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Uncertainties and statistical correlations in quantum systems
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A survey of recent ideas and goals, along with a brief history behind the quantification of uncertainties and statistical correlation in quantum
systems is presented. The focus is on ideas and connections taken from information theory, in particular, the quantification of uncertainties
via Shannon entropies, the entropic uncertainty relation, and statistical correlation by mutual information. A discussion of phase-space
distributions and their use in information theory is also given. An incomplete list of applications, with emphasis on confined quantum
systems, is provided. The article concludes by addressing future challenges in these directions.
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1. Perspectives from quantum chemistry

One of the first papers concerning Shannon entropies that
appeared in the quantum chemistry/atomic and molecular
physics literature was devoted to a study of the entropies of
the neutral atoms, in position and in momentum space [1].
Shannon entropies in atomic excited states were also consid-
ered as well as the harmonic oscillator. This work provided
the basis for our interest in these quantities. Among the re-
sults was the conclusion or conjecture that the Shannon en-
tropy sum (sum of position and momentum space Shannon
entropies) is a measure of wave function quality. Quantum
chemistry addresses how one obtains accurate wave function
approximations, so the idea of a quantity that quantifies this
was certainly intriguing.

These ideas were later tested in atomic and molecular sys-
tems [2, 3]. The interest in the entropies was due to the fact
that it is a functional of the electron density, and a lot of at-
tention was being placed on the development of density func-
tional theory. Moreover, the electron density is accessible
from x-ray crystallography. At this time, further interest in
the electron density was also provided by the Quantum The-
ory of Atoms in Molecules (QTAIM), which was also under
development [4]. The interest in the entropy sum also put em-
phasis on what information is acquired through consideration
of momentum space, a theme related to the development of
momentum space quantum chemistry [5]. The impetus here
is provided by(e, 2e) spectroscopy from which the momen-
tum density is experimentally accessible.

Besides the idea of the entropy sum as a measure of wave
function quality, there were other conceptual interpretations
as to what exactly these measures provided. The entropy
sum was proposed as a measure of correlation in atomic sys-
tems [6]. Such a concept resembles the link that was provided
between the position space Shannon entropy and the correla-
tion energy of the weakly inhomogeneous electron gas [7].
Furthermore, the position space Shannon entropy has been
shown to be related to the mean excitation energy within the

local plasma approximation, a quantity that is experimentally
accessible via stopping power measurements [8]. We should
also mention that a discrete form of the Shannon entropy, us-
ing the eigenvalues of the one-particle reduced density matrix
(natural orbital occupation numbers) [9], has been related to
the correlation energy in atomic systems.

2. Uncertainties and information entropies:
Entropic uncertainty relation

The Heisenberg uncertainty principle (HUP) lies at the heart
of phenomena in quantum mechanics. Simply put, it exists
because the objects in quantum mechanics exhibit wave-like
properties [10]. The Kennard-Robertson formulation [11] in
terms of the product of the standard deviations (∆) of posi-
tion and momentum is

∆x∆p ≥ ~
2
. (1)

In recent years, entropic formulations of the uncertainty
principle have gained attention [12–16] and offer certain ad-
vantages to the traditional textbook one in terms of standard
deviations. For example, the underlying basis for the use of
variance-based measures is the assumption of a Gaussian or
normal distribution. Many quantum distributions, including
those of atomic and molecular systems, deviate from such a
form.

The Shannon entropy formulation of the uncertainty rela-
tion is (forD dimensions)

St = Sx + Sp ≥ D(1 + lnπ), (2)

where the Shannon entropies in position (x) and in momen-
tum (p) space are defined in terms of the respective wave
functions (D = 1) or densities as

Sx = −
∫
|Ψ(x)|2 ln |Ψ(x)|2dx, (3)
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Sp = −
∫
|Φ(p)|2 ln |Φ(p)|2dp. (4)

We employ one-dimensional variables throughout for sim-
plicity, with the understanding that these are replaced with
vectors in atoms and molecules.

The Born interpretation of the wave function in terms of
probability densities provides the connection for their use in
the definition of the entropies. Notably, the product of stan-
dard deviations in Eq. (1) is changed into a sum of entropies
(St) in Eq. (2). The Shannon entropies [17,18] are measures
of the uncertainties in the underlying distributions. Larger
values are associated with a more delocalized distribution,
while smaller values have localized ones.

Thus, it should not be surprising that the Shannon entropy
has attracted attention in chemistry where delocalization is a
key concept. Note also that the Shannon entropy is a global
measure of the delocalization in the underlying distribution,
in contrast to the local measures of localization that are fre-
quently employed in quantum chemistry. We also stress that
our interest here is directed toward continuous variable quan-
tum systems in position and in momentum, thus the measures
are defined in terms of integrals and not sums.

Quantum information theory, as understood from the
computational viewpoint of information shared between two
or more states in a superposition, goes beyond the densities
of a classical system, to consider the density matrix and the
non-local behaviour of quantum systems. A relevant ques-
tion here is the limitation of Shannon entropies defined in
terms of densities, and not density matrices or density opera-
tors. Densities, and their probabilistic interpretations, invoke
the conception of the quantum object as a particle, not as a
wave. The diagonal of the density matrix contains informa-
tion about populations, not coherences.

We will argue and illustrate later on, that considering the
sum of the entropies, rather than a particular component, is
indeed an approximation to the consideration of the density
operator, and thus contains non-local behaviour. This non-
local aspect can be appreciated since the momentum space
wave function is the Dirac-Fourier transform of the position
space one,

Φ(p) =
1√
2π~

∫
Ψ(x)e−ipx/~dx. (5)

Furthermore, it should be noted that the Shannon en-
tropies in Eqs. (3) and (4) are defined in terms of a one-
particle wave function. ForN -particle systems, reduced den-
sities, which have been integrated over the remainingN − 1
particles, are employed in the definitions. We will see later
on that it is possible to consider Shannon entropies of pair or
higher-order densities.

The Shannon entropies are not the only measures that
have been used to quantify uncertainties in quantum systems.
The Ŕenyi measure (Rα) [19], defined in terms of a density,
ρ(x), is characterized and generalized by the introduction of
a parameterα,

(
1

1− α

)
log

∫
ρ(x)αdx, α > 0, α 6= 1, (6)

and reverts to the Shannon entropy asα → 1. This measure
has been studied in atoms [20].

Likewise, the Tsallis entropy (Tq) from statistical physics
[21] is

Tq =
(

1
q − 1

) (
1−

∫
ρ(x)qdx

)
, (7)

and also returns to the Shannon entropy asq → 1. This en-
tropy has been examined in the context of electron correla-
tion [22]. A relevant feature of bothRα andTq is their de-
pendence on the parameters and their possible physical inter-
pretations. We note that there are corresponding uncertainty
relations for the Ŕenyi entropies [23]. We should also men-
tion the interest in the Fisher information [24], a measure of
localization, and studies with complexity measures [25,26].

The prevalent idea is that information is encoded in the
wave function and the task at hand is how to extract this in-
formation from uncertainty measures. Among the most im-
portant unresolved questions here are:(i) What is the most
appropriate measure to capture (quantum) uncertainties?(ii)
What do quantum uncertainties tell us about the system?
(iii) The uncertainty relation is a statement about position-
momentum correlation. How does one measure or examine
this? This will be the topic of the next section.

3. Phase-space distributions

The question of defining joint position-momentum distribu-
tions has a long history in quantum mechanics. One can for-
mulate the problem by transiting from densities to density
matrices or density operators. The phase-space Wigner func-
tion [27] is defined as (Weyl-Wigner transform)

W (x, p) =
1
~π

∫
dyΨ(x + y)Ψ∗(x− y)e−2ipy/~, (8)

and can be seen as a particular representation of the density
matrix or operator. It is not surprising that due to the Heisen-
berg uncertainty principle, and the problem associated with
defining the probability of finding a particle with a certain po-
sition and momentum, the Wigner function has regions where
it is negative-valued. Thus, it is usually referred to as a quasi-
probability function. On one hand, one can view this as the
principal reason to discard it from consideration, while on
the other, one can view the negative regions as a signature of
quantum behaviour.

The Husimi function [28] represents a Wigner func-
tion that has been passed through a Gaussian filter (Gauss-
Weierstrass transform)

H(x, p) =
1
π~

∫ ∫
W (x, p)e

−(x−x′)2
2s2

× e
−(p−p′)22s2

~2 dx′dp′. (9)
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It is now positive-definite and does not have the negative re-
gions of the Wigner function. On the other hand, much of
the interesting nodal structure that is present in Wigner func-
tion is lost [29]. Both Wigner and Husimi functions obey the
probabilistic property that they normalize to unity.

The Wigner function is also attractive because its
marginals are the position [ρ(x)] and momentum space
[π(p)] densities. That is,

∫
dpW (x, p) = ρ(x),

∫
dxW (x, p) = π(p). (10)

The entropies of these marginals,Sx and Sp, are given in
Eqs. (3) and (4) for one-particle systems. ForN > 1 sys-
tems, the squared modulus of the wave functions is replaced
by reduced densities.

On the other hand, the Husimi function marginals [ρH(x)
andπH(p)] are not the position and momentum space densi-
ties

∫
dpH(x, p) = ρH(x),

∫
dxH(x, p) = πH(p), (11)

that is, in general,ρ(x) 6= ρH(x) andπ(p) 6= πH(p).
The Shannon entropies of the Husimi function marginals

are

Sx
H = −

∫
ρH(x) ln ρH(x)dx, (12)

Sp
H = −

∫
πH(p) ln πH(p)dp. (13)

Most importantly, the Shannon entropies of the Wigner
function [30] and the Husimi function (Wehrl entropy) [31]
are

SW = −
∫

W (x, p) ln W (x, p)dxdp, (14)

SH = −
∫

H(x, p) ln H(x, p)dxdp. (15)

The price to be paid in the definition of the Shannon en-
tropy of the Wigner function is that it is a complex-valued
valued quantity, due to the negative regions in the Wigner
function. However, the imaginary component is proportional
to the volume of the negative regions, which have been asso-
ciated with quantum correlations [30].

A comparison of the behaviour of the Wehrl and Wigner
function entropies in the harmonic oscillator showed that the
absolute values ofSW andSH increase with quantum num-
ber and display qualitatively similar behaviours [29]. The
Wehrl entropy has been used in the study of a vibron-model
quantum phase transition [32] and in entanglement [33].
Rényi entropies of phase-space distributions in density func-
tional theory have also been discussed [34].

After discussing phase-space distributions, we now return
to the discussion of the entropy sum to illustrate and to stress
its significance. The entropy sum can be interpreted as the
entropy of aseparablephase-space distribution

−
∫

ρ(x)π(p) ln [ρ(x)π(p)] dxdp = Sx + Sp, (16)

where this distribution, [ρ(x)π(p)], is defined as the product
of the Wigner function marginals, that is, the position and
momentum space densities. This phase-space entropy (en-
tropy sum) is known as the Leipnik entropy [35, 44]. The
question of units and dimensions in the logarithmic argu-
ment in the Shannon entropy is also addressed here [35]. It
should be mentioned that the Wigner function has this par-
ticular product form for a harmonic oscillator in the ground
state, and where it also saturates the bound in Eq. (2).

4. Statistical correlations

Correlations, or interactions between or among objects in
physical systems, provide the framework for the understand-
ing of a wide variety of natural phenomena. Indeed, a non-
interacting world would be a nondescript place, devoid of the
richness in behaviour induced by such interactions. Thus,
there is keen interest in measures that can quantify the extent
of such interactions.

This has been the case in quantum chemistry. The cor-
relation energy introduced by Löwdin [38] uses the Hartree-
Fock wave function as the reference. Thus, a Hartree-Fock
wave function is not correlated from this perspective, even
though there are correlations between same-spin electrons
due to the antisymmetry of the wave function. The idea of
examining and quantifying in turn the statistical correlations
in a system has a long history [45], probably due to the sta-
tistical interpretation of the wave function.

4.1. Pairwise correlations

This idea was introduced and explored in quantum chem-
istry/atomic physics by examining the correlation coefficient
[46,47]

σx =
〈x1x2〉 − 〈x〉2
〈x2〉 − 〈x〉2 . (17)

The correlation coefficient can also be defined and examined
in momentum space by calculating the corresponding expec-
tation values. Its values are bounded between zero and±1. A
perfect correlation of+1 corresponds to when the variables
are perfectly correlated and move in the same direction, while
−1 corresponds to perfect correlation but in opposite direc-
tions. A zero-valuedσ corresponds to no correlation or a sep-
arable pair of distribution. Note that a pair density is required
for the calculation of the〈x1x2〉 expectation value, while the
other expectation values are calculated with the marginals of
the pair density. The numerator is the covariance, where the
〈x〉2 term is a consequence of particle indistinguishability,
particular to quantum systems.

The pair density can be obtained from the wave function
in two-particle systems as,|Ψ(x1, x2)|2 = ρ(x1, x2), or ob-
tained from anN > 2 particle wave function by reducing
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overN − 2 remaining particles. It is convenient to consider
that these types of correlation measures do not use an external
reference. That is, correlation is quantified by comparing ex-
pectation values pertaining to the same system or same level
of calculation. This is different from the correlation energy
where the energy of the correlated system is compared to the
Hartree-Fock one. Furthermore, all types of correlation, due
to interaction and wave function symmetry, are included in
such statistical measures.

There is another pairwise measure of statistical correla-
tion that has attracted attention in many diverse fields. Mu-
tual information is defined as

Ix =
∫

ρ(x1, x2) ln

[
ρ(x1, x2)

ρ1(x1)ρ2(x2)

]
dx1dx2

= Sx1 + Sx2 − Sx1x2 ≥ 0, (18)

whereIp in momentum space is defined in an analogous man-
ner. Ix can be interpreted as a relative entropy, or distance
between a pair density and a reference one consisting of the
product of its marginals, sinceρ1(x) andρ2(x) are obtained
by integration of the pair density overx2 andx1 respectively.
It is also instructive to examine the physical nature of this ref-
erence density. For distinguishable systems, it is a Hartree-
like product density, while for indistinguishable ones, it is a
Bose condensate-like one where all particles occupy the same
state.

Mutual information is generally accepted as a more gen-
eral measure of correlation since it can capture non-linear
correlations, while the correlation coefficient can only cap-
ture linear ones. On the other hand, mutual information does
not distinguish between positive and negative correlation, as
in the case of the correlation coefficient. Mutual informa-
tion is lower-bounded by zero (separable pair density) and
increases in value with larger correlation. In principle, there
is no upper bound to its value. Note that when applied to
quantum systems,Sx1 = Sx2 , asρ1(x) = ρ2(x), due to
particle indistinguishability, and the statistical correlation as
measured by mutual information is twice the one-variable
Shannon entropy minus the two-variable one. This illustrates
the relation between uncertainties and statistical correlation.

Mutual information has been employed in various con-
texts in quantum systems [36, 37, 39–41]. We also remark
that statistical correlation measures could conceivably form

part of the discussion in any re-examination of the electron
correlation problem [42,43].

At this juncture, it is worthwhile to take a step back, and
appreciate that questions raised about measures of uncertain-
ties and statistical correlations that pertain to quantum sys-
tems, are the same types of questions that have been raised
in data science. Subtle differences involve the use of contin-
uous or discrete distributions. One can expect that there will
be interactions between these communities in the future.

One can also address position-momentum correlation
by using mutual information measures defined in terms of
Wigner [29,30,48] or Husimi functions [33],

IW =
∫

W (x, p) ln

[
W (x, p)
ρ(x)π(p)

]
dxdp

= Sx + Sp − SW , (19)

IH =
∫

H(x, p) ln

[
H(x, p)

ρH(x)πH(p)

]
dxdp

= Sx
H + Sp

H − SH . (20)

whereIW is complex-valued due toSW . Both the absolute
values ofIW andIH , exhibit a similar increasing behaviour
as the quantum number increases in the harmonic oscilla-
tor [29].

4.2. Higher-order correlations

To date, most of the attention and emphasis has been di-
rected towards the study of pairwise interactions and corre-
lations in physical systems. This is not to say that higher-
order correlations, or those arising from the coupling among
three or more objects, do not play a role in physical phenom-
ena. For example, such interactions are related to the concept
of emergent behaviour in physical systems [49] and are also
studied to understand how neurons interact as a group. It is
thought that information is stored in the higher-order interac-
tions among them as a group. In machine learning, higher-
order correlations are necessary in order to introduce context
into decision-making algorithms.

It is thus important to have available measures to quan-
tify such higher-order correlations. Interaction information,
is one such measure that quantifies the correlations among
three objects that go beyond the pairwise ones. It is defined
as

I3x =
∫

ρ(x1, x2, x3) ln

[
ρ(x1, x2, x3)ρ(x1)ρ(x2)ρ(x3)
ρ(x1, x2)ρ(x1, x3)ρ(x2, x3)

]
dx1dx2dx3

= (S2
x1x2

+ S2
x1x3

+ S2
x2x3

)− (S1
x1

+ S1
x2

+ S1
x3

)− S3
x1x2x3

= 3S2
x1x2

− 3S1
x − S3

x1x2x3
. (21)

ρ(x1, x2, x3) is a three-variable or triple density and the last equality is particular to indistinguishable quantum systems. It is
not the only higher-order measure, however, a defining feature is that it can be negative-valued, in contrast to others including
the pairwise mutual information. It has been applied to the studies of physical systems [37, 50–52]. One can hope that future
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work will serve to establish the nature and importance of higher-order correlations in physical systems, and in particular, the
physical interpretations behind negative-valued interaction information. A pertinent question here will also be the development
of measures for four and more objects or variables.

One could also consider the application of higher-order measures to the analysis of two-particle or two-variable Wigner
and Husimi functions. These are defined as

W (x1, p1, x2, p2) =
1

(π~)2

∫
dy1dy2Ψ(x1 + y1, x2 + y2)Ψ∗(x1 − y1, x2 − y2)e−2i(p1y1+p2y2)/~, (22)

H(x1, p1, x2, p2) =
1

(π~)2

∫ ∫
W (x1, p1, x2, p2)e

−[(x1−x′1)2+(x2−x′2)2]
2s2 e

−[(p1−p′1)2+(p2−p′2)2]2s2

~2 dx′1dp′1dx′2dp′2. (23)

For example, one can define a mutual information measure in
terms of the two-particle phase-space distributions that would
take into account total correlations using the Wigner function

IW
xp=

∫
W (x1, p1, x2, p2) ln

[
W (x1, p1, x2, p2)

ρ(x1)π(p1)ρ(x2)π(p2)

]

× dx1dp1dx2dp2, (24)

or in the case of the Husimi function

IH
xp=

∫
H(x1, p1, x2, p2)

× ln
[

H(x1, p1, x2, p2)
ρH(x1)πH(p1)ρH(x2)πH(p2)

]
dx1dp1dx2dp2.

(25)

Such measures in the case of the Wigner function have been
discussed in the case of coupled oscillators [48]. Here, the
pair densities,ρ(x1, x2) andπ(p1, p2), in each space, are the
marginals of the two-particle Wigner function, so it is also
possible to conceive of higher-order measures that involve
these densities. For example,

I2
xp =

∫
W (x1, p1, x2, p2) ln

[
W (x1, p1, x2, p2)
ρ(x1, x2)π(p1, p2)

]

× dx1dp1dx2dp2, (26)

is another candidate [48]. Similar to the interpretation of
the entropy sum in terms of a separable phase-space distri-
bution in Eq. (16), the mutual information sum,Ix + Ip,
represents the correlation present in a two-particle separable
phase-space distribution

Ix + Ip =
∫

ρ(x1, x2)π(p1, p2) ln
[

ρ(x1, x2)π(p1, p2)
ρ(x1)π(p1)ρ(x2)π(p2)

]

× dx1dp1dx2dp2. (27)

5. Applications in confined quantum systems

The interest in the study and application of uncertainties, cor-
relations, and in general information theory, has witnessed a
growth in the scope of applications to physical systems in
past years. Specific examples, among others, include stud-
ies of particles with Bose-Einstein and Fermi-Dirac statis-
tics [53], Bose-Einstein condensates [54–56], quantum time

revivals [57], chemical reactivity theory [58], density func-
tional reactivity theory [59, 60], and gravity as an emergent
entropic force [61].

There has also been significant interest placed in the ap-
plication of information theoretical ideas to the study of con-
fined quantum systems [62–75]. These mentioned works pro-
vide a basis for a representation, which is by no means com-
plete. One always incurs risk, or uncertainty, by projecting
onto a particular basis. The interest in confined systems is
due in part to their use as models in the understanding of
technologically important devices such as quantum dots.

Here, the emphasis is on understanding behaviour when
the particle(s) is (are) confined by hard or soft boundaries,
by confining potentials, and by applied external fields. Vari-
ous entropies, including the Shannon entropy sum, have been
used to determine how the system reacts in terms of local-
ization or delocalization, upon application of these physical
constraints. Behind these studies lies the more general ques-
tion of the use of information entropies in the tailoring of
quantum control.

A related question, which has not been as yet fully ex-
plored, is how particle interaction in confined systems influ-
ences the behaviour, and if such interactions can be used as
a resource in quantum control. Hopefully, future works will
yield more insights into the nature of inter-particle interac-
tions, and how they manifest in confined quantum systems.
More generally, one can ask if the Heisenberg uncertainty
principle, or its entropic formulation, can be used as a re-
source for quantum devices. To answer this, efforts need to
be devoted to understanding the physical reasons and princi-
ples associated with the entropy sum moving away or towards
the bound, and its dependence on the physical parameters of
the system.

6. Future challenges

We now present some ideas that might present further in-
sights into the role of uncertainties and statistical correla-
tions in quantum systems. There is a relatively large amount
of work that has employed Shannon entropies of the one-
body densities, but the works employing the two-body or
pair densities have been relatively scarce. Shannon pair en-
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tropies, and pairwise mutual information, in position and in
momentum space, have been studied in neutral atoms and
in ions [76–78], in ground and excited states. Fisher infor-
mation measures for pair distributions have also been exam-
ined [24]. Such work needs to be extended to molecular sys-
tems where particular interest could be placed on the exami-
nation and interpretation of the chemical bond from informa-
tion theoretical concepts. A major challenge here will be the
development of fast algorithms for the numerical evaluation
of higher-dimensional integrals.

As previously mentioned, further work needs to be done
to understand the nature of entropy sums and mutual infor-
mation sums, and their relation with the Heisenberg uncer-
tainty principle. More attention is needed in the development,
understanding and interpretation of higher-order correlation

measures. If interconnectedness is a prevalent feature rather
than an exception in physical systems, such measures would
serve to quantify these effects.

The Shannon entropies of phase-space distributions and
their associated mutual information in chemical systems are
also of interest; however, the first step would entail the abil-
ity of to calculate Husimi and Wigner functions in atomic and
molecular systems. The development of higher-order mutual
information measures here is also necessary.

Lastly, although there have been applications of informa-
tion theoretical concepts to study time-dependent phenom-
ena [39–41, 44, 57, 79, 80], this avenue has not been suffi-
ciently exploited, and one can expect that there will be future
endeavours in this regard.
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