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An information-theoretical take on electron-nuclear wave packet dynamics
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Applications of information-theoretic measures to a time-dependent coupled electron-nuclear system to analyze the dynamics and correlation
between both particles are presented. For this, differential Shannon entropies that are derived from time-dependent coordinate-space and
momentum-space probability densities are calculated. Two distinct scenarios are investigated: one exhibiting adiabatic Born-Oppenheimer
dynamics and the other involving strong non-adiabatic transitions. The total and single-particle entropies, as well as the mutual information
are analyzed and compared to semi-analytical expressions. The results reveal that in the adiabatic regime, correlations manifest differently
in coordinate and momentum spaces, which is related to the formation of nodes. In the non-adiabatic case, entropies can be decomposed into
state-specific contributions, revealing information about the transition between adiabatic states.
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1. Introduction

Major advances have been made in recent years in the field
of short-time spectroscopy [1], which also brings the many
advances in numerical simulations of femtosecond dynamics
into the spotlight [2-4]. There, a detailed understanding of the
quantum mechanical behavior of all the particles involved,
namely, electrons and nuclei, is required. However, their in-
teraction and correlated movement play a crucial role in many
aspects of quantum chemistry, underpinning processes rang-
ing from light-induced excitation to charge transfer and bond
breaking/forming [5,6]. Further effects and discussions on
electron-nuclear correlation can be found in Refs. [7-12].

The equation, that governs the dynamics of electrons and
nuclei, is the time-dependent Schrödinger equation,

Ĥψ(r,R, t) = i
∂

∂t
ψ(r,R, t), (1)

with nuclear coordinatesR and electronic coordinatesr.
Here,Ĥ is a molecular Hamiltonian, consisting of the nuclear
kinetic energy operator̂Tnuc, the electronic kinetic energy op-
eratorT̂el, and the potential energyV (r,R). We define the
electronic Hamiltonian̂Hel as:

Ĥ = T̂nuc + T̂el + V (r,R)︸ ︷︷ ︸
Ĥel

. (2)

If we fix R and solve for the eigenstates ofĤel, we find that
the statesϕn(r;R), that are parametric inR, build an or-
thonormal basis for the molecular wave function:

Ψ(r,R, t) =
∑

n

χn(R, t)ϕn(r;R), (3)

with nuclear coefficientsχn(R). The statesϕn(r;R) are re-
ferred to asadiabatic statesof the molecular Hamiltonian.
Furthermore, the eigenvalues of̂Hel act as potential energy
surfaces for the nuclear degrees of freedom and therefore, are
also calledadiabatic potentials.

Figure 1 illustrates a typical situation based on the ex-
ample of the Ring=CH2 stretch mode of fulvene schemati-
cally [13]. There, the potential energy surface of the adi-
abatic ground state and the first excited adiabatic state are
presented, as well as with the nuclear densityρnuc(Rstretch).
Initially, ρnuc(Rstretch) evolves on the excited state potential
energy surface. However, when excited state and ground state
potential are approaching each other, which is referred to as a
conical intersection (or avoided crossing in one dimension),
the population can be transferred to the ground state. There-
fore, a non-adiabatic transition takes place. Later, the density
is reflected and on the second passage of the conical intersec-
tion, a less complete population transfer occurs so that both
shown states are populated. Due to the high dimensionality
of many molecules, replicating the exact dynamics is compu-
tationally impossible, and approximate solutions to the time-
dependent Schrödinger equation are applied. However, this
requires detailed understanding of the wavepacket dynamics
and the behavior of densities during the dynamics and, in par-

FIGURE 1. Schematic representation of the adiabatic potentials and
short-time dynamics of the Ring=CH2 stretch mode of fulvene.
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ticular, the correlated movement of electrons and nuclei.
Information-theoretical measures provide a variety of tools
to analyze densities and correlations present but their appli-
cation to dynamical situations is sparse. Here, we will discuss
an application of information-theoretical measures.

Another situation of great interest is, when potential en-
ergy surfaces are well separated and the dynamics take only
place in one electronic state and the Born-Oppenheimer ap-
proximation [14] can be applied:

ΨBO(r,R, t) = χBO(R, t)ϕn(r;R), (4)

wheren is the label of the adiabatic potential on which the
dynamics take place on. Note, that within this approximation,
in the evolution, equations coupling terms to other potential
surfaces are neglected. This approximation is fundamental to
many applications in quantum chemistry [15].

In the following, we consider both of these situations:
first, a situation where the energy surfaces are weakly cou-
pled and well separated, so that the Born-Oppenheimer ap-
proximation is expected to hold. Secondly, a situation, where
the surfaces are strongly coupled and a nearly complete pop-
ulation transfer takes place. Both situations are analyzed us-
ing information theoretical measures, namely, the differen-
tial Shannon entropy (DSE) and the mutual information (MI)
that are calculated from total and marginal densities obtained
from the molecular wave function. Herby, we define the DSE
of a density as [16]

S[ρ(x)] =
∫

dx ρ(x) ln ρ(x), (5)

wherex is to be replaced by all position (or momentum) vari-
ables of the respective densityρ(x) so that we obtain total and
single-particle entropies in position and momentum space.
We use the MI to measure the non-linear correlation between
the electronic and nuclear degrees of freedom. Since we will
only encounter one electronic and one nuclear dimension, the
MIs in position space and momentum space are defined as

I = S[ρel] + S[ρnuc]− S[ρtot], (6)

Ĩ = S[ρ̃el] + S[ρ̃nuc]− S[ρ̃tot], (7)

where the MI I measures non-linear correlations in po-
sition space andĨ in momentum space. In Eq. (6),
Eq. (7), we encounter the total position densityρ(r,R, t) =
|Ψ(r,R, t)|2, the nuclear position densityρnuc(R, t) =∫

dr|Ψ(r,R, t)|2 and the electron position densityρel(r, t) =∫
dR|Ψ(r,R, t)|2, as well as the total momentum density

ρ̃(p, P, t) = |Ψ̃(p, P, t)|2, which is calculated as the absolute
square of the Fourier transformation of the molecular wave
function. Further, the nuclear momentum densityρ̃nuc(P, t)
and the electron momentum densityρ̃nuc(p, t) are calculated
analogously to position space by integrating out the electron
momentump and nuclear momentumP , respectively. Vari-
ances, which we will refer to as nuclear/electronic widths,
covariances and linear correlation coefficients are calculated
from the respective densities as known from statistics [17].
Note that all here defined quantities are time-dependent.

2. Information-theoretical measures applied
to coupled electron-nuclear motion

Detailed numerical simulations were carried out using the
gird-based split-operator method [18,19] to evolve the molec-
ular wavefunction and analyze the associated densities using
information-theoretical measures in a series of papers [20-
23]. We will here reference and summarize the results and
conclusions presented there. Note that additionally, previous
unpublished data is contained in Fig. 5 and 6, namely the
propagation within the Born-Oppenheimer approximation,
where the same numerical input is utilized as in Ref. [21].

FIGURE 2. The Shin-Metiu model.

FIGURE 3. Schematic representation of the adiabatic potential energy surfaces and the dynamics for the weakly and strongly coupled cases.
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The model applied to study the coupled electron-nuclear
motion is the one-dimensional Shin-Metiu model, which was
originally introduced to simulate the transfer of an electron
and a sodium ion between two zeolite cages [24,25]. How-
ever, it proved to be useful as a tool to study non-trivial quan-
tum dynamics by solving the time-dependent Schrödinger
equation numerically exact in wide-ranging contexts [8,26-
31]. The model consists of two fixed nuclei at positionsR1

andR2 that interact with a mobile nucleus atR and a mobile
electron atr. In explicit, the potential is given as

V (r,R) =
1

|R1 −R| +
1

|R2 −R| −
erf [|R1 − r|/Rf ]

|R1 − r|

− erf [|R2 − r|/Rf ]
|R2 − r| − erf [|R− r|/Rc]

|R− r| . (8)

The choice of parametersRf andRc allows accessing differ-
ent coupling regimes between electronic and nuclear degrees
of freedom. As noted before, we generate a weakly and a
strongly coupled case, compare Fig. 3. In both cases, the nu-
clear degrees of freedom are initialized by an excited Gaus-
sian wavepacket, while the electronic degrees of freedom are
prepared in an electronic eigenstate.

2.1. Weakly coupled case

Coupling the ground- and exited states only weakly results
in a well-defined gap between both states. Then, the nuclear
motion happens nearly exclusively on the ground state. The
numerical result from the dynamics of the nuclear position
density is shown in the top left panel of Fig. 4. There, it can
be seen that the initial Gaussian density moves across the sys-
tem until it is reflected on the opposite potential wall due to
the repulsion of the fixed nucleus atR2. This process repeats
periodically while the wave packet disperses. Below that, the
dynamics of the nuclear momentum density is shown, where
it shows a less coherent dynamics and takes a more complex
structure than in position space. The entropiesSnuc

R (t) and
Snuc

P (t) of these two nuclear densities are presented by the
red lines labeled “num” in the upper panels of Fig. 5 together
with that of the electron densitiesSel

r (t) and Sel
p (t) (mid-

dle panels) and total densitiesSX(t) andSπ(t) (lower pan-
els). Additionally, the blue line indicates the same dynamics
but within the Born-Oppenheimer approximation, which are
identical to the numerically exact entropies.

Note, that the dynamics of all entropies in the respective
spaces are closely related, as minima and maxima are found
at similar times. Since in Ref. [20] it was observed that these
dynamics are also similar to the dynamics of the widths in
position space, (or momentum space, respectively). We for-
mulate the hypothesis that the entropy dynamics are given by
a single dynamical variable, the nuclear position (or momen-
tum) width. Therefore, we chose an analytical ansatz for the
wavefunction in position space, that reflects in particular the
Born-Oppenheimer nature of the dynamics:

FIGURE 4. Nuclear densities in position and momentum space, for
the weakly coupled (left) and strongly coupled (right) cases. Re-
produced from Ref. [21].

Ψ(r,R, t) =
[
βt

π

] 1
4

e−
βt
2 (R−Rt)

2

︸ ︷︷ ︸
Nuc. Gaussian Wavepacket

×
[γ

π

] 1
4

e−
γ
2 (r−R)2

︸ ︷︷ ︸
El. Eigenfunction

. (9)

Here, the first term represents a Gaussian shaped nuclear
wavepacket, which is centered atRt and has width1/2βt.
The second term, the electronic eigenfunction, is centered at
R and has width1/2γ, which we assume to be constant. Us-
ing this, the analytical expressions for all examined quanti-
ties in position space in terms ofβt are calculated. Note that
the quantities in momentum space can be calculated using
the Fourier transform of Eq. (9). Then,βt is determined nu-
merically for each time-step using the relation to the nuclear
position width for quantities in position space and using the
nuclear momentum width for quantities in momentum space.
The explicit equations can be found in Refs. [21,22]. The re-
sults are the green lines labeled “approx” in Fig. 5. There,
we see that the derived approximate expressions indeed re-
produce the dynamics of the entropies qualitatively, in both
position and momentum space. In particular, the electronic
entropies are represented very well, which is not expected
since the only dynamical input is related to the nucleus. The
differences found in the total and nuclear entropy is due to the
fact that for later times the nuclear density structure is more
complex than the Gaussian ansatz chosen in Eq. (9).

In Fig. 6 the correlation measures are presented,i.e., the
covariancecov(t), the linear correlation coefficientcorr(t)
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FIGURE 5. Entropy dynamics for the weakly coupled case. This
figure contains data published in Ref. [21].

(LCC) and the MI I(t) in both position and momentum
space. As previously, the comparison between the numer-
ically exact values, the values calculated within the Born-
Oppenheimer approximation and the ones using the derived
approximate analytical expressions shows, that they agree
very well in position space, indicating that the molecular
wavefunction is indeed in Born-Oppenheimer form. In mo-
mentum space, however, we encounter larger mismatches: in
the linear correlation measures, namely the covariance and
the LCC, the values within the BO approximation and the
analytically derived ones agree, while they are both distinct
from the exact values. Therefore, from a momentum space
point of view, the linear correlation within BO approximation
is represented worse than in position space. Furthermore, for
the MI the numerically exact and the BO values agree very
well, while the analytical expression cannot replicate the in-
crease and instead nearly vanishes. This means, that higher-
order correlations instead are well represented by the BO-
approximation, but an effect arises that is not described by
the analytical ansatz in Eq. (9).

We indeed find that the increase of MI is related to the
formation of nodes during the dynamics. We showed [23],
that the alignment and number of nodes can lead to an in-
crease of the MI of a density.I.e., in position space, the nodes
are aligned parallel to the electron coordinate axis so here,
the influence of the nodes is negligible. But in momentum
space, due to the Fourier relationship, the nodes are diago-

nally aligned

FIGURE 6. Correlation dynamics for the weakly coupled case. This
figure contains data published in Ref. [21].

so that they vanish when integrating out one or the other de-
gree of freedom. This then leads to a non-vanishing con-
tribution to the MI. This effect can be included in Eq. (9)
by introducing,e.g., excited Harmonic states with a similar
number of nodes than observed in the simulation. Then, the
increase of the MI can be replicated approximately. In Fig. 6
the correlation measures are presented,i.e., the covariance
cov(t), the linear correlation coefficientcorr(t) (LCC) and
the MI I(t) in both position and momentum space. As pre-
viously, the comparison between the numerically exact val-
ues, the values calculated within the Born-Oppenheimer ap-
proximation and the ones using the derived approximate an-
alytical expressions shows that they agree very well in posi-
tion space, indicating that the molecular wavefunction is in-
deed in Born-Oppenheimer form. In momentum space, how-
ever, we encounter larger mismatches: in the linear correla-
tion measures, namely the covariance and the LCC, the val-
ues within the BO approximation and the analytically derived
ones agree, while they are both distinct from the exact values.
Therefore, from a momentum space point of view, the linear
correlation within BO approximation is represented worse
than in position space. Furthermore, for the MI the numer-
ically exact and the BO values agree very well, while the an-
alytical expression cannot replicate the increase and instead
nearly vanishes. This means that higher-order correlations in-
stead are well represented by the BO-approximation, but an
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effect arises that is not described by the analytical ansatz in
Eq. (9). We find that the increase of MI is related to the for-
mation of nodes during the dynamics. We showed [23], that
the alignment and number of nodes can lead to an increase
of the MI of a density. I.e., in position space, the nodes
are aligned parallel to the electron coordinate axis so here,
the influence of the nodes is negligible. But in momentum
space, due to the Fourier relationship, the nodes are diago-
nally aligned so that they vanish when integrating out one
or the other degree of freedom. This then leads to a non-
vanishing contribution to the MI. This effect can be included
in Eq. (9) by introducing,e.g., excited Harmonic states with a
similar number of nodes as observed in the simulation. Then,
the increase of the MI can be replicated approximately.

2.2. Strongly coupled Case

In the strongly coupled case, the avoided crossing allows for
nearly complete population transfer between the ground- and
excited state, as indicated in the lower panel of Fig. 3. The
dynamics of the nuclear position density is presented in the
upper right panel of Fig. 4 and yields nearly harmonic oscil-
lations with only very weak dispersion visible. The nuclear
momentum density (lower bottom panel of Fig. 4) shows sim-
ilar behavior, with the typical phase shift compared to the po-
sition space, known from the harmonic oscillator. Note that
during the considered time frame, the electron remains bound
to one of the fixed nuclei of the Shin-Metiu model and shows
no dynamics. The entropy dynamics were studied in detail
in Ref. [20]. There, we find that the nuclear entropy oscil-
lates similar to the nuclear width, while electronic quantities
remain basically constant. Further, we see that the total en-
tropy is approximately the sum of the electronic and nuclear
entropy, resulting in the MI to vanish. Therefore, in the con-
sidered setup, only negligible correlations are present. In a
similar approach to the weakly coupled case, we chose an
analytic ansatz to relate the entropy dynamics to the nuclear
widths:

Ψ(r,R, t) =
[
βt

π

] 1
4

e−
βt
2 (R−Rt)

2

︸ ︷︷ ︸
Nuc. Gaussian Wavepacket

×
[γ

π

] 1
4

e−
γ
2 (r−R0)

2

︸ ︷︷ ︸
El. Eigenfunction

, (10)

whereβt is determined from nuclear position width, or mo-
mentum width, respectively, andγ is chosen constant. Note
that in contrast to Eq. (9), the electronic eigenfunction cen-
tered at a fixed nuclear positionR0, reflecting the observed
dynamics. We find that the quantities calculated from this
ansatz yield excellent agreement with analytic properties in
position and momentum space [21], indicating that here, the
density dynamics are purely described by the nuclear width.
Eq. (10) also illustrates that the total density, therefore the ab-
solute square of Eq. (10), is of an uncorrelated product form.

This results in vanishing linear correlation measures as well
as in the vanishing MI.

Since multiple electronic states are involved in the
strongly coupled case, it is interesting to consider the decom-
position of the total density

ρ(r,R, t) =
∑
n,m

ρnm(r,R, t)

=
∑
n,m

χn(R, t)χ∗m(R, t)ϕn(r;R)ϕ∗m(r; R), (11)

derived from the Born-Huang expansion Eq. (3). Note, that
diagonal terms of the density decomposition are real and pos-
itive semi-definite and therefore, we define decomposed en-
tropies,e.g.,

Sn
X(t) =

∫
drdR ρnn(r,R, t) ln ρnn(r,R, t). (12)

Similar definitions can be obtained for the electronic and nu-
clear entropies. Note, that then, the sum over the respective
decomposed entropies,e.g.,

∑
n Sn

X(t) behaves as a DSE as
well, while the individual decomposed entropies carry in-
formation about the population of the states, that leads to
warped transformation behavior under coordinate transfor-
mations, see [32] for a detailed discussion. The entropy sums
can be compared to their not-decomposed counterparts,e.g.,∑

n Sn
X(t) andSX(t). Interestingly, we find that in position

space, the total entropy and the nuclear entropy are equivalent
to the decomposed entropy sums, but the decomposed elec-
tronic entropy sum shows spikes at non-adiabatic transitions.
This is related to details of the transition for the respective
density. If there is no density overlap present, we observe no
spikes as for the nucleus and if there is significant overlap,
as is for the electron, we observe spikes that were shown to
be related to the population transfer. A deeper study on de-
composed entropies was conducted in Ref. [33] on a similar
system.

3. Conclusion

We presented a non-standard approach to quantum dynam-
ics, revealing a new perspective on coupled electron-nuclear
motion by using information-theoretical measures calculated
from time-dependent densities of the considered system. We
showed how differential Shannon entropy can be used to an-
alyze the dynamics and how mutual information can be ap-
plied to study the correlation between the particles. In de-
tail, we presented two case studies. One, where the poten-
tial energy surfaces are weakly coupled, so that the Born-
Oppenheimer approximation can be studied, and one that in-
volves strong coupling to study how densities behave under-
population transfer. In the first, we show that while the Born-
Oppenheimer successfully replicates correlations in position
space, correlations in momentum space are not. Further, we
argue that nodal structure is relevant to understand the mu-
tual information in momentum space. In the second, strongly
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coupled case, the dynamics are simpler and correlations van-
ish. However, by defining decomposed entropies, we gain in-
formation on the details of non-adiabatic transitions between
electronic states. Finally, we note that exploring an “inter-
mediate” coupling regime would be intriguing; however, this
will be addressed in future work.
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