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On the numerical integration of two-particle functions
for pair entropies of diatomic molecules
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In order to compute two-electron informational entropies of atoms or molecules, highly-accurate numerical integration methods are needed.
In this contribution, we describe the details of a numerical algorithm specific for diatomic molecules, originally designed to numerically
integrate 3D functions. The algorithm is adapted to integrate functions of two partiele integrate functions in domains of the form

Q x Q, whereQ € R3. The diatomic integration scheme is a cubature rule that combines Gauss-Legendre quadratures for the radial and
angular parts, and the domdihis split into two semi-spheres, each with its own local center of coordinates. In addition, we compare the
performance of the diatomic integration schewsea Monte Carlo integrator, both for the 3D and 6D cases.
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1. Introduction molecular two-electron densityyy(r,7;), as well as the
] ] ) ) lack of ready-available methods to integrate functionals of
Since the seminal work of Shannon [1], the informational en-, (-, r,), which are functions embedded in 6D spaces. In

tropy has been used in many fields. For instance, in Quantulihis context, the open-source suite DensToolKit [12] is ca-

Chemistry, the Shannon Entropy in position space: pable of computing thes(r1, ) of molecules, regardless
of its open- or closed-shell nature. In addition, the released
S, = 1/p(r) In p(r)d>r, (1)  version of DensToolKit includes numerical algorithms to in-
tegrate functionals of(r). In this contribution, we will de-
and in momentum space scribe our approach to specifically integrate functionals of
p(r) and the two-electron density functiga(ry, r2) for di-
S5 = 1/,5(],) In ﬁ(p)d3p, 2) atomic SyStemS. - - o
The organization of this contribution is as follows: In

spec. 2, we briefly describe the fundamental integrals that
must be computed in the context of one- and two-electron in-
eformational entropies. In Sec. 3, we describe the details of the
numerical integration scheme for diatomic molecules, which
useful to integrate functions in 3D domains, and compare

has been used as a tool to measure the quality of the ba:
functions [2,3]. In Egs.1) and @) p(r) and p(p) are the
electron densities in position and momentum spaces, resp
tively. The entropy sun$r = S, + S5 has shown interesting .
properties such as reflecting the structure of the periodic tabl ,
and it has also been used for measuring the quality of wav&® Performance of the scheme against a Monte Carlo algo-
functions [4] and to study the effects of correlated methodé'thm' In Sec. 4, We.prowde deta!Is of the extension of the
upon the quality of(r) [2]. FurthermoreS, has been used s_c_heme to 6D domams, SO as to integrate two-electr_on Qen-
to measure the aromaticity in molecules [5]. These appli-s'f“es of diatomic systems. Finally, we close the contribution
cations are only a very few selected examples and, for th/ith some conclusions.
interested reader, a recent review of the applications of the
information theory in Chemistry can be found in Ref. [6]. 2. The problem

More recently, the two-electron informational entropies
are gaining attention from the scientific community, sinceRegardless of the one-electron informational measure we are
these informational measures provide insight about the naturiaterested in calculating, for an atom or a molecule, and for
of two-particle correlations. However, so far the two-electronthe purposes of this contribution, one must calculate integrals
entropies, such as the pair entropy, have been studied in sirnf the form:
ple systems such as analytical quantum models [7] or atoms I = k/ Py(q)d3q. )
[8-10]. Again, this is only a very short list of two-electron Q
entropy applications, and the interested reader may consultere,I; is a one-electron informational measukds a pro-
more extensive reviews, g, Ref. [11]. portionality constantf2 is a domain such tha® < R3,

The main obstacle for studying complex systems suclandP;(q) is a one-electron density function that depends on
as molecules has to do with the difficulty to compute theq. E.g, for the Shannon entropy in momentum space of a
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moleculek = —1,Q = R?, g = pandP(q) = 5(p) In p(p).
Other informational measures such as Fisher enyR en-

tropies can be recovered from E8) through the appropriate M P P
choice ofk, Py, g, ands. p(r)=>_Cn Y > D, iD, zbi(r)és(r), (8)
On the other hand, two-electron informational measures m=1 A=i B=i

are integrals of the form:
where P is the total number of primitives used to describe
IL=K Py(q1,92)d*q1dga. (4)  the molecular wave function. EcB)(can be further reduced
e by contracting the coefficients,,,, D, ;, andD, s, which
Forinstance, by settinf = -1, Q2 =R, q1 = 71,2 =72,  yields:
and P, = po(ry,72)1Inpa(ry, r2), One obtains the pair en-

tropy. Other quantities such as the mutual information or p(r) = 4(r)cipdp(r). 9)

the Kullback-Leibler divergence are also included in Ej, (

through the respective expressiongaf P, g, and2. In EqQ. (9), and hereafter, unless otherwise specified, we will
use the Einstein summation convention, ang is a matrix

2.1. 3D molecular densities known as the density matrix.

The most fundamental quantity that is commonly obtainedhe Other density fields are obtained by first compufitg);

from molecular orbital calculations is the electron density, nce, the computational cost of any 3D-density function is

p(r), which can be expressed as a linear combination 0fietermined by the calculation pfor its derivativesvp. As
molécular orbitalsy, (7); we commented, in our research group, we have developed
m(r):

the suite DensToolKit, which is an open source set of subpro-
M grams that can compute many one-electron density functions
p(r) = [p(r) = Coux () xm (7). (5)  in1D, 2D, and 3D grids [12]. Naturally, there are other great
m=1 programs to compute one-electron densities, such as Multi-
Here, M is the number of occupied molecular orbitals, is ~ WFN [19], ORBKIT [20], Critic2 [21], and so on.
known as the occupation number, and

N . . .
2.2. 3D numerical integration schemes

Xm(r) = 3 Dy adi(r = Ry). (6) °
_ _ A=l o In general, the main challenge when integrating one-electron
Equation |6) describes the most popular definition of a densities includes, on the one hand, the large values of the
molecular orbital (MO), which is constructed by a linear respective density around the nuclei (see Fig. 1), and on the
combination of the so-called primitive functions;. In  other hand, the fact that small values can sum up to 1-2 % of

Eq. ), the coefficients that relate the-th MO with the  the integral. For instance, domain regions where 1012
respectiveN primitive functions are denoted b, i, and  a.u. do contribute to the integral.

A=1, 2, ST N. In.the r.est of this contrl_bu'tllon,fwe vy|ll Furthermore, save fop (and only when the primitives
uie dotted |nd|c|es ;O |denft|f;r/1 sums over ]P”m'_t've unCt'orr‘]S'are Gaussian functions), the integrals must be determined
The most popular form of the primitive functions, and t ethrough numerical integration schemes, and most frequently,

form we will describe here, is that of a Gaussian function,y,q jnteqgration is carried out using cubattire.{ 3D quadra-
centered at some nucleus (each primitive is associated W'thtﬁre) rules

nucleus), which can be written as:
94(r) =(a' — RY)™i(2” — R3)"4 («® — RY)™s
X exp (—ozA-('r‘ — RA)Q) . @)

Here, the integersiA (1=1, 2, 3) fix the atomic orbital type (1
for s, 2 for p, and so on), and the numbey is the exponent
of the primitive.

The molecular wave functionj.e, the sets{C,,},
{D,,i}, {R,}, and{«a,} can be obtained, for a given
molecule, from many quantum chemistry programs such as
Gaussian 09 [13], ORCA [14], Nwchem [15], Gamess [16],
etc.

Finally, the electron density can be calculated as (Segcure 1. Electron densityp(r), and Shannon entropy density,
Refs. [17,18] and DensToolKit [12] manual for additional —y(r)1n p(r), of the HN molecule. Here, the fields are computed
details): on the plane that intersects both nuclei.

-plnp
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3. Numerical integration 3D of points over the radial part of the cubatures. This scheme
has allowed to integrate many 3D functions of polyatomic

In very rough terms, a cubature rule is a set of weights},  molecules and it is implemented in several programs such as
and abscissagg; }, so that [22]: MultiWEN.

5 One small caveat of the Becke integration scheme is that

I = k/ P(q)d’q~ k> w:P(q). (10) it requires around 5000 abscissas per atom to obtain a nu-
@ i merical precision o0~* in energy [25]. In contrast, a nice

Under this approximation, every improvement to the numerfeature of the_scheme is that, once implemented, it works for

ical scheme reduces to selecting the best change of coordilY Polyatomic molecule.

nates together with the best standard quadrature rule(s) for

each independent coordinate or coupled coordirfates.

For the purposes of having the possibly most-accurate in3.3.  Our approach to treat diatomic systems
tegration scheme, in this contribution, we will describe the
cubature schemes that we have implemented in DensToolK{i/hjle seeking for highly-accurate numerical integration

[12], in particular, the integration of diatomic system densi-methods, in 2015, we developed a cubature rule that re-

ties. duces considerably the number of points for functions with
. azimuthal symmetry and that decay rapidly relative to the
3.1. Monoatomic systems coordinates origin [26]. The method was originally imple-

. : . ented for integration domains with the shape of a sphere
A most direct approach to design cubature rules consists QW 9 p P

it " h dinate th hind dent drat ith two hollows, and basically, it consists of splitting the
integrating each coordinate through independent quadratuig, ..o gomain into two halves (the azimuthal angle is triv-

rules. Anecdotally, for one-electron densities of single atomsi,aIIy integrated out to b&x). Thereafter, the integration is

we have observed that decomposing the cubature into one ra- : .
dial quadrature and spherical-t designs [23] for the solid anserformed upon the upper half, using the change of variables

les render better results with th me number of absci and over the shadowed region depicted in Fig. 2. Here, we
gles render ELeT resufts € same NUMDET O abSCISSqps , 1 the shadowed domain 8%, ¢, is the angle that is
Furthermore, the integration of one-electron densities in m

Oformed by thez axis and the vectoP,, d, is the distance

mentum space can always be camgd out using this SChemSetween the primed coordinate origin and the center of the
i.e, as if the system was monoatomic, regardless of the num

. . cavity, ¢ is the distance between the non-primed coordinate
ber of atoms in the system. As a general procedure, it is be%rrigin and the center of the big circle, andandb are the
to reduce the number of points related to the angles, and '

. . . ; ii of th Vi nd the big circle, r ively. The an-
increase the number of abscissas associated with the rad%d of the cavity and the big circle, respectively €a

¢ Tyoical drat | h as the G L d e ¢, divides the shadowed region into two parts. In other
part. Typical quadrature rules, such as tne >auss-L.egen ords, the integral over the spherical domain with two cavi-
guadratures, suffice to integrate the radial part.

Here. it is important to remark that, formall — R? ties (22) is reduced to compute the following integrals:

for any molecule. However, for monoatomic systems, we
have found that the semi-infinite domairvircan be replaced

by a finite domain0 < r < a, such thatp(a) ~ 10714

a.u., and similarly by a domain wherein< p < b, where

p(b) ~ 10~ a.u. Herej(p) is the electron density in mo-
mentum space. In addition, if the system is azimuthally sym-
metric, then the quadrature rule related to the azimuthal angle
can be omitted; this reduces the number of abscissas consid-
erably.

3.2. Polyatomic systems

A very clever approach to integrate 3D densities of poly-
atomic molecules has been around in the literature for some
time. Becke [24] divided the space using Voronoi cells (one
per atom), and integrated each cell using quadrature rules
for the radial part and a trapezoidal algorithm to integrate
over the angles. To account for the polyhedron nature of the
Voronoi cells, Becke used a smoothed step-functions, which
removed abscissas outside the cell. This approach was further
refined by Rrez-Jord [25], so as to automatically choose an Ficure 2. Diatomic upper domain decomposition (valence). The
error tolerance, based on increasing (and reusing) the numbehadowed region is denoted 8%, .
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---------- g mmmmm————— tems. Solid (dashed) lines correspond to the errors obtained with
FiGURE 3. Diatomic upper domain decomposition (core), denoted our integration scheme (Monte Carlo Miser algorithm), and color
in the text asy.. denotes the molecule.
for a specific implementation). We use as a benchmark the
integral:
2 .
flr,0)dVvV =2x f(r,0)p” sin ¢pdodp /p(r)dV =N.,, (14)
o Ty
#1 B(¢) wherep is the electron density of HBe, HC, HO, and HF,
= 27r/ sin ¢d¢ P2 fp, d)dp respectively, andV, is the corresponding number of elec-
0 a

trons, which is determined by using analytical overlap in-
m c@) tegrals ([ ¢ ;¢d%r). In Fig. 4, we depict the absolute %
: 2 AYB . -
+ 2”/1 sin ¢dé /a pofp,9)dp, (A1) grrors of the integral Eq(1@), for wave functions obtained
from Gaussian09, using experimental separation distances

where between atoms, and at the HF/6-31G level of theory. Overall,
with the same number of points we obtain improvements of
B(¢) =\/b? — d2 sin® ¢ — d,, cos ¢, (12)  1-3 orders of magnitude, relative to Monte Carlo absolute er-
rors, and the precision tends to increase as the number of inte-
C(¢) =~ du/ cos¢. (3) " gration points NV,is) increases. Small variations of the trends

e.g, large jumps or increasing —rel. err.— with increasing
bts are due to changes between the number of points used in
e radial or angular parts. For the results shown in Fig. 4, we
sedNys,, =12, 16, 26, or 34 abscissas farVys, =18 or

For diatomic systems, we use the above numerica
scheme to integrate one-electron densities over the “valence[’h
regions, denoted asy, andX}, , whereu and( are for up-

; . .U

per and lower, together with cubature rules for integratin ) — .

the “core” regionsi.e., the spherical domains centered at thtg22 for the polar angled(); "’.m.detW =6 for the azimuthal .
angle. This renders (as it is implemented in DensToolKit)

upper and lower nuclei, denoted 8%, andX).. In Fig. 3, 3D _
the shadowed region 8., and the scheme is valid when atotal Ny, = 3Npes,p X Npts,p X Npes,o (Se€ Table | for

o ; . . . specific combinations).
the function is azimuthally symmetric. Hence, for diatomic . S : . :
moleculesyl, — S¥ UXY USL UYL . In DensToolKit, the . The diatomic |r_1tegrat|0n scheme is alrleady |mpleme_nted
core valence is set to be 0.75 times the van der Waals radius ¢ the programdtklntegratg . Of_ the S,“'te, DensToolKit
the respective atom and we chods® thatp(+b2) < 10714 -0, V_Vh'Ch can be obtame_miagnhub. https://github.
a.u. Finally, if the function is not azimuthally symmetric, com/jmsolano/denstoolkit
e.g, for open-shell systems, then a third quadrature rule is
added to integrate over the azimuthal angle. After applyingd. Numerical integration 6D
the changes of coordinates suggested in/Et), (ve use stan-

dard Gauss-Legendre quadrature rules for each coordinate. Unfortunately, to integrate functions over a 6D spéce (2,
there are no obvious reductions to the number of abscissas,

3.4. 3D benchmark since even systems with azimuthal symmetry in 3D lose this
advantage once the two-electron densities are integrated.

In this section, we compare our numerical integration rules In addition, the computational cost of computing the two-

against the Monte Carlo Miser algorithm (seqy, Ref. [22]  electron density is 2-5 times the time taken to compuie-

Supl. Rev. Mex. Fis6 011306
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TABLE |. Number of points per coordinaeV3 ,, N33 ,, and N2 ), as well as the total number of poin&/{ or N52) and the
absolute percentage relative errors shown in Figs. 4 and 5, for the systems HBe, HC, HO, and HF.

NN, NS NP |% rel. err| (/ p(r)d3r) NoD % rel. err| </ p2(1“1,r2)d37'1d3r2)

HBe HC HO HF HBe HC HO HF
12 18 6 3888 0.2657 0.2379 0.2615 0.4220 15116544 0.3208 0.3110 0.1322 0.1701
12 22 6 4752 0.2669 0.2350 0.2640 0.4230 22581504 0.0888 1.3133 0.8658 0.4775
16 18 6 5184 0.1281 0.0482 0.0729 0.0521 26873856 0.1996 0.1911 0.6441 0.3684
16 22 6 6336 0.1308 0.0493 0.0710 0.0520 40144896 0.0336 0.1515 0.4636 0.0453
26 18 6 8424  0.0133 0.0205 0.0172 0.0013 70963776 0.2033 0.1312 0.0517 0.1487
26 22 6 10296 0.0143 0.0192 0.0154 0.0013 106007616 0.0527 0.0843 0.0990 0.0286
34 18 6 11016 0.0016 0.0215 0.0171 0.0002 121352256 0.0781 0.1107 0.0175 0.1086
16 18 14 12096 0.1281 0.0686 0.0571 0.0521 146313216 0.0438 0.0389 0.0504 0.1000
34 22 6 13464 0.0006 0.0202 0.0154 0.0001 181279296 0.0028 0.0050 0.0378 0.0567
26 18 14 19656 0.0133 0.0002 0.0014 0.0013 386358336 0.0311 0.0328 0.0363 0.0428
72 18 6 23328 0.0008 0.0214 0.0171 0.0001 544195584 0.0279 0.0087 0.0193 0.0148
34 18 14 25704 0.0016 0.0012 0.0013 0.0002 660695616 0.0313 0.0354 0.0551 0.0085
72 22 6 28512 0.0002 0.0201 0.0154 0.0001 812934144 0.0187 0.0408 0.0385 0.0079

pending on whether the system is open- or closed-shell [L12molecule has azimuthal symmetry. This precludes decreas-
This is so, because the two-electron pair density for closeding the number of abscissas; however, the diatomic scheme

shell systems is given by: can still render good numerical precisions, relative to Monte
) ) Carlo methods. Furthermore, our integration scheme is re-

5 ; . L .
p2(ry, o) = ip(rl)p(rz’) -1 [Ti(r1,m0)]7, (15) liable, in the sense that it will always render the same in-

tegrated value if the calculation is repeated with the same
whereT; is the density matrix of order 1, which in terms of Vpts,e» Npts,¢» @Nd Ny o, Which amount to a totalNy3 =

the primitives is: (NS@)Q = 9(Npisp)? X (Npisg)? X (Npis)”, for inte-
grating two-electron densities over the dom&inx Q. In
Di(r1,m2) = ¢ 4(r1)cipdp(ra). (16) this context and with the current DensToolKit version, the al-

gorithm is not automatically adaptive. However, one may
The expression for computing (1, r2) is more complex for  perform tests for computing the number of electron pairs,
open shell systems (see Ref. [12] for details), as one needs e, [ p2(r1,72)dVidVa = N (N, + 1)/2, in order to se-
compute single-spin one-electrgis andI';’s (to take into  |ect the best combination O pis,pr Npts,, @NANps -5 ONCE
accounty and g contributions, separately). selected, the same combination can be used for integrat-

Regardless of the issues discussed above, the integratigmy other two-electron densities. As a general rule, if the

over() x (2 for diatomic systems can be carried out using themolecule is open-shell, then a larg¥,s ., is required (see
diatomic decomposition described in Sec. 3.3. To this endTable | for some specific cases and combinations).
we use one cubature rule (built as described in Sec. 3.3) per Regarding the integrals in momentum space, as we ad-
each subse®, i.e, we approximate 6D integrals as follows: vanced above, the integrals can be always computed over

V1 x V,, whereV; is the volume of a sphere of radiu3

2 . i 7
/ P(ry,my)d3rydPry = / do, / rZsin@dridf; < (in momentum space), such thatax (5(é'P)) ~ 1071
Q 0 31

xQ a.u.,, andée! = 7, é2 = 3, andé® = k. Empirically, we
27 have found that integrals in momentum space require using
/ d¢2/ 73 sin O dradfs Nptse > 100, in order to render numerical precisions of
0 2 ~ 1073,
P('I’l, 7’2)
%Zwiwjpm’,ﬂj). (17) 4.1. 6D benchmark

o

! In Fig. 5, we show the absolute % errors of the integral

Unfortunately, we have found it mandatory to numeri- [ ps(r1,72)dVidVa(= Ne(Ne +1)/2) VS. Npis(= Npts,p X
cally integrate over the angles; and ¢», even if the 3D Ny 6 X Npts i)

Supl. Rev. Mex. Fis6 011306
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function of the form shown in Fig. 4 is directly proportional
to the number of integration points. The cost of computing
the abscissas and weights is negligible, compared with the
computational cost of computing(r1, 2) at the set of ab-
scissas. For further time profiling details, see Ref. [12].

The reliability that our scheme may achieve makes it a
convenient numerical method to study two-electron density
functions, in particular, any two-electron informational en-
tropy in the near future.

—_
|

[rel. err.| (%)
=

5. Conclusions

8 o108 ae1n® 1o1nd 5ot S rotnd 8 o 8 8

0 IxI07 2073610 4}‘1&35)(10 Ox107 07 Bx1079x10 In this contribution, we have described a numerical scheme,

B specialized to integrate 3D and, in particular, 6D functions for

FIGURE 5.  Absolute relative % errors of the integral djgtomic molecules. The scheme was designed specifically to
fp2(7'1»’"2)dvl‘?g2 = Negg)ﬁj 1)/2 vs. the number of inte-  jntagrate molecular one-electron (3D) or two-electron (6D)

: B 2 2
gration pointsNy; = (Npis)™ = 9 (Npts,p)” X (Npis,g)” X density fields. These fields are, in essence, functionals of

(Npis,)*, for several diatomic systems. Solid (dashed) lines cor- the gne_glectron densip(r) or the two-electron pair density
respond to the errors obtained with our integration scheme (Monterunction (r1,72). We have presented benchmarks of our
Carlo Miser algorithm), and color denotes the molecule. P2\T1,72)- - .

scheme and compared them against integrations performed

In contrast with the 3D case, Monte Carlo methods areVith the Monte Carlo Miser method. In general, one may de-
an acceptable choice for integrating 6D functions. HoweverCréase errors by 1-2 orders of magnitude, for a given number

as we commented previously, our scheme still offers a re©f intégration points. . . _ _
liability advantage, in the following sense. After selecting Ve are currently working on implementing algorithms to

an appropriate set ¥y », Npis.¢, and Npes .., other prop- integrate 3D and 6D fields for polyatomic molecules, which

erties can be integrated expecting that the same accuracy !l be released in future versions of DensToolKit.
obtained. (Let us recall that Monte Carlo methods are ran- 1 he scheme presented here, together with the current ca-

dom in nature; thus, there is no guarantee that repeating trR&pilities of the program DensToolKit [12], constitutes a nu-
calculation with the same number of points will always ren-merical tool that will be useful in studying two-electron infor-

der the same accuracy.) In addition, our integration schem@ational entropies of diatomic molecules in the near future.

still might render smaller —rel. err.— by up to 2 orders of
magnitude, relative to the Monte Carlo Miser variant. Acknowledgements
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