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Construction and analysis of statistical correlation
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In this work, we explore the connection between Diophantine equations and the construction of informational measures, particularly mutual
information, total correlation, and higher-order interaction information. These information measures are calculated in continuous variable
quantum systems comprised of three to fifty harmonic oscillators, and their bahavior was compared among them. By analyzing the ground
state of quantum harmonic oscillators, we establish a mathematical framework where Diophantine constraints emerge naturally in the com-
putation of these quantities. There is an overall consistency in the bahavior of the introduced measures as a function of the parameters of
pairwise potential and the number of oscillators. Our results provide new insights into the interplay between number theory and quantum
information, suggesting novel approaches to quantifying higher-order correlations in many-body quantum systems.
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1. Introduction

The study of informational measures in quantum systems
provides a fundamental perspective on the nature of correla-
tions and complexity in different quantum applications. En-
tropic quantities, such as Shannon entropy and mutual in-
formation [1,2], serve as essential tools for quantifying un-
certainty and information content in quantum models [3-
16]. Beyond these standard measures, higher-order correla-
tion measures, such as total correlation and third-order in-
formation, offer deeper insights into the intricate structure
of statistical correlations [17], particularly in many-body and
continuous-variable systems.

Furthermore, there are not many proposals for higher-
order correlation measures, and those that have been pro-
posed are for discrete variables [18-21], thus there is a need to
present new measures that capture the correlations that come
from the physical interactions of the systems with continu-
ous variables. Due to the above, one can think of some way
to construct informational higher-order correlation measures
and it seems possible through the use of Diophantine equa-
tions.

As part of this work, we analyze informational measures
in the context of coupled quantum harmonic oscillators in
their ground state. As one of the most fundamental models in
quantum mechanics, harmonic oscillators provide a worthy
yet analytically tractable framework for studying the emer-
gence of correlations in quantum systems. Taking advan-
tage of statistical definitions of information theory, we ex-

plore how mutual information, and higher-order correlation
measures provide the structure of quantum interactions in the
ground state harmonic oscillator model, by tuning control pa-
rameters such as the interaction intensity and number of os-
cillators.

The study of statistical correlations is fundamental to un-
derstand the behavior of complex quantum systems.

2. Quantum harmonic oscillators

We define the Hamiltonian ofN -coupled one-dimensional
oscillators in canonical coordinates in position space. In the
pairwise interaction term with coupling constantλ, the posi-
tive sign is for the attractive potential, while the negative sign
corresponds to a repulsive potential. Bothλ andω are real-
valued and positive. The value ofλ is bounded for the repul-
sive case byλ < ω/N to obtain a bound state, considering
atomic units(m = ~ = 1) [22,23]
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The Schr̈odinger equation can be solved exactly in the Ja-
cobi coordinates, thus the Hamiltonian is rewritten in the new
coordinates as
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where the constantsαi depend on the potential parameters for one-body (ω) and two-bodies (λ), α1 = ω2 andα2 = · · · =
αN = ω2 ±Nλ2. Thus, the Schr̈odinger equation is separable in the new coordinates

HΨnR,nr1 ,nr2 ,··· ,nrN−1
(R, r1, r2, · · · , rN−1) = EΨnR,nr1 ,nr2 ,··· ,nrN−1

(R, r1, r2, · · · , rN−1). (3)

The eigenfunction is written as a product of eigenfunctions
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these subscriptsnR, nr1 , nr2 , · · · , nrN−1 = 0 are the ground stateN -particle system quantum numbers, whileR is for the
center of mass andri is for each relative coordinate
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The corresponding density forN -oscillators is

CN = |Ψ000···0(R, r1, r2, · · · , rN−1)|2, (7)

whereCN is a normalization constant. An analogous procedure is performed to obtain the eigenfunction and density function
in momentum space.

3. Correlation measures and Diophantine equations

Shannon entropies [1,2] are measures of the uncertainties in the underlying distributions. The interpretation of the Shannon
entropies is that they are measures of the (de)localization in the corresponding distributions, where larger values correspond to
more delocalized distributions while smaller values are indicative of more localized ones. We define the corresponding reduced
densities asρ(x), Γ(x1, x2) andΘ(x1, x2, x3), which are obtained by integrating the density forN -oscillators.

With these densities we can define the entropies for one variable

Sx = −
∫

ρ(x) ln[ρ(x)]dx, (8)

two variables

Sx1x2 = −
∫

Γ(x1, x2) ln[Γ(x1, x2)]dx1dx2, (9)

and three variables

Sx1x2x3 = −
∫

Θ(x1, x2, x3) ln[Θ(x1, x2, x3)]dx1dx2dx3, (10)

where the interval of integration is[−∞,∞].
The pairwise correlation between two variables can be quantified in terms of the mutual information [2]

Ix =
∫

Γ(x1, x2) ln
[

Γ(x1, x2)
ρ(x1)ρ(x2)

]
dx1dx2 = 2Sx − Sx1x2 . (11)

This measure can be interpreted as a relative entropy between the two-variable distribution and a reference, which is the product
of the two marginals.

On the other hand, one can also consider higher-order information that measures the correlation among three variables, this
measure is the total correlation [24,25]

I3x =
∫

Θ(x1, x2, x3) ln

[
Θ(x1, x2, x3)

ρ(x1)ρ(x2)ρ(x3)

]
dx1dx2dx3 = 3Sx − Sx1x2x3 , (12)
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and measures all the different types of correlations in the system.
The pair-particle correlation is another and is defined as

Ip
3x =

∫
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[
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]
dx1dx2dx3 = 2Sx1x2 − Sx − Sx1x2x3 . (13)

The interaction information, which takes into account the correlation or interaction among the three variables [26-29], is given
as

I3x =
∫

Θ(x1, x2, x3) ln

[
Θ(x1, x2, x3)ρ(x1)ρ(x2)ρ(x3)
Γ(x1, x2)Γ(x1, x3)Γ(x2, x3)

]
dx1dx2dx3 (14)

= 3Sx1x2 − 3Sx − Sx1x2x3 . (15)

Equation (15) may be written as

I3x = (Sx + Sx1x2 − Sx1x2x3)− 2Ix, (16)

where the first term in parentheses is known as the synergy and expressed as

Is
3x =

∫
Θ(x1, x2, x3) ln

[
Θ(x1, x2, x3)

ρ(x1)Γ(x2, x3)

]
dx1dx2dx3 = Sx + Sx1x2 − Sx1x2x3 . (17)

The above is a summary of some pairwise and higher-order
correlation information theory measures that have been used
to study quantum systems in continuous variables.

By examining the expressions of the mutual information,
the total correlation, the interaction information and the oth-
ers, it is inferred that it is possible to construct them from
the definition of certain coefficients associated with a linear
combination of Shannon entropies as

I(x) = nSx + mSx1x2 + lSx1x2x3 , (18)

for the indistinguishable case. We can see that in each of the
correlation measures reviewed above, the entropy coefficient
multiplied by the corresponding number of variables (asso-
ciated with the entropies) is equal to zero. This is because
there is a cancellation of dimensions in the logarithmic argu-
ment. Thus, we define a homogeneous Diophantine equation
associated with the information measures

n + 2m + 3l = 0, (19)

where the solution coefficients of the Diophantine equation
are

n = c1, (20)

m = c1 + 3c2, (21)

l = −c1 − 2c2, (22)

and c1, c2 ∈ Z. Also by construction,m = −1 is set for
N = 2 (two variables) andl = −1 for N = 3 (three vari-
ables).

We can assign the corresponding values to the coefficients
and obtain all the informational measures from the definition
of the Diophantine equation

(c1, c2) = (3,−1) → I3x,

(c1, c2) = (1, 0) → Is
3x,

(c1, c2) = (−1, 1) → Ip
3x,

(c1, c2) = (−3, 2) → I3x.

...

¿ ?

At this point, we wonder whether it is possible to obtain other
informational measures at the level of three variables by ex-
ploring other values ofc1 andc2. In the same sense, can new
information measures be generated with four, five, six and
more variables? Furthermore, if different informational mea-
sures can be constructed, which ones have physical relevance
in many-body models?

In future work, we hope to answer these open questions.

4. Ground state of coupled harmonic oscilla-
tors

In this section, we present and analyze theN -dependent be-
havior of the correlation measures and their dependencies on
the pairwise interaction strength. Additionally, we examine
correlation measures with respect to particle number depen-
denciesN when attractive or repulsive interparticle potentials
are present. Momentum space measures are defined in an
analogous manner to their position space counterparts, using
the respective momentum space densities.
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FIGURE 1. First row: Plots of the momentum space total correla-
tion I3p (red), synergyIs

3p (blue) and pair-particle correlationIp
3p

(yellow) vsλ. Second row: Plots of the position spaceI3x (red),
Is
3x (blue) andIp

3x (yellow) vsλ. The left column corresponds to
results for an attractive potential, while results for a repulsive one
are presented in the right column. The vertical dashed line in the
case of the repulsive potential is the respective bound,λ = 1/

√
3.

The value ofω is set at unity andN = 3, for the ground state
systems.

FIGURE 2. First row: Plots of the momentum space interaction
informationI3p (blue) vs. λ. Second row: Plots of the position
spaceI3x (red)vs.λ. The left column corresponds to results for an
attractive potential while results for a repulsive one are presented
in the right column. The vertical dashed line in the case of the re-
pulsive potential, is the respective bound,λ = 1/

√
3. The value of

ω is set at unity andN = 3, for the ground state systems.

The results of the correlation measures in both spaces
with respect to pairwise interaction with attractive and re-
pulsive interaction potentials are presented in Fig. 1. First,
the magnitudes of the correlation measures are different in
each space. At this point, all correlation measures increase as
the magnitude of the pairwise potential rises. Furthermore,
we see that pair-particle correlation is lower than the other
higher-order correlation measures in both spaces. However,
in all cases the total correlation is the highest magnitude.

The interaction information measures present changes
of sign with the type of potential in Fig. 2 [17]. All informa-

FIGURE 3. First row: Plots of the momentum space mutual infor-
mation Ip (black), total correlationI3p (red), synergyIs

3p (blue)
and pair-particle correlationIp

3p (yellow) vsN . Second row: Plots
of the position spaceIx (black),I3x (red),Is

3x (blue) andIp
3p (yel-

low) vsN . The left column corresponds to results for an attractive
potential while results for a repulsive one are presented in the right
column. The vertical dashed line in the case of the repulsive poten-
tial is the respective bound,λ = 1/

√
3. The values ofω andλ are

set at unity for the ground state systems.

FIGURE 4. First row: Plots of the momentum space interaction
informationI3p (blue) vs. N . Second row: Plots of the position
spaceI3x (red)vs. N . The left column corresponds to results for
an attractive potential, while results for a repulsive one are pre-
sented in the right column. The vertical dashed line in the case of
the repulsive potential is the respective bound,λ = 1/

√
3. The

values ofω andλ are set at unity for the ground state systems.

tional measures in both spaces increase in absolute value as
the value of the parameterλ increases, in both the attractive
and repulsive cases.

Figure 3 [30] presents the correlation measures, which
decrease in magnitude as the value of the parameterN in-
creases in the attractive case. The correlation measures grow
in magnitude as the number of oscillatorsN increases in the
repulsive case up to the respective bound. Likewise, the same
ordering between the correlation measures is presented as in
Fig. 2.

The difference in Fig. 4 [30] is that in the attractive poten-
tial the correlation measures change occurs with a lower cou-
pling force, while in the repulsive potential this occurs with
a higher coupling force. The dashed vertical line delimits the
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range in which the potential is real-valued. Furthermore, we
observe, as in Fig. 2, that the interaction information mea-
sures present opposite signs.

5. Conclusions

Higher-order interaction information measures are examined
in quantum systems consisting of three to fifty coupled oscil-
lators in the ground state, in position and momentum spaces.
We observe a consistent behavior between the higher-order
measures, upon tuning theλ and N parameters. Further-
more, interaction information is positive or negative-valued

depending on whether the interparticle potential is repulsive
or attractive. The sign also switches on going from position
to momentum space. It would be interesting to explore these
results in other kinds of systems, as in excited state coupled
oscillator systems or in higher dimensionalities. Finally, we
are also interested in defining new correlation measures by
solving Diophantine equations.
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