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On the numerical integration of two-particle functions
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Facultad de Ciencias Quı́micas, Beneḿerita Universidad Aut́onoma de Puebla,
14 sur y Av. San Claudio, 72570, Puebla, Pue., México.
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In order to compute two-electron informational entropies of atoms or molecules, highly-accurate numerical integration methods are needed.
In this contribution, we describe the details of a numerical algorithm specific for diatomic molecules, originally designed to numerically
integrate 3D functions. The algorithm is adapted to integrate functions of two particles,i.e., to integrate functions in domains of the form
Ω × Ω, whereΩ ∈ R3. The diatomic integration scheme is a cubature rule that combines Gauss-Legendre quadratures for the radial and
angular parts, and the domainΩ is split into two semi-spheres, each with its own local center of coordinates. In addition, we compare the
performance of the diatomic integration schemevs.a Monte Carlo integrator, both for the 3D and 6D cases.
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1. Introduction

Since the seminal work of Shannon [1], the informational en-
tropy has been used in many fields. For instance, in Quantum
Chemistry, the Shannon Entropy in position space:

Sρ = 1
∫

ρ(r) ln ρ(r)d3r, (1)

and in momentum space

Sρ̃ = 1
∫

ρ̃(p) ln ρ̃(p)d3p, (2)

has been used as a tool to measure the quality of the basis
functions [2,3]. In Eqs. (1) and (2) ρ(r) and ρ̃(p) are the
electron densities in position and momentum spaces, respec-
tively. The entropy sumST ≡ Sρ +Sρ̃ has shown interesting
properties such as reflecting the structure of the periodic table
and it has also been used for measuring the quality of wave
functions [4] and to study the effects of correlated methods
upon the quality ofρ(r) [2]. Furthermore,Sρ has been used
to measure the aromaticity in molecules [5]. These appli-
cations are only a very few selected examples and, for the
interested reader, a recent review of the applications of the
information theory in Chemistry can be found in Ref. [6].

More recently, the two-electron informational entropies
are gaining attention from the scientific community, since
these informational measures provide insight about the nature
of two-particle correlations. However, so far the two-electron
entropies, such as the pair entropy, have been studied in sim-
ple systems such as analytical quantum models [7] or atoms
[8-10]. Again, this is only a very short list of two-electron
entropy applications, and the interested reader may consult
more extensive reviews,e.g., Ref. [11].

The main obstacle for studying complex systems such
as molecules has to do with the difficulty to compute the

molecular two-electron density,ρ2(r1, r2), as well as the
lack of ready-available methods to integrate functionals of
ρ2(r1, r2), which are functions embedded in 6D spaces. In
this context, the open-source suite DensToolKit [12] is ca-
pable of computing theρ2(r1, r2) of molecules, regardless
of its open- or closed-shell nature. In addition, the released
version of DensToolKit includes numerical algorithms to in-
tegrate functionals ofρ(r). In this contribution, we will de-
scribe our approach to specifically integrate functionals of
ρ(r) and the two-electron density functionρ2(r1, r2) for di-
atomic systems.

The organization of this contribution is as follows: In
Sec. 2, we briefly describe the fundamental integrals that
must be computed in the context of one- and two-electron in-
formational entropies. In Sec. 3, we describe the details of the
numerical integration scheme for diatomic molecules, which
is useful to integrate functions in 3D domains, and compare
the performance of the scheme against a Monte Carlo algo-
rithm. In Sec. 4, we provide details of the extension of the
scheme to 6D domains, so as to integrate two-electron den-
sities of diatomic systems. Finally, we close the contribution
with some conclusions.

2. The problem

Regardless of the one-electron informational measure we are
interested in calculating, for an atom or a molecule, and for
the purposes of this contribution, one must calculate integrals
of the form:

I1 = k

∫

Ω

P1(q)d3q. (3)

Here,I1 is a one-electron informational measure,k is a pro-
portionality constant,Ω is a domain such thatΩ ∈ R3,
andP1(q) is a one-electron density function that depends on
q. E.g., for the Shannon entropy in momentum space of a
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moleculek = −1, Ω = R3, q = p andP (q) = ρ̃(p) ln ρ̃(p).
Other informational measures such as Fisher or Rényi en-
tropies can be recovered from Eq. (3) through the appropriate
choice ofk, P1, q, andΩ.

On the other hand, two-electron informational measures
are integrals of the form:

I2 = K

∫

Ω×Ω

P2(q1, q2)d3q1d
3q2. (4)

For instance, by settingK = −1, Ω = R, q1 = r1, q2 = r2,
andP2 = ρ2(r1, r2) ln ρ2(r1, r2), one obtains the pair en-
tropy. Other quantities such as the mutual information or
the Kullback-Leibler divergence are also included in Eq. (4),
through the respective expressions ofK, P2, q, andΩ.

2.1. 3D molecular densities

The most fundamental quantity that is commonly obtained
from molecular orbital calculations is the electron density,
ρ(r), which can be expressed as a linear combination of
molecular orbitals,χm(r):

ρ(r) = |ψ(r)|2 =
M∑

m=1

Cmχ∗m(r)χm(r). (5)

Here,M is the number of occupied molecular orbitals,Cm is
known as the occupation number, and

χm(r) =
Ṅ∑

Ȧ=1̇

DmȦφȦ(r −RȦ). (6)

Equation (6) describes the most popular definition of a
molecular orbital (MO), which is constructed by a linear
combination of the so-called primitive functionsφȦ. In
Eq. (6), the coefficients that relate them-th MO with the
respectiveṄ primitive functions are denoted byDmȦ, and
Ȧ = 1̇, 2̇, . . . , Ṅ . In the rest of this contribution, we will
use dotted indices to identify sums over primitive functions.
The most popular form of the primitive functions, and the
form we will describe here, is that of a Gaussian function,
centered at some nucleus (each primitive is associated with a
nucleus), which can be written as:

φȦ(r) =(x1 −R1
Ȧ
)a1

Ȧ(x2 −R2
Ȧ
)a2

Ȧ(x3 −R3
Ȧ
)a3

Ȧ

× exp
(−αȦ(r −RȦ)2

)
. (7)

Here, the integersai
Ȧ

(i=1, 2, 3) fix the atomic orbital type (1
for s, 2 for p, and so on), and the numberαȦ is the exponent
of the primitive.

The molecular wave function,i.e., the sets{Cm},
{DmȦ}, {RȦ}, and {αȦ} can be obtained, for a given
molecule, from many quantum chemistry programs such as
Gaussian 09 [13], ORCA [14], Nwchem [15], Gamess [16],
etc.

Finally, the electron density can be calculated as (see
Refs. [17,18] and DensToolKit [12] manual for additional
details):

ρ(r) =
M∑

m=1

Cm

Ṗ∑

Ȧ=1̇

Ṗ∑

Ḃ=1̇

DmȦDmḂφȦ(r)φḂ(r), (8)

whereṖ is the total number of primitives used to describe
the molecular wave function. Eq. (8) can be further reduced
by contracting the coefficientsCm, DmȦ, andDmḂ , which
yields:

ρ(r) = φȦ(r)cȦḂφḂ(r). (9)

In Eq. (9), and hereafter, unless otherwise specified, we will
use the Einstein summation convention, andcȦḂ is a matrix
known as the density matrix.

Other density fields are obtained by first computingρ(r);
hence, the computational cost of any 3D-density function is
determined by the calculation ofρ or its derivatives∇ρ. As
we commented, in our research group, we have developed
the suite DensToolKit, which is an open source set of subpro-
grams that can compute many one-electron density functions
in 1D, 2D, and 3D grids [12]. Naturally, there are other great
programs to compute one-electron densities, such as Multi-
WFN [19], ORBKIT [20], Critic2 [21], and so on.

2.2. 3D numerical integration schemes

In general, the main challenge when integrating one-electron
densities includes, on the one hand, the large values of the
respective density around the nuclei (see Fig. 1), and on the
other hand, the fact that small values can sum up to 1-2 % of
the integral. For instance, domain regions whereρ ∼ 10−12

a.u. do contribute to the integral.

Furthermore, save forρ (and only when the primitives
are Gaussian functions), the integrals must be determined
through numerical integration schemes, and most frequently,
the integration is carried out using cubature (i.e., 3D quadra-
ture) rules.

FIGURE 1. Electron density,ρ(r), and Shannon entropy density,
−ρ(r) ln ρ(r), of the HN molecule. Here, the fields are computed
on the plane that intersects both nuclei.
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3. Numerical integration 3D

In very rough terms, a cubature rule is a set of weights,{wi},
and abscissas,{qi}, so that [22]:

I1 = k

∫

Ω

P (q)d3q ≈ k
∑

i

wiP (qi). (10)

Under this approximation, every improvement to the numer-
ical scheme reduces to selecting the best change of coordi-
nates together with the best standard quadrature rule(s) for
each independent coordinate or coupled coordinates.i

For the purposes of having the possibly most-accurate in-
tegration scheme, in this contribution, we will describe the
cubature schemes that we have implemented in DensToolKit
[12], in particular, the integration of diatomic system densi-
ties.

3.1. Monoatomic systems

A most direct approach to design cubature rules consists of
integrating each coordinate through independent quadrature
rules. Anecdotally, for one-electron densities of single atoms,
we have observed that decomposing the cubature into one ra-
dial quadrature and spherical-t designs [23] for the solid an-
gles render better results with the same number of abscissas.
Furthermore, the integration of one-electron densities in mo-
mentum space can always be carried out using this scheme,
i.e., as if the system was monoatomic, regardless of the num-
ber of atoms in the system. As a general procedure, it is best
to reduce the number of points related to the angles, and to
increase the number of abscissas associated with the radial
part. Typical quadrature rules, such as the Gauss-Legendre
quadratures, suffice to integrate the radial part.

Here, it is important to remark that, formally,Ω = R3

for any molecule. However, for monoatomic systems, we
have found that the semi-infinite domain inr can be replaced
by a finite domain0 ≤ r ≤ a, such thatρ(a) ∼ 10−14

a.u., and similarly by a domain wherein0 ≤ p ≤ b, where
ρ̃(b) ∼ 10−14 a.u. Here,̃ρ(p) is the electron density in mo-
mentum space. In addition, if the system is azimuthally sym-
metric, then the quadrature rule related to the azimuthal angle
can be omitted; this reduces the number of abscissas consid-
erably.

3.2. Polyatomic systems

A very clever approach to integrate 3D densities of poly-
atomic molecules has been around in the literature for some
time. Becke [24] divided the space using Voronoi cells (one
per atom), and integrated each cell using quadrature rules
for the radial part and a trapezoidal algorithm to integrate
over the angles. To account for the polyhedron nature of the
Voronoi cells, Becke used a smoothed step-functions, which
removed abscissas outside the cell. This approach was further
refined by Ṕerez-Jord́a [25], so as to automatically choose an
error tolerance, based on increasing (and reusing) the number

of points over the radial part of the cubatures. This scheme
has allowed to integrate many 3D functions of polyatomic
molecules and it is implemented in several programs such as
MultiWFN.

One small caveat of the Becke integration scheme is that
it requires around 5 000 abscissas per atom to obtain a nu-
merical precision of10−4 in energy [25]. In contrast, a nice
feature of the scheme is that, once implemented, it works for
any polyatomic molecule.

3.3. Our approach to treat diatomic systems

While seeking for highly-accurate numerical integration
methods, in 2015, we developed a cubature rule that re-
duces considerably the number of points for functions with
azimuthal symmetry and that decay rapidly relative to the
coordinates origin [26]. The method was originally imple-
mented for integration domains with the shape of a sphere
with two hollows, and basically, it consists of splitting the
circular domain into two halves (the azimuthal angle is triv-
ially integrated out to be2π). Thereafter, the integration is
performed upon the upper half, using the change of variables
and over the shadowed region depicted in Fig. 2. Here, we
denote the shadowed domain asΣu

2 , φ1 is the angle that is
formed by thez axis and the vectorP1, du is the distance
between the primed coordinate origin and the center of the
cavity, c is the distance between the non-primed coordinate
origin and the center of the big circle, anda and b are the
radii of the cavity and the big circle, respectively. The an-
gle φ1 divides the shadowed region into two parts. In other
words, the integral over the spherical domain with two cavi-
ties (Σ2) is reduced to compute the following integrals:

FIGURE 2. Diatomic upper domain decomposition (valence). The
shadowed region is denoted asΣu

2v.

Supl. Rev. Mex. Fis.6 011306



4 J. M. SOLANO-ALTAMIRANO

FIGURE 3. Diatomic upper domain decomposition (core), denoted
in the text asΣu

2c.

∫

Σ2

f(r, θ)dV = 2π

∫

Σu
2

f(r, θ)ρ2 sin φdφdρ

= 2π

∫ φ1

0

sin φdφ

∫ B(φ)

a

ρ2f(ρ, φ)dρ

+ 2π

∫ π

φ1

sin φdφ

∫ C(φ)

a

ρ2f(ρ, φ)dρ, (11)

where

B(φ) ≡
√

b2 − d2
u sin2 φ− du cosφ, (12)

C(φ) ≡− du/ cos φ. (13)

For diatomic systems, we use the above numerical
scheme to integrate one-electron densities over the “valence”
regions, denoted asΣu

2v andΣl
2v, whereu andl are for up-

per and lower, together with cubature rules for integrating
the “core” regions,i.e., the spherical domains centered at the
upper and lower nuclei, denoted asΣu

2c andΣl
2c. In Fig. 3,

the shadowed region isΣ2c, and the scheme is valid when
the function is azimuthally symmetric. Hence, for diatomic
molecules,Σ2 = Σu

2v∪Σu
2c∪Σl

2v∪Σl
2c. In DensToolKit, the

core valence is set to be 0.75 times the van der Waals radius of
the respective atom and we chooseb so thatρ(±bẑ) ≤ 10−14

a.u. Finally, if the function is not azimuthally symmetric,
e.g., for open-shell systems, then a third quadrature rule is
added to integrate over the azimuthal angle. After applying
the changes of coordinates suggested in Eq. (11), we use stan-
dard Gauss-Legendre quadrature rules for each coordinate.

3.4. 3D benchmark

In this section, we compare our numerical integration rules
against the Monte Carlo Miser algorithm (see,e.g., Ref. [22]

FIGURE 4. Absolute relative % errors of the integral
∫

ρdV = Ne

vs. the number of integration pointsN3D
pts , for several diatomic sys-

tems. Solid (dashed) lines correspond to the errors obtained with
our integration scheme (Monte Carlo Miser algorithm), and color
denotes the molecule.

for a specific implementation). We use as a benchmark the
integral: ∫

ρ(r)dV = Ne, (14)

whereρ is the electron density of HBe, HC, HO, and HF,
respectively, andNe is the corresponding number of elec-
trons, which is determined by using analytical overlap in-
tegrals

(∫
φȦφḂd3r

)
. In Fig. 4, we depict the absolute %

errors of the integral Eq. (14), for wave functions obtained
from Gaussian09, using experimental separation distances
between atoms, and at the HF/6-31G level of theory. Overall,
with the same number of points we obtain improvements of
1-3 orders of magnitude, relative to Monte Carlo absolute er-
rors, and the precision tends to increase as the number of inte-
gration points (Npts) increases. Small variations of the trends
(e.g., large jumps or increasing —rel. err.— with increasing
Npts are due to changes between the number of points used in
the radial or angular parts. For the results shown in Fig. 4, we
usedNpts,ρ =12, 16, 26, or 34 abscissas forρ; Npts,φ =18 or
22 for the polar angle (φ); andNpts,ϕ =6 for the azimuthal
angle. This renders (as it is implemented in DensToolKit)
a totalN3D

pts = 3Npts,ρ × Npts,φ × Npts,ϕ (see Table I for
specific combinations).

The diatomic integration scheme is already implemented
in the programdtkintegrate of the suite DensToolKit
2.0, which can be obtainedvia github:https://github.
com/jmsolano/denstoolkit .

4. Numerical integration 6D

Unfortunately, to integrate functions over a 6D spaceΩ×Ω,
there are no obvious reductions to the number of abscissas,
since even systems with azimuthal symmetry in 3D lose this
advantage once the two-electron densities are integrated.

In addition, the computational cost of computing the two-
electron density is 2-5 times the time taken to computeρ, de-

Supl. Rev. Mex. Fis.6 011306
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TABLE I. Number of points per coordinate
(
N3D

pts,ρ , N3D
pts,φ, and N3D

pts,ϕ

)
, as well as the total number of points (N3D

pts or N6D
pts) and the

absolute percentage relative errors shown in Figs. 4 and 5, for the systems HBe, HC, HO, and HF.

N3D
pts,ρ N3D

pts,φ N3D
pts,ϕ N3D

pts

|% rel. err.|
(∫

ρ(r)d3r

)

N6D
pts

|% rel. err.|
(∫

ρ2(r1, r2)d
3r1d

3r2

)

HBe HC HO HF HBe HC HO HF

12 18 6 3888 0.2657 0.2379 0.2615 0.4220 15116544 0.3208 0.3110 0.1322 0.1701

12 22 6 4752 0.2669 0.2350 0.2640 0.4230 22581504 0.0888 1.3133 0.8658 0.4775

16 18 6 5184 0.1281 0.0482 0.0729 0.0521 26873856 0.1996 0.1911 0.6441 0.3684

16 22 6 6336 0.1308 0.0493 0.0710 0.0520 40144896 0.0336 0.1515 0.4636 0.0453

26 18 6 8424 0.0133 0.0205 0.0172 0.0013 70963776 0.2033 0.1312 0.0517 0.1487

26 22 6 10296 0.0143 0.0192 0.0154 0.0013 106007616 0.0527 0.0843 0.0990 0.0286

34 18 6 11016 0.0016 0.0215 0.0171 0.0002 121352256 0.0781 0.1107 0.0175 0.1086

16 18 14 12096 0.1281 0.0686 0.0571 0.0521 146313216 0.0438 0.0389 0.0504 0.1000

34 22 6 13464 0.0006 0.0202 0.0154 0.0001 181279296 0.0028 0.0050 0.0378 0.0567

26 18 14 19656 0.0133 0.0002 0.0014 0.0013 386358336 0.0311 0.0328 0.0363 0.0428

72 18 6 23328 0.0008 0.0214 0.0171 0.0001 544195584 0.0279 0.0087 0.0193 0.0148

34 18 14 25704 0.0016 0.0012 0.0013 0.0002 660695616 0.0313 0.0354 0.0551 0.0085

72 22 6 28512 0.0002 0.0201 0.0154 0.0001 812934144 0.0187 0.0408 0.0385 0.0079

pending on whether the system is open- or closed-shell [12].
This is so, because the two-electron pair density for closed-
shell systems is given by:

ρ2(r1, r2) =
1
2
ρ(r1)ρ(r2)− 1

4
[
Γ1(r1, r2)

]2
, (15)

whereΓ1 is the density matrix of order 1, which in terms of
the primitives is:

Γ1(r1, r2) = φȦ(r1)cȦḂφḂ(r2). (16)

The expression for computingρ2(r1, r2) is more complex for
open shell systems (see Ref. [12] for details), as one needs to
compute single-spin one-electronρ’s andΓ1’s (to take into
accountα andβ contributions, separately).

Regardless of the issues discussed above, the integration
overΩ×Ω for diatomic systems can be carried out using the
diatomic decomposition described in Sec. 3.3. To this end,
we use one cubature rule (built as described in Sec. 3.3) per
each subsetΩ, i.e., we approximate 6D integrals as follows:

∫

Ω×Ω

P (r1, r2)d3r1d
3r2 =

∫ 2π

0

dφ1

∫

Σ1

r2
1 sin θ1dr1dθ1×

∫ 2π

0

dφ2

∫

Σ2

r2
2 sin θ2dr2dθ2×

P (r1, r2)

≈
∑

i,j

wiwjP (ri, rj). (17)

Unfortunately, we have found it mandatory to numeri-
cally integrate over the anglesφ1 and φ2, even if the 3D

molecule has azimuthal symmetry. This precludes decreas-
ing the number of abscissas; however, the diatomic scheme
can still render good numerical precisions, relative to Monte
Carlo methods. Furthermore, our integration scheme is re-
liable, in the sense that it will always render the same in-
tegrated value if the calculation is repeated with the same
Npts,ρ, Npts,φ, andNpts,ϕ, which amount to a totalN6D

pts =(
N3D

pts

)2 = 9 (Npts,ρ)
2 × (Npts,φ)2 × (Npts,ϕ)2, for inte-

grating two-electron densities over the domainΩ × Ω. In
this context and with the current DensToolKit version, the al-
gorithm is not automatically adaptive. However, one may
perform tests for computing the number of electron pairs,
i.e.,

∫
ρ2(r1, r2)dV1dV2 = Ne(Ne + 1)/2, in order to se-

lect the best combination ofNpts,ρ, Npts,φ, andNpts,ϕ; once
selected, the same combination can be used for integrat-
ing other two-electron densities. As a general rule, if the
molecule is open-shell, then a largerNpts,ϕ is required (see
Table I for some specific cases and combinations).

Regarding the integrals in momentum space, as we ad-
vanced above, the integrals can be always computed over
V1 × V2, whereVi is the volume of a sphere of radiusP
(in momentum space), such thatmax

(
ρ̃(êiP )

) ≈ 10−14

a.u., andê1 = ı̂, ê2 = ̂, and ê3 = k̂. Empirically, we
have found that integrals in momentum space require using
Nptsπ > 100, in order to render numerical precisions of
∼ 10−3.

4.1. 6D benchmark

In Fig. 5, we show the absolute % errors of the integral∫
ρ2(r1, r2)dV1dV2(= Ne(Ne + 1)/2) vs.Npts(= Npts,ρ×

Npts,φ ×Npts,ϕ).

Supl. Rev. Mex. Fis.6 011306
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FIGURE 5. Absolute relative % errors of the integral∫
ρ2(r1, r2)dV1dV2 = Ne(Ne + 1)/2 vs. the number of inte-

gration pointsN6D
pts =

(
N3D

pts

)2
= 9 (Npts,ρ)

2 × (Npts,φ)2 ×
(Npts,ϕ)2, for several diatomic systems. Solid (dashed) lines cor-
respond to the errors obtained with our integration scheme (Monte
Carlo Miser algorithm), and color denotes the molecule.

In contrast with the 3D case, Monte Carlo methods are
an acceptable choice for integrating 6D functions. However,
as we commented previously, our scheme still offers a re-
liability advantage, in the following sense. After selecting
an appropriate set ofNpts,ρ, Npts,φ, andNpts,ϕ, other prop-
erties can be integrated expecting that the same accuracy is
obtained. (Let us recall that Monte Carlo methods are ran-
dom in nature; thus, there is no guarantee that repeating the
calculation with the same number of points will always ren-
der the same accuracy.) In addition, our integration scheme
still might render smaller —rel. err.— by up to 2 orders of
magnitude, relative to the Monte Carlo Miser variant.

Regarding the computational cost, as we commented
previously, the most expensive calculation is to evaluate
ρ2(r1, r2), thus the computational cost of integrating any

function of the form shown in Fig. 4 is directly proportional
to the number of integration points. The cost of computing
the abscissas and weights is negligible, compared with the
computational cost of computingρ2(r1, r2) at the set of ab-
scissas. For further time profiling details, see Ref. [12].

The reliability that our scheme may achieve makes it a
convenient numerical method to study two-electron density
functions, in particular, any two-electron informational en-
tropy in the near future.

5. Conclusions

In this contribution, we have described a numerical scheme,
specialized to integrate 3D and, in particular, 6D functions for
diatomic molecules. The scheme was designed specifically to
integrate molecular one-electron (3D) or two-electron (6D)
density fields. These fields are, in essence, functionals of
the one-electron densityρ(r) or the two-electron pair density
function ρ2(r1, r2). We have presented benchmarks of our
scheme and compared them against integrations performed
with the Monte Carlo Miser method. In general, one may de-
crease errors by 1-2 orders of magnitude, for a given number
of integration points.

We are currently working on implementing algorithms to
integrate 3D and 6D fields for polyatomic molecules, which
will be released in future versions of DensToolKit.

The scheme presented here, together with the current ca-
pabilities of the program DensToolKit [12], constitutes a nu-
merical tool that will be useful in studying two-electron infor-
mational entropies of diatomic molecules in the near future.
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