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Uncertainties and statistical correlations in quantum systems
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A survey of recent ideas and goals, along with a brief history behind the quantification of uncertainties and statistical correlation in quantum
systems is presented. The focus is on ideas and connections taken from information theory, in particular, the quantification of uncertainties
via Shannon entropies, the entropic uncertainty relation, and statistical correlation by mutual information. A discussion of phase-space
distributions and their use in information theory is also given. An incomplete list of applications, with emphasis on confined quantum
systems, is provided. The article concludes by addressing future challenges in these directions.
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1. Perspectives from quantum chemistry local plasma approximation, a quantity that is experimentally
accessible via stopping power measurements [8]. We should

One of the first papers concerning Shannon entropies thafiso mention that a discrete form of the Shannon entropy, us-

appeared in the quantum chemistry/atomic and moleculahg the eigenvalues of the one-particle reduced density matrix

physics literature was devoted to a study of the entropies fnatural orbital occupation numbers) [9], has been related to
the neutral atoms, in position and in momentum space [1lthe correlation energy in atomic systems.

Shannon entropies in atomic excited states were also consid-

ered as well as the harmonic oscillator. This work provided . . . .

the basis for our interest in these quantities. Among the re?- Uncertainties and 'nformat'on entropies:
sults was the conclusion or conjecture that the Shannon en-  Entropic uncertainty relation

tropy sum (sum of position and momentum space Shannon i i o )

entropies) is a measure of wave function quality. Quantum! € Heisenberg uncertainty principle (HUP) lies at the heart
chemistry addresses how one obtains accurate wave functidf Phenomena in quantum mechanics. Simply put, it exists
approximations, so the idea of a quantity that quantifies thi®€cause the objects in quantum mechanics exhibit wave-like
was certainly intriguing. properties [10]. The Kennard-Robertson formulation [11] in

These ideas were later tested in atomic and molecular sy£€"™Ms Of the product of the standard deviation§ ¢f posi-
tems [2, 3]. The interest in the entropies was due to the fad{on and momentum is
that it is a functional of the electron density, and a lot of at- h
tention was being placed on the development of density func- Azlp > 9" @)
tional theory. Moreover, the electron density is accessible

f - I hy. At this ti further i i . : i .
fom x-ray crystallography. At this time, further interest megrlnmple have gained attention [12—-16] and offer certain ad-

the electron density was also provided by the Quantum Th i to the traditional textbook int f standard
ory of Atoms in Molecules (QTAIM), which was also under vantages o the traditional lextbook one in terms of standar
deviations. For example, the underlying basis for the use of

development [4]. The interest in the entropy sum also putem-"" . . .
phasis on what information is acquired through ConsideraﬂOHarlance-_ba_sed_measures is the assu_mp_tlon_ ofa _Gauss_lan or
of momentum space, a theme related to the development rmal dlstnbgnon. Many quantum dlstrlbutl_ons, including
momentum space quantum chemistry [5]. The impetus her ose of atomic and molecular systems, deviate from such a
is provided by(e, 2¢) spectroscopy from which the momen-
tum density is experimentally accessible.

Besides the idea of the entropy sum as a measure of wa\}
function quality, there were other conceptyal interpretations Sy =8, +S,>D(+1nr), )
as to what exactly these measures provided. The entropy

sum was proposed as a measure of correlation in atomic syghere the Shannon entropies in positiaf) 4nd in momen-

tems [6] Such aconcept resembles the link that was prOVideﬁhm (p) space are defined in terms of the respective wave
between the position space Shannon entropy and the correlamctions (0 = 1) or densities as

tion energy of the weakly inhomogeneous electron gas [7].
Furthermore, the position space Shannon entropy has been S, = — / 0 (2) 2 In | @(x)[2da, 3)
shown to be related to the mean excitation energy within the

In recent years, entropic formulations of the uncertainty

The Shannon entropy formulation of the uncertainty rela-
ié)n is (for D dimensions)
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We employ one-dimensional variables throughout for sim- 1
plicity, with the understanding that these are replaced withyq reverts to the Shannon entropyaas» 1. This measure
vectors in atoms and molecules. has been studied in atoms [20].

The Born interpreta’[ion of the wave function in terms of Likewise, the Tsallis entrop)ﬂ'(z) from statistical physics
probability densities provides the connection for their use in21] js

the definition of the entropies. Notably, the product of stan-
dard deviations in Eq/1j is changed into a sum of entropies T, = <1) <1 _ /p(q;)qu> , )
(S;) in Eq. (2). The Shannon entropies [17, 18] are measures q—1
of the uncertainties in the underlying distributions. Largerand also returns to the Shannon entropy as 1. This en-
values are associated with a more delocalized distributiontropy has been examined in the context of electron correla-
while smaller values have localized ones. tion [22]. A relevant feature of bott®, and T}, is their de-
Thus, it should not be surprising that the Shannon entroppendence on the parameters and their possible physical inter-
has attracted attention in chemistry where delocalization is pretations. We note that there are corresponding uncertainty
key concept. Note also that the Shannon entropy is a globaklations for the Rnyi entropies [23]. We should also men-
measure of the delocalization in the underlying distribution tion the interest in the Fisher information [24], a measure of
in contrast to the local measures of localization that are frefocalization, and studies with complexity measures [25, 26].
guently employed in quantum chemistry. We also stress that The prevalent idea is that information is encoded in the
our interest here is directed toward continuous variable quarwave function and the task at hand is how to extract this in-
tum systems in position and in momentum, thus the measurgermation from uncertainty measures. Among the most im-
are defined in terms of integrals and not sums. portant unresolved questions here afg: What is the most
Quantum information theory, as understood from theappropriate measure to capture (quantum) uncertainti¢s?
computational viewpoint of information shared between twoWhat do quantum uncertainties tell us about the system?
or more states in a superposition, goes beyond the densiti€si) The uncertainty relation is a statement about position-
of a classical system, to consider the density matrix and thenomentum correlation. How does one measure or examine
non-local behaviour of quantum systems. A relevant questhis? This will be the topic of the next section.
tion here is the limitation of Shannon entropies defined in
terms of dgnsities, and not densi_ty ma.trices or d(_ansity_ operag Phase-space distributions
tors. Densities, and their probabilistic interpretations, invoke
the conception of the quantum object as a particle, not as fhe question of defining joint position-momentum distribu-
wave. The diagonal Of the density matriX Contains informa'tions has a |Ong history in quantum mechanicsl One can for_
tion about populations, not coherences. mulate the problem by transiting from densities to density
We will argue and illustrate later on, that Considering thematrices or density operators. The phase_space Wigner func-

sum of the entropies, rather than a particular component, igon [27] is defined as (Weyl-Wigner transform)
indeed an approximation to the consideration of the density

operator, and thus contains non-local behaviour. This non- W (z, p) = 1 /dyq/(x +y) U (z — y)672ipy/h7 (8)
local aspect can be appreciated since the momentum space hm
wave function is the Dirac-Fourier transform of the positionand can be seen as a particular representation of the density

space one, matrix or operator. It is not surprising that due to the Heisen-
berg uncertainty principle, and the problem associated with

d(p) = ! / U(z)e P/ My, (5)  defining the probability of finding a particle with a certain po-
V2rh sition and momentum, the Wigner function has regions where

Furth it should b ted that the Shannon eni_t is negative-valued. Thus, itis usually referred to as a quasi-
“urihermore, it shou'd be noted that the Shann probability function. On one hand, one can view this as the
tropies in Eqgs. 3) and @) are defined in terms of a one-

ticl function. EoN-particl ¢ reduced den principal reason to discard it from consideration, while on
particie wave function. Falv-particie systems, reduced den- ., other, one can view the negative regions as a signature of
sities, which have been integrated over the remaifNng 1

; . . . quantum behaviour.
particles, are employed in the definitions. We will see later The Husimi function [28] represents a Wigner func-
on that it is possible to consider Shannon entropies of pair Ofon that has been passed through a Gaussian filter (Gauss-

higher-order densities. ) Weierstrass transform)
The Shannon entropies are not the only measures that

. . . 1 —(z—z')?
have beel_ﬂ used to quantify uncgrtamges in quantum sy;tems. H(z,p) = — / / W (z,p)e e
The Renyi measureR,,) [19], defined in terms of a density, mh
p(x), is characterized and generalized by the introduction of —-p)?22
a parametety, xe w2 dz'dp. 9)
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It is now positive-definite and does not have the negative re-
gions of the Wigner function. On the other hand, much of
the interesting nodal structure that is present in Wigner func-  — p(a)m(p) n[p(x)m(p)] dedp = Sy + Sp, (16)
tion is lost [29]. Both Wigner and Husimi functions obey the
probabilistic property that they normalize to unity.

The Wigner function is also attractive because its
marginals are the positionp(z)] and momentum space
[7(p)] densities. That is,

where this distribution,(z)m(p)], is defined as the product
of the Wigner function marginals, that is, the position and
momentum space densities. This phase-space entropy (en-
tropy sum) is known as the Leipnik entropy [35, 44]. The
question of units and dimensions in the logarithmic argu-
ment in the Shannon entropy is also addressed here [35]. It
/de(a;,p) = p(2), /de(x,p) =) (10 should be mentioned that the Wigner function has this par-
ticular product form for a harmonic oscillator in the ground

The entropies of these marginals, and.S,, are given in  ga1e and where it also saturates the bound in8q. (

Eqgs. B) and @) for one-particle systems. F@¥ > 1 sys-

tems, the squared modulus of the wave functions is replaced o .
by reduced densities. 4. Statistical correlations

On the other hand, the Husimi function marginalg [«) . . . : .
andr s (p)] are not the position and momentum space densi_Correlatlons, or interactions between or among objects in
ties physical systems, provide the framework for the understand-

ing of a wide variety of natural phenomena. Indeed, a non-
interacting world would be a nondescript place, devoid of the

dpH = deH = 11
/ pH(@.p) = pu (), / wH(w,p) = mu(p), (11) richness in behaviour induced by such interactions. Thus,

- there is keen interest in measures that can quantify the extent
that is, in generalp(z) # py(z) andn(p) # 7y (p). of such interactions.

The Shannon entropies of the Husimi function marginals This has been the case in quantum chemistry. The cor-

relation energy introduced bydwdin [38] uses the Hartree-
Fock wave function as the reference. Thus, a Hartree-Fock
wave function is not correlated from this perspective, even
though there are correlations between same-spin electrons
St = —/WH(p) In7g (p)dp. (13)  due to the antisymmetry of the wave function. The idea of
examining and quantifying in turn the statistical correlations
Most importantly, the Shannon entropies of the Wignerin a system has a long history [45], probably due to the sta-
function [30] and the Husimi function (Wehrl entropy) [31] tistical interpretation of the wave function.
are

are

St = - / o (@) In p () de, (12)

4.1. Pairwise correlations
S :—/W x,p) InW(x,p)dzdp, 14
v (z.7) (=.p)dzdp a4 This idea was introduced and explored in quantum chem-

istry/atomic physics by examining the correlation coefficient
Sy =— / H(z,p)ln H(z,p)dxdp. (15) [46,47]

The price to be paid in the definition of the Shannon en- Oy = M 17)
tropy of the Wigner function is that it is a complex-valued 4 (22) = (2)?
valued quantity, due to the negative regions in the WigneiThe correlation coefficient can also be defined and examined
function. However, the imaginary component is proportionalin momentum space by calculating the corresponding expec-
to the volume of the negative regions, which have been assaation values. Its values are bounded between zeratdnd\
ciated with quantum correlations [30]. perfect correlation of-1 corresponds to when the variables

A comparison of the behaviour of the Wehrl and Wignerare perfectly correlated and move in the same direction, while
function entropies in the harmonic oscillator showed that the-1 corresponds to perfect correlation but in opposite direc-
absolute values ao$y and Sy increase with quantum num- tions. A zero-valued corresponds to no correlation or a sep-
ber and display qualitatively similar behaviours [29]. The arable pair of distribution. Note that a pair density is required
Webhrl entropy has been used in the study of a vibron-modefor the calculation of théz,z,) expectation value, while the
guantum phase transition [32] and in entanglement [33]other expectation values are calculated with the marginals of
Rényi entropies of phase-space distributions in density functhe pair density. The numerator is the covariance, where the
tional theory have also been discussed [34]. (x)? term is a consequence of particle indistinguishability,

After discussing phase-space distributions, we now returparticular to quantum systems.
to the discussion of the entropy sum to illustrate and to stress The pair density can be obtained from the wave function
its significance. The entropy sum can be interpreted as thia two-particle systems ag¥ (x1, z2)|*> = p(x1,2), or ob-
entropy of aseparablephase-space distribution tained from anN' > 2 particle wave function by reducing
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over N — 2 remaining particles. It is convenient to consider part of the discussion in any re-examination of the electron
that these types of correlation measures do not use an exterrarrelation problem [42,43].
reference. That is, correlation is quantified by comparing ex- At this juncture, it is worthwhile to take a step back, and
pectation values pertaining to the same system or same levappreciate that questions raised about measures of uncertain-
of calculation. This is different from the correlation energy ties and statistical correlations that pertain to quantum sys-
where the energy of the correlated system is compared to thems, are the same types of questions that have been raised
Hartree-Fock one. Furthermore, all types of correlation, duén data science. Subtle differences involve the use of contin-
to interaction and wave function symmetry, are included inuous or discrete distributions. One can expect that there will
such statistical measures. be interactions between these communities in the future.
There is another pairwise measure of statistical correla- One can also address position-momentum correlation
tion that has attracted attention in many diverse fields. Muby using mutual information measures defined in terms of

tual information is defined as Wigner [29, 30, 48] or Husimi functions [33],
Iz:/p(xl,xg)ln M dx1dxs Iy = /W z,p)l ( ) dxdp
P1 (Jil)pg(l‘g) ( ) (p)
=Sy, + Sz — Sayzy =0, (18) =5 +5, - Sw, (19)
wherel, in momentum space is define_d inan analogou_s man- Iy = /H (z,p)1 H(z,p) dxdp
ner. I, can be interpreted as a relative entropy, or distance pr(@)mr(p)

between a pair density and a reference one consisting of the
product of its marginals, singg (x) andp,(x) are obtained
by integration of the pair density oves andx; respectively.
Itis also instructive to examine the physical nature of this ref-
erence density. For distinguishable systems, it is a Hartrees
as the quantum number increases in the harmonic oscilla-
like product density, while for indistinguishable ones, it is a r [29].
Bose condensate-like one where all particles occupy the same
state. 49
Mutual information is generally accepted as a more gen-
eral measure of correlation since it can capture non-linearo date, most of the attention and emphasis has been di-
correlations, while the correlation coefficient can only cap-rected towards the study of pairwise interactions and corre-
ture linear ones. On the other hand, mutual information doegtions in physical systems. This is not to say that higher-
not distinguish between positive and negative correlation, agrder correlations, or those arising from the coupling among
in the case of the correlation coefficient. Mutual informa-three or more objects, do not play a role in physical phenom-
tion is lower-bounded by zero (separable pair density) anéna. For example, such interactions are related to the concept
increases in value with larger correlation. In principle, thereof emergent behaviour in physical systems [49] and are also
is no upper bound to its value. Note that when applied tostudied to understand how neurons interact as a group. It is
quantum systemsS,, = S.,, aspi(z) = pa(z), due to  thought that information is stored in the higher-order interac-
particle indistinguishability, and the statistical correlation astions among them as a group. In machine learning, higher-
measured by mutual information is twice the one-variablegrder correlations are necessary in order to introduce context
Shannon entropy minus the two-variable one. This illustratesnto decision-making algorithms.
the relation between uncertainties and statistical correlation. |t is thus important to have available measures to quan-
Mutual information has been employed in various con-tify such higher-order correlations. Interaction information,
texts in quantum systems [36, 37, 39-41]. We also remarks one such measure that quantifies the correlations among
that statistical correlation measures could conceivably formhree objects that go beyond the pairwise ones. It is defined
| as

= 8% + S0 — Sy. (20)

wherely, is complex-valued due tSy,. Both the absolute
values ofly, and g, exhibit a similar increasing behaviour

Higher-order correlations

13.’1) — /p(xl,xg,l‘g) In p($1,$2,.'L'3)p($1)p($2)p(ﬂf3) dﬂjldﬂfgdl‘?,
p(x1, w2)p(21, 23)p(T2, T3)

2 2 2
(S.Ll.Lz + 51113 + SLng)

— (S5, + S5, +S5,)— 53 =352 —35l-¢3 (21)

T1T2T3 12 T1T223"

p(x1, 2, 23) is a three-variable or triple density and the last equality is particular to indistinguishable quantum systems. It is
not the only higher-order measure, however, a defining feature is that it can be negative-valued, in contrast to others including
the pairwise mutual information. It has been applied to the studies of physical systems [37,50-52]. One can hope that future
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work will serve to establish the nature and importance of higher-order correlations in physical systems, and in particular, the
physical interpretations behind negative-valued interaction information. A pertinent question here will also be the development
of measures for four and more objects or variables.

One could also consider the application of higher-order measures to the analysis of two-particle or two-variable Wigner
and Husimi functions. These are defined as

1 " 9 .
W(x1,p1,22,p2) = (wh)? /dyldQQ\Ij(Il Y1, 2o+ y2) U (21 — Y, wo — yo)e 2 P1YITP2V/R (22)
1 (G Ol Gt Vi W o Dl et Vo ol
H($1,p1,$27p2) = W//W(!Ehphl’z’ﬁz)e 252 € R2 dz;dpidzydps. (23)

For example, one can define a mutual information measure in
terms of the two-particle phase-space distributions that W9U|a'evivals [57], chemical reactivity theory [58], density func-
take into account total correlations using the Wigner functiontional reactivity theory [59, 60], and gravity as an emergent

W (z1,p1,x2, entropic force [61].
I%:/W@hm,mz,pg)ln{ (w1, p1, 2, p2) ]

p(z1)7(p1)p(22)7 (p2) There has also been significant interest placed in the ap-

plication of information theoretical ideas to the study of con-
X dxidpydzadps, (24)  fined quantum systems [62—75]. These mentioned works pro-
vide a basis for a representation, which is by no means com-

plete. One always incurs risk, or uncertainty, by projecting
= /H(l'hphﬂfapz) onto a particular basis. The interest in confined systems is
. due in part to their use as models in the understanding of

technologically important devices such as quantum dots.
d.’L’ldpldIEdeQ. - . .

} Here, the emphasis is on understanding behaviour when
(25)  the particle(s) is (are) confined by hard or soft boundaries,
Such measures in the case of the Wigner function have beebr}/ confining potentials, and by applied external fields. Vari-

discussed in the case of coupled oscillators [48]. Here, th@Us entropies, including the Shannon entropy sum, have been

. - . Used to determine how the system reacts in terms of local-
pair densitiesp(wy, x2) andr (p1, ps), in each space, are the ization or delocalization, upon application of these physical
marginals of the two-particle Wigner function, so it is also » up P pny

possible to conceive of higher-order measures that involv{(%:onstramts. Behlnc_J these s_tud|es Iles_ the_ more ge_ne_ral ques-
- ion of the use of information entropies in the tailoring of
these densities. For example,

guantum control.
2= /W($17p17x27p2) In W (x1,p1, 2, p2) A related question, which has not been as yet fully ex-
p(x1, 22)m(p1,p2) plored, is how particle interaction in confined systems influ-
(26) ences the behaviour, and if such interactions can be used as
a resource in quantum control. Hopefully, future works will
is another candidate [48]. Similar to the interpretation ofyield more insights into the nature of inter-particle interac-
the entropy sum in terms of a separable phase-space disttions, and how they manifest in confined quantum systems.

or in the case of the Husimi function

H(xlvpla x21p2)
X [PH(M)WH(Pl)PH(@)WH(m)

X dxidpydxadps,

bution in Eq. 16), the mutual information sumi, + I,,, More generally, one can ask if the Heisenberg uncertainty
represents the correlation present in a two-particle separabfginciple, or its entropic formulation, can be used as a re-
phase-space distribution source for quantum devices. To answer this, efforts need to

be devoted to understanding the physical reasons and princi-
ples associated with the entropy sum moving away or towards

p(x1)m(p1)p(@2)m(P2) ] the hound, and its dependence on the physical parameters of
X d$1dp1d1’2dp2. (27) the system.

p(x1,z2)7(p1,p2)

I, +1, = /p(xl,mz)ﬂ(phm)ln

5. Applications in confined quantum systems
PP g 4 6. Future challenges

The interest in the study and application of uncertainties, cor-

relations, and in general information theory, has witnessed #/e now present some ideas that might present further in-

growth in the scope of applications to physical systems irsights into the role of uncertainties and statistical correla-

past years. Specific examples, among others, include stutions in quantum systems. There is a relatively large amount

ies of particles with Bose-Einstein and Fermi-Dirac statis-of work that has employed Shannon entropies of the one-

tics [53], Bose-Einstein condensates [54-56], quantum timéody densities, but the works employing the two-body or
pair densities have been relatively scarce. Shannon pair en-
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tropies, and pairwise mutual information, in position and inmeasures. If interconnectedness is a prevalent feature rather
momentum space, have been studied in neutral atoms arkdan an exception in physical systems, such measures would
in ions [76-78], in ground and excited states. Fisher inforserve to quantify these effects.

mation measures for pair distributions have also been exam-
ined [24]. Such work needs to be extended to molecular YShe
tems where particular interest could be placed on the exam
nation and interpretation of the chemical bond from informa-
tion theoretical concepts. A major challenge here will be th

The Shannon entropies of phase-space distributions and
ir associated mutual information in chemical systems are
Hlso of interest; however, the first step would entail the abil-
ity of to calculate Husimi and Wigner functions in atomic and
olecular systems. The development of higher-order mutual

development of fast algorithms for the numerical evalu:;xtioqn

of

higher-dimensional integrals.
As previously mentioned, further work needs to be done

formation measures here is also necessary.

Lastly, although there have been applications of informa-

to understand the nature of entropy sums and mutual infortion theoretical concepts to study time-dependent phenom-
mation sums, and their relation with the Heisenberg unceréna [39-41, 44,57, 79, 80], this avenue has not been suffi-
tainty principle. More attention is needed in the developmentciently exploited, and one can expect that there will be future
understanding and interpretation of higher-order correlatiorgndeavours in this regard.
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