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In this work, we explore the connection between Diophantine equations and the construction of informational measures, particularly mutual

information, total correlation, and higher-order interaction information. These information measures are calculated in continuous variable

guantum systems comprised of three to fifty harmonic oscillators, and their bahavior was compared among them. By analyzing the ground
state of quantum harmonic oscillators, we establish a mathematical framework where Diophantine constraints emerge naturally in the com-
putation of these quantities. There is an overall consistency in the bahavior of the introduced measures as a function of the parameters o
pairwise potential and the number of oscillators. Our results provide new insights into the interplay between number theory and quantum
information, suggesting novel approaches to quantifying higher-order correlations in many-body quantum systems.
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1. Introduction plore how mutual information, and higher-order correlation

) ) ) measures provide the structure of quantum interactions in the
The study of informational measures in quantum systemground state harmonic oscillator model, by tuning control pa-

provides a fundamental perspective on the nature of correlgzmeters such as the interaction intensity and number of os-
tions and complexity in different quantum applications. En-jjiators.

tropic quantities, such as Shannon entropy and mutual in-  The study of statistical correlations is fundamental to un-

certainty and information content in quantum models [3-

16]. Beyond these standard measures, higher-order correla- . .
tion measures, such as total correlation and third-order in- Quantum harmonic oscillators
formation, offer deeper insights into the intricate structureW

. . . . e define the Hamiltonian oN-coupled one-dimensional
of statistical correlations [17], particularly in many-body and . . . . i .
) . oscillators in canonical coordinates in position space. In the
continuous-variable systems.

. pairwise interaction term with coupling constantthe posi-
Furthermore, there are not many proposals for higher:. ™ . ~~. . : : T

: tive sign is for the attractive potential, while the negative sign
order correlation measures, and those that have been pro-

posed are for discrete variables [18-21], thus there is a need %)rresponds to_a_l repulsive potential. Botiandw are real-

: valued and positive. The value afis bounded for the repul-
present new measures that capture the correlations that corrs1|z\a/e case by\ < w/N to obtain a bound state, considerin
from the physical interactions of the systems with continu—atomic units(m — f = 1 [22,23] ' 9
ous variables. Due to the above, one can think of some way T '

to construct informational higher-order correlation measures 1Mo X
and it seems possible through the use of Diophantine equa- Hy=—-= 4+ ZW? Zx?
tions 24~ 92 27 LT
. i=1 g =1
As part of this work, we analyze informational measures N1 N
in the context of coupled quantum harmonic oscillators in 42 Z Z (z; — z;)2. (1)
their ground state. As one of the most fundamental models in =1 it

guantum mechanics, harmonic oscillators provide a worthy o . .

yet analytically tractable framework for studying the emer- ~ The Schodinger equation can be solved exactly in the Ja-
gence of correlations in quantum systems. Taking advancobi coordinates, thus the Hamiltonian is rewritten in the new
tage of statistical definitions of information theory, we ex- coordinates as
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1 02 ) 02 ) 02 )
H:§ 8R2+a1R + 824—0&27"1 —+ -+ —W—FQN’I"N_l ) (2)

where the constants; depend on the potential parameters for one-bagyapd two-bodiesX), o; = w? anday = --- =
ay = w? £ N2 Thus, the Scfidinger equation is separable in the new coordinates

H\PnR,nrl T (PN (R7 1,72, aTN—l) = E\I/nR,nTl Mgt Mrn g (R, T1,72, " 7TN—1)- (3)
The eigenfunction is written as a product of eigenfunctions
\IjnR,n,»l Mgt Mrn g (R, T1,72,° 7TN—1) == %LR(R)%Tl (7"1)1/),,,@ (TZ) tee 'l/}nrN_l (TN—l)» (4)
these subscripts g, n,.,, 0y, - -+ ,nry_, = 0 are the ground statd-particle system quantum numbers, whiteis for the
center of mass ang is for each relative coordinate
% 1
2
Yo(R) = (0‘1) e 3R, (5)
T2
1 1
gy, 0\ 2
bo(ri) = <+) e dvart, (6)
T2

The corresponding density fa¥-oscillators is

Cn = [Wooo-0(R, 71,72, ,rn—1)]?, )

whereCly is a hormalization constant. An analogous procedure is performed to obtain the eigenfunction and density function
in momentum space.

3. Correlation measures and Diophantine equations

Shannon entropies [1,2] are measures of the uncertainties in the underlying distributions. The interpretation of the Shannon
entropies is that they are measures of the (de)localization in the corresponding distributions, where larger values correspond to
more delocalized distributions while smaller values are indicative of more localized ones. We define the corresponding reduced
densities ag(x), I'(x1, z2) andO(z1, 22, x3), Which are obtained by integrating the density #é+oscillators.

With these densities we can define the entropies for one variable

5. =~ [ sy mlp(a)d. ®)
two variables
Sayzs = —/F(xl,xg)ln[F(ml,xz)]dxldxg, 9)
and three variables
Suizozs = —/@(ml,xg,svg)ln[G(CEl,xg,xg)]dxldxgdx3, (10)

where the interval of integration |s-oo, o).
The pairwise correlation between two variables can be quantified in terms of the mutual information [2]

F(‘rh x2)
I, = | D(zy,29) In | ———~ |da1day = 25, — Si,a,- 11
[ | e e, i (D
This measure can be interpreted as a relative entropy between the two-variable distribution and a reference, which is the product
of the two marginals.
On the other hand, one can also consider higher-order information that measures the correlation among three variables, this
measure is the total correlation [24,25]

/@ T, T2, x3)

@(3’;1,-@2, x3)

(@) p(wa)plws)

1dl‘1dl‘2dl‘3 = 351 - Swlmgwga (12)
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and measures all the different types of correlations in the system.
The pair-particle correlation is another and is defined as

6(1’1; z2, x3)p(xl)
F(ml, J]Q)F(!L‘l, 3?3)

L. :/@(zl,mg,xg)ln

]dIldIQdIg = 2ST1T2 - St - Smlmst. (13)

The interaction information, which takes into account the correlation or interaction among the three variables [26-29], is given
as

1 = [0 a2 n (ar(glﬂxsfz’)?()f ais)ﬂor(g(s;ipgﬂ dendradrs -
=3Su20 — 35z — Suywous- (15)
Equation|L5) may be written as
%% = (S + Suyws — Swraws) — 2L, (16)
where the first term in parentheses is known as the synergy and expressed as
I, = / O(z1, 7, 73) In m] dydrades = Sy + Suyey — Surys- (17)

The above is a summary of some pairwise and higher-order
correlation information theory measures that have been used
to study quantum systems in continuous variables.

By examining the expressions of the mutual information, (c1,2) = (3, —1) = Iq,
the tqtgl c_:orrelation, thg _interact_ion information and the oth- (c1,02) = (1,0) — L5,
ers, it is inferred that it is possible to construct them from
the definition of certain coefficients associated with a linear (c1,¢0) = (=1,1) — I%,,
combination of Shannon entropies as (c1,00) = (—3,2) — I3

I(]}) = ’n‘SI + mS$1$2 + ZS$1$2I37 (18)

for the indistinguishable case. We can see that in each of the

correlation measures reviewed above, the entropy coefficient o ?

multiplied by the corresponding number of variables (asso-

ciated with the entropies) is equal to zero. This is becausét this point, we wonder whether it is possible to obtain other
there is a cancellation of dimensions in the logarithmic arguinformational measures at the level of three variables by ex-
ment. Thus, we define a homogeneous Diophantine equatidforing other values of; andc,. In the same sense, can new

associated with the information measures information measures be generated with four, five, six and
more variables? Furthermore, if different informational mea-
n+2m+ 30 =0, (19)  sures can be constructed, which ones have physical relevance
where the solution coefficients of the Diophantine equatloHn many-body models )
are In future work, we hope to answer these open questions.
n=ec, 20y 4. Ground state of coupled harmonic oscilla-
tors
m=cy + 3027 (21)
l=—c; — 20 (22) In this section, we present and analyze Malependent be-

’ havior of the correlation measures and their dependencies on
andcy,co € Z. Also by constructionn = —1 is set for  the pairwise interaction strength. Additionally, we examine
N = 2 (two variables) and = —1 for N = 3 (three vari- correlation measures with respect to particle number depen-
ables). denciesV when attractive or repulsive interparticle potentials

We can assign the corresponding values to the coefficien@re present. Momentum space measures are defined in an
and obtain all the informational measures from the definitioranalogous manner to their position space counterparts, using
of the Diophantine equation the respective momentum space densities.
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% 20* 0 'S FIGURE 3. First row: Plots of the momentum space mutual infor-

mation I,, (black), total correlation/s, (red), synergyl;, (blue)
and pair-particle correlatiort, (yellow) vs N. Second row: Plots
of the position spacé, (black), I3 (red),I3, (blue) andry, (yel-

FIGURE 1. First row: Plots of the momentum space total correla-
tion I3, (red), synergyls, (blue) and pair-particle correlatioff,

(yellow) vs A\. Second row: Plots of the position spake (red),

I3, (blue) andl?, (yellow) vs . The left column corresponds to
results for an attractive potential, while results for a repulsive one
are presented in the right column. The vertical dashed line in the
case of the repulsive potential is the respective boand, 1/+/3.

low) vs N. The left column corresponds to results for an attractive
potential while results for a repulsive one are presented in the right
column. The vertical dashed line in the case of the repulsive poten-
tial is the respective bound, = 1/+/3. The values ofs and )\ are

set at unity for the ground state systems.

The value ofw is set at unity andv = 3, for the ground state
systems.
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FIGURE 4. First row: Plots of the momentum space interaction

o information I°? (blue)vs. N. Second row: Plots of the position
spacel®” (red)vs. N. The left column corresponds to results for

FIGURE 2. First row: Plots of the momentum space interaction an attractive potential, while results for a repulsive one are pre-

information 7 (blue) vs. X. Second row: Plots of the position sented in the right column. The vertical dashed line in the case of

spacel3® (red)vs. \. The left column corresponds to results for an the repulsive potential is the respective bound= 1/v/3. The

attractive potential while results for a repulsive one are presentedsalues ofw and are set at unity for the ground state systems.

in the right column. The vertical dashed line in the case of the re-

pulsive potential, is the respective bound= 1/+/3. The value of

w is set at unity andV = 3, for the ground state systems.
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tional measures in both spaces increase in absolute value as
the value of the parametérincreases, in both the attractive
and repulsive cases.

The results of the correlation measures in both spaces Figure 3 [30] presents the correlation measures, which
with respect to pairwise interaction with attractive and re- decre%se in ma rf)itu de as the value of the para ti,a'r |
pulsive interaction potentials are presented in Fig. 1. First . gnitue > P

: . . .treases in the attractive case. The correlation measures grow
the magnitudes of the correlation measures are different it . . : .
IN. magnitude as the number of oscillatd¥sincreases in the

each space. At this point, all correlation measures increaseas_ = ) o
. c o repulsive case up to the respective bound. Likewise, the same
the magnitude of the pairwise potential rises. Furthermor

e ; . X )
we see that pair-particle correlation is lower than the othefzirge;mg between the correlation measures is presented as in

higher-order correlation measures in both spaces. However, _ N . . .
The difference in Fig. 4 [30] is that in the attractive poten-

in all cases the total correlation is the highest magnitude. . . .
The interaction information measures present changegal the correlation measures change occurs with a lower cou-
of sign with the type of potential in Fig. 2 [17]. All informa- pling force, while in the repulsive potential this occurs with

a higher coupling force. The dashed vertical line delimits the
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range in which the potential is real-valued. Furthermore, wedepending on whether the interparticle potential is repulsive
observe, as in Fig. 2, that the interaction information meaeor attractive. The sign also switches on going from position

sures present opposite signs.

5.

in

to momentum space. It would be interesting to explore these

results in other kinds of systems, as in excited state coupled

Conclusions

oscillator systems or in higher dimensionalities. Finally, we

are also interested in defining new correlation measures by
Higher-order interaction information measures are examine80!ving Diophantine equations.

guantum systems consisting of three to fifty coupled oscil-

lators in the ground state, in position and momentum space@cknowledgements
We observe a consistent behavior between the higher-order
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