated that certain semi-fille
shell atoms, such as hydrogen, lithium, nitrogeta,, can un-
dergo a transformation into exotic atomic states with signif
icantly larger sizes and altered properties when subjected
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on several entropy-based measures, such as Shannon entrapy, Methodology
Fisher information, Bnyi entropy, Tsallis entropy, and On- o
icescu informational energy [21-25]. Among these, Shannof-1.  The model Hamiltonian

gntropy IS one of the '.””O.S.t widely used entroplgs, yvhere a%he non-relativistic Hamiltonian (in atomic units) of a hydro-
increase in its value signifies enhanced delocalization of the

quantum system. Over the past few decades, Shannon Jen atom under the influence of RSB potential can be written
: as [8,9, 34],

tropy has emerged as a powerful analytical tool for charac-

terizing various atomic and physical processes. It has been

widely used as an indicator in diverse scientific domains. For

instance, Shannon entropy is used to demonstrate the sort- 9 —

ing processes in hydrothermal systems [26], to stipulate thghere—(l/ Q.W Is the k]net|c energy Of. the SySteme“:(r)

spatial resolutions of the morphologies of the mode patternkS the effective coulombic potential, which can be written as,

in an optical resonator [27], a measure of the correlation 1 I(1+1)

and relativistic effects in confined atoms [28], to understand Vert(r) = 5 o2 (2

the atomic avoided crossings in strong parallel magnetic and

electric field [29] and in static electric field [30], to justify Here.! is the angular momentum quantum number. The RSB

the electron density contraction in chemical reactions [31]Potential ¥rsg(r)) can be written as,

to designate of dynamical stability [32], as a tool to under-

stand the age for turbulent overturns in case of the oceanic Vrsg(r) = {

1
H= 7§v2 + Veit (1) + Vrsp(r), 1)

V. R<r<R+A,
0 Otherwise

®)

thermocline [33]etc
Here (/, A, R) are the height, width, and the position of
the repulsive barrier, respectively. As the total potential is
spherically symmetric, the angular part of the wave function
is given by the usual spherical harmoni¢g' (6, ¢) and the

|_(adial part of the one-electron Séildinger equation can be
written as

In light of this, the present work aims at investigating
the effect ofrepulsive single-barrier potentigRSB) on the
(n,l) states f and! being the principal quantum number
and orbital angular quantum number, respectively) of a
atom using theLagrange-Laguerre mesh methddMM).

It should be noted that the existence ofepulsive single- 1 d%up (1)
barrier (RSB) potential can naturally manifest. For instance, 9 dr2
the presence of a repulsive barrier and the formation of a

double-well potential occur naturally in free and f-block

elements of the periodic table. Particularly, the occurrencyhere the radial function satisfies the relatioR,,;(r) =
of the repulsive barrier is due to the screening effect of the, (;-) and obeys the normalization condition

core electrons, which is the reason behind phenomena like

Scandide ¢-block elements) and Lanthanide contractign ( /°° P2R2 () dr = /OO 2
block elements) [34, 35]. More interestingly, by appropri- 0 nl 0 nl
ately choosingV, R, A), it is possible to simulate various

structural properties of the valence shell electrong-bfock ~ 2-2-  Lagrange mesh method

and f-block elements. Additionally, if the systems are SUb'The radial wavefunction is expanded in terms of the regular-

jected to pressure confinement, the ordering of filling the : . -
atomic shells is altered and maintains #ngfbau principle Ized Lagrange functions, defined within the rangex) [36]

[34]. The strength and height of RSB potential are fixed to Uny (1) = Z C* fr(r). (6)
k

+ {Vert(r) + Vrsa(r) }

X Un (1) = Eup(r), 4)

(r)dr=1. (5)

a specific value, while we have tuned the position of the po-
tential within the range [0,20]. From the explicit knowledge . :

of the wave function, we have evaluated the radial density-,rhe. Lagrar_lge functions are a set of orthogonal functions as-
which is then used to compute the Shannon entropy. All the%ouated with the Gauss Quadrature

atomic effects such as swelling, orbital contraction (or com- 1

pression), orbital fusion, and orbital fission are explained uti- filrs) = ﬁ‘si’j' @)
lizing both the radial density and Shannon information en- '

tropy. Our particular focus is to demonstrate that the Shantlere A; are the weight factors associated with the Gauss-
non information entropy can be used as an effective indicatokaguerre Quadrature within the specified range. Thus, any
of all the atomic effects mentioned above. The article is orintegral within the aforementioned range can be solved using
ganized as follows: a brief discussion of the methodology ofhe Gauss quadrature method,

solving the Schidinger equation is given in Sec. 2, followed - N

by the dilscussmn on.the results in Sec. 3. Lastly, a brief con- / U (1) dr = Z Astint (7). 8)
clusion is presented in Sec. 4. Pt
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where the mesh points,() are chosen as the roots of the La- 3. Results and discussion
guerre Polynomial Ly (rx) = 0) of degreeN. The orthog-

onality of the Lagrange function can be tested using EB)s. ( The main objective of this study is to utilize the concept of
and [7) as Shannon entropy to understand various intuitive phenomena,

such as atomic swelling, orbital fission, orbital fusi@tc.
00 N The parameters defining the height)( width (A), and po-
/ Fi) () dr =" A filre) fi(ri) = 6i5. (9)  sition (R) of the RSB potential are chosen carefully follow-

0 k=1 ing the work of Dolmatowet al. [9]. In their study, the au-
thors demonstrated that the atomic swelling occurs for the
ground state of the hydrogen atom for potential parameters
(V,R,A) = (2.5,1.45,5.0) a.u. However, such a swelling of

In this study, the mathematical expressionfgfr) has been
taken as [36, 37]

) Ln(r) _» ground state atomic orbital for the hydrogen atom may also
filr) = (=1)'Vri— ~e7=. (10)  occur for any value of/ > 2.5 a.u. andA > 1.0 a.u., irre-
’ spective ofR. Therefore, we have fixed the valuedsfandV
Using Eq. [7), the expression fok; can be extracted as, at 5.0 and 4.0 a.u., respectively, throughout our calculation,
‘ while the position of the barrierR) is varied gradually. Our
;= e (11) analysis reveals that the LMM has an accuracy of up to 14
ri{ Ly (ri)}?’ decimal places fo&v > 100. In this investigation, the value

, . ! o . of N isfixed betweel00 and360, depending upon the states
where, L'y (r;) is the first derivative of Laguerre Polynomial ,qer consideration.

of degreeN atr = r;. Due to the present singularity of the Next, the radial Shannon entropy of the system in posi-
Verr. (r) atr = 0, a Lagrange function must be regularized i, space is calculated as

as [36, 38], 00
~ r 70 _ 2
o= (2) 50 (12) 5= [ ot npu i
J
Due to the regularization, the orthogonality of the Lagrange ~ Z AeTeprt (i) In prg (re), (18)
function becomes inexact far, > 1/2, which does not alter k
the accuracy of the method. wherep,;(r) = R?,(r). As the external potential does not
Using Eqgs.[6) and [7) in Eq. @), we get, alter the angular distribution of the wavefunction, we have
v taken the values of the angular part of the Shannon entropy
i (Se,4) in position space directly from Jiagt al.[39]. Thus,
Z(Tiﬂ' +Vij)Cn = EC;. (13) " the total Shannon entropy in position space is defined as
. . . . . Sr = Sr + S6\¢>- (19)
Here,T;; is the kinetic energy element. The off-diagonal ki- ’
netic energy elementd’(;) can be written as [36], Shannon entropy is the measure of the total ‘information’
(I = —log p) [21] content of a system that provides an intu-
(—1)i-i+1 r@r% itive description of the delocalization of the electronic proba-
Tizj = 5 ; — bility density. At R = 100.0 a.u., where the system becomes
(ri —75) r, 2 asymptotically free, the value of the Shannon entrdpy) (
for the 1s state of the hydrogen atom becormies4473 a.u.,
X {(2710 — 3)T'j — (2710 — ].)T'i}, (14)

which is similar to the findings of Jiagt al.[39]. As the value
of R decreases the variation of Shannon entropy showcases
various interesting phenomena, such as atomic swelling, or-
1 ) ) bital fusion, orbital fission, orbital collapsetc.
Tii= 15,5 (=12nG + 24ng — 8 + (4N + 2)r; —17). (15) The values of energy(E) andS, w.rt. the position of
! the barrier R) for differentnl states of the hydrogen atom
The potentia| energy e|emer(t§ij) can be written as [36], are given in Table I. As mentioned, for the state of the hy-
drogen atom, the value of Shannon entropy becotrielsl73
Vij = {Vet(1:) + Vrsa(7:) }ij. (16) a.u. WhenR decreases to 2.0 a.u., Shannon entropy also de-
creases t@.86855 a.u., which is abou69.2% less than the
Now, using the matrix representation of the quantum mecharformer. This signifies that the amount of delocalization of

and the diagonal kinetic energy elemerifs ) take the form

ical operators, Eq1jj can be solved as the 1s-electron density decreases. becomes more local-
ized atR = 2.0 a.u. compared t&® = 100.0 a.u. However,

HC=EC, (17) atR =1.48a.u.,the value d, for thels state of the hydro-

o gen atom abruptly increasestt®.15506 a.u., which is nearly
hereC is defined ag = [C},Cs,Cs ..., COn]7. 2.45 times higher than the value®f at R = 100.0 a.u. This
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TABLE |. The value ofF andS,. for nl (n = 1 — 3 andl = 0 — 2) states of the Hydrogen atom for different valuegbfAll quantities are
specified in atomic units. The value bf A is fixed atV = 4.0 a.u, A = 5.0 a.u. For comparison purposes, the valueS.ofire taken
from T Jiaoet al.[39], ° Mondalet al. [40].

R 1s

2s 2p 3s

3p

3d

-E S, -E S, -F S, -E

S -F

Sr

100.00 0.50000 4.14473
4.14473
4.14(+0Y

0.12500 8.11098 0.12500 7.26490 0.05556 10.42653
8.11093 7.26490 10.42648
8.11(+0y 7.26(+0Y 1.04(+1Y

0.05556 9.80582
9.80585%
9.81(+0Y

0.05556
9.34563
9.35(+0Y

20.00 0.50000 4.14473
18.00 0.50000 4.14473
16.00 0.50000 4.14473
14.36 0.50000 4.14473
14.00 0.50000 4.14473
13.74 0.50000 4.14473
12.00 0.50000 4.14473
10.80 0.50000 4.14470
10.00 0.50000 4.14467
8.00 0.49999 4.14334
6.48 0.49976 4.12774
6.00 0.49952 4.11582
5.25 0.49829 4.07002
4.00 0.49095 3.90868
2.00 0.30782 2.86856

0.12499 8.10766 0.12500 7.26324 0.05110 9.80819
0.12496 8.09784 0.12498 7.25799 0.04629 9.52403
0.12482 8.06831 0.12492 7.24090 0.03742 9.18575
0.12429 7.99715 0.12467 7.19592 0.02668 12.58789
0.12429 7.99715 0.12467 7.19592 0.02750 12.50328
0.12393 7.95962 0.12450 7.17080 0.02750 12.50328
0.12266 7.85853 0.12388 7.09992 0.03020 12.24070
0.11827 7.63319 0.12166 6.93088 0.03119 12.15008
0.11568 7.53715 0.12033 6.85584 0.03333 11.96384
0.09410 7.04559 0.10924 6.45852 0.03700 11.67097
0.03980 11.46581 0.07890 5.91101 0.03422 6.38024
0.04133 11.35999 0.06565 5.75181 0.02385 12.92492
0.04466 11.14139 0.04135 10.81390 0.02536 12.74716
0.04843 10.91273 0.04448 10.59823 0.02703 12.56275
0.05764 10.42090 0.05186 10.14064 0.03094 12.17165

1.48 0.06330 10.15506 0.03324 11.96371 0.05621 9.89769 0.02078 13.29118
1.00 0.06647 10.01645 0.03449 11.85633 0.05857 9.77247 0.02141 13.20381

0.05245 9.27826
0.04901 9.01531
0.04264 8.69552
0.03138 8.32457
0.03138 8.32457
0.02634 12.12440
0.02878 11.86904
0.02968 11.78117
0.03158 11.60099
0.03480 11.31896
0.03723 11.12247
0.03853 11.02152
0.02785 5.40737
0.02530 12.24566
0.02855 11.88439
0.03040 11.69575
0.03138 11.59942

0.05432
0.05285
0.05005
0.04499
0.04499
0.04256
0.03617
0.02676
0.02824
0.03064
0.03239
0.03330
0.03521
0.03724
0.04157
0.04383
0.04497

9.34563

9.02515
8.83471
8.59251
8.30160
8.30160
8.19438
7.96515
11.86190
11.69603
11.43987
11.26434
11.17524
10.99461
10.81122
10.44020
10.25587
10.16509

symbolizes that the system has become even more delocdb mention that, as we are employing the Lagrange’s mesh
ized than the asymptotic (free) case, indicating the emergenaaethod over a fixed Laguerre mesh of dimensign any

of the phenomenon called atomic swelling [8]. From Fig. 1a),spatial point that comes between two discrete mesh points,
it is evident that, ai? = 1.48 a.u., the entire electronic cloud becomes invisible to the method. That is why the step-like
tunnels through the repulsive barrier and the atomic systerfeature of the variation d8,. appears. However, it does not
becomes ‘swelled’. As a result of this, the probability  affect the overall feature of variation as the points are closely
density becomes extended beyo2@ a.u. [see Fig. 1a)]. spaced and distributed over the space. Also, the step-like fea-
The critical value ofR = R, at which the atomic swelling ture can be removed by scaling the mesh accordingly.
occurs strongly depends on the principal quantum number For excited states of s-symmetry, suct2asnd3s states

n and angular momenturh After the swelling of thels-  of the hydrogen atom, more exquisite phenomena can be
electron density, if the value ak (< R.) decreases even seen. For example, in Fig. 2b), the variation of the Shan-
more, the value o8, decreases quite marginally. For exam- non entropy of thes state exhibits the first abrupt change
ple, atR = 1.0 a.u., we findS,. = 10.01645 a.u., pointingto at R = 6.48 a.u., indicating the atomic swelling. However,
slight localization. This can be understood from the fact, thafrom Fig. 2a), we can see that in the swelled hydrogen atom
by introducing the repulsive barrier, the effective coulombicin the 2s state, the characteristic two lobes are fused and the
potential is divided into two attractive wells,g, inner-well  probability distribution assumds characteristics with a sin-
and outer-well. As the value ok decreases, the strength gle distinct lobe. This phenomenon is known as orbital fu-
of the inner-well decreases while the strength of the outersion [9]. At R = 6.48 a.u., the Shannon entropy of the
well increases [8] which is also the reason behind the atomisystem become$1.46581 a.u., which is 1.4 times higher
swelling. When the value oR is reduced further after the than the Shannon entropy of the asymptotically ffestate
swelling (R < R. = 1.48 a.u.), due to the increased strength (S,, = 8.11098 a.u. atR = 100.0 a.u.), which demonstrates

of the outer-well, the electronic cloud becomes slightly lo-the atomic swelling. As the value @t is further reduced,
calized, which is reflected in Fig. 1b). It is also necessarytwo extremely strange yet intuitive phenomena appear. First,
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FIGURE 2. a), ¢) Radial density,,; vs. radial distance (the red line represents the total potenf¥(r) = Verr. (r) + Vrse(r)] with
V =4.0a.u, A = 5.0 a.u. fixed forVrsg(r)) and b), d) Shannon entrof vs. position of the repulsive barrigt for the excited2s and
2p states of hydrogen atom.

at R = 1.48 a.u., the variation of the Shannon entropy of equal to the value @.. of 1s state atR = 1.48 a.u. This indi-
the2s state [see Fig. 2a)-2b)] exhibits another abrupt changecates that the characteristic of the swelled atom ir2thstate

As we can see, aR = 1.48 a.u. the value of Shannon en- becomes almost similar to the characteristics of the swelled
tropy becomes$, = 11.96371 a.u. fromS,. = 10.28980 a.u.  1s state, just before the first orbital fission appears. Inter-
corresponding ta? = 1.5 a.u., indicating the release of the estingly enough, akR = 1.5 a.u., the value oF,, becomes
fusion of two lobes of thés stateor, first orbital fission. Sec- —0.06037 a.u., approximately close t6;; = —0.06330 a.u.
ond, the value 08, at R = 1.5 a.u. becomes approximately
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at R = 1.48 a.u., indicating further similarity between the localization [see Fig. 3b)]. Also, @& = 6.48 a.u. the first

swelledls and2s states. orbital fission of the3s state appears. Interestingly, just be-
o ) fore the first orbital fission = 6.5 a.u.), theS,. of swellen
Similarly, for the3s state, the swelling occurs & = 35 state becomesl.4681 a.u., exactly similar to the value of

14.36 a.u., where the distinct lobes of tBe state are fused g for swelled2s state atR = 6.48 a.u. Also, atR = 1.48

to attain a single lobe ofs characteristics. AR = 14.36 g ., another abrupt change can be seen in Fig. 3b), indicating
a.u., the value o$,. for 3s state become®2.58789 a.u.,i.e, second orbital fission [see Fig. 3a)].

1.2 times higher tha,, = 10.42653 a.u. atR = 100.0 a.u.

As R decreases, the value 8f experiences a sudden drop Atomic swelling can also be observed fof 0 states of

t0 6.38024 a.u. atR = 6.48 a.u., indicating a sudden strong hydrogen atoms as well. In case of the 1 and/ = 2 angu-
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lar momentum state€p and3d states have single lobe dis- taken from literature. The variations of the Shannon entropy
tribution [see Fig. 2c) and 3e)]. For tlg state, the swelling for nl states¢ = 1 — 3 and/ = 0 — 2) of a hydrogen atom
occurs atkR = 5.25 a.u. at which the variation of Shannon w.r.t. the position of the repulsive barrier have revealed some
entropyw.r.t. R exhibits an abrupt change frobb8391 a.u.  exquisite features related to the mentioned exotic phenom-
measured aR = 5.3 a.u. t010.81390 a.u. atR = 5.25 a.u. ena. For example, as the value Bfis gradually lowered,
[see Fig. 2d)]. Similarly, for thedd state, atomic swelling at a certain value oR the variation ofS,. exhibits a single
occurs atR = 10.8 a.u. [see Fig. 3f)]. Moreover, for the abruptincrement fois (R = 1.48 a.u.),2p (R = 5.25 a.u.)

3p state, which has two distinct lobes, the variation of Shanand3d (R = 10.8 a.u.) states, indicating strong delocaliza-
non entropyw.r.t. R showcases three fascinating phenomendion of the single-lobe probability density. This is known as
[see Figs. 3c)-3d)]. First, @& = 13.74 a.u. the3p state ex- atomic swelling. For multi-lobe distributions, more exquisite
hibits atomic swelling and the two characteristic lobes fusedeatures can be seen. For example, for a hydrogen atom in
together. Next, ai? = 5.25 a.u., a sudden compression of 2s and 3s states, the atomic swelling can be observed by
the 3p state occurs, which can be seen by the sharp decretudying the first abrupt increment in the value of Shannon
ment ofS,: from S, = 10.81390 a.u. atR = 5.3 a.u. to  entropy atR = 6.48 a.u. andR = 14.36 a.u. However,

S, = 5.407367 a.u. atR = 5.25 a.u [see Fig. 3d)]. This if the value ofR is gradually lowered, the variations 6f.

a sudden compression is also known as orbital collapse [34§xhibit more abrupt increments, demonstrating first orbital
prevalent inl # 0 states. During the orbital collapse, the fission (R = 1.48 a.u. for2s state,R = 6.48 a.u. for3s
value of S,. lowers by55.1% as compared to the value of state) and second orbital fissioR & 1.48 a.u. for3s state).

S, = 9.80582 a.u. atR = 100.0, indicating strong localiza- The first orbital fission can also be observed fordpstate at
tion. Last, atR = 4.9 a.u. the first orbital fission occurs for R = 4.9 a.u. For3s and3p states, the variations &f. exhibit
the 3p state, indicated by another abrupt change in the valusudden decrement, signalling strong localization, known as
of S,.. orbital collapse. Shannon entropy can also be used to realize
the similarity between two swelled atomic states. For exam-
ple, atR = 1.5 a.u.,i.e, just before the first orbital fission
occurs in the2s state, the Shannon entropy of the swelled
In this article, Shannon entropy in position space has been exs state becomes almost equal to the Shannon entropy of the
ploited to understand various intuitive atomic phenomenonswelled1s state, suggesting pressure-induced quantum sim-
such as atomic swelling, orbital fission, orbital fusion, orbitalilarity. The same phenomena can also be observed between
collapse etc. of a hydrogen atom trapped inside a repu|siveSW8||ed25 and 3s states as well. Overall, the Shannon en-
barrier of fixed width and height. By modulating the posi- tropy can be used as an extremely powerful tool to analyze
tion of the barrier and analyzing the subsequent alteratioguch convoluted phenomena in terms of information theory.
of the information entropy, the aforementioned exotic phe-

nomena can be realized. In order to solve the &dimger

equation for the system under consideration, the Lagrangdcknowledgments

mesh method (LMM) is employed over an extremely precise

Gauss-Laguerre mesh. The radial part of the Shannon edayanta K. Saha acknowledges partial financial support from
tropy is calculated using the Gauss quadrature method arfgcience and Engineering Research Board (SERB), Govt. of
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