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The Entropic Uncertainty Relations (EUR) result from inequalities that are intrinsic to the Hilbert space and its dual with no direct connection
to the Canonical Commutation Relations. Bialynicky-Mielcisnky obtained them in Ref. [1] attending Hilbert spaces with a Lebesgue measure.
The analysis of these EUR in the context of singular Hilbert spaces has not been addressed. Singular Hilbert spaces are widely used i
scenarios where some discretization of the space (or spacetime) is cons@grddpp quantum gravity, loop quantum cosmology and
polymer quantum mechanics. In this work, we present an overview of the essential literature background and the road map we plan to follow
to obtain the EUR in polymer quantum mechanics.
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1. Introduction However, the Shannon entropy in Ed) (s formulated in

_ _ its discrete version. Its continuum expression
Information theory has emerged in the last decades as a con-

solidated branch of research permeating a vast number of
disciplines, ranging from theoretical physics, chemistry, and
statistics to artificial intelligence and data science [2-9]. In i ) )
physics and chemistry, a particular role is played by thd@cks, when applied to quantum mecharjlc;s, of an interpreta-
Entropic Uncertainty Relations (EUR) [1] which constitute tion similar to that in Eq.1). In Eq. @), p(7) is a probability
stronger conditions to characterize uncertainty in the quand€nsity which, in the case of a pure state, takes the form

tum realm than the usual Heisenberg uncertainty relations . 12

(HUR). The EUR are based on the Shannon entropy —hence p(@) = L@, ®)

the term entropic— which, for a discrete probability distribu-
tion {p;}, is defined as

Hylp] = - / p(Z) In p(7) d7, @)

where¥ (¥) € H. Here,H is the Hilbert space used in what
we callthe standard description of quantum mechardosl

N it is given by
H=- p;lnp;, (1)
Ej: H = L*(R", di), (6)
where the sum of; € [0, 1] is normalized wheren is the number of degrees of freedom of the system.
N To clarify our point, notice that when working with dis-
o crete probability distributions, as in EQ)(it is clear that the
ij =1 @ maximum entro = i i ing:
- PYHLax = In N acquires a direct meaning:
! the entropy takes its maximum value when all the probabili-
and such that for an impossible event,= 0, we impose ties are equal, implying that the system has no bias towards
any preferred outcome. This interpretation is not possible in
pljiglo pjlnp; == 0. (3)  the case of a continuous probability distribution [4] because

the constant function with support in the entire real line is not
The expression in EqI) characterizes the entropy of an in- an element of+.
formation source [2] and has been considered by some au- Another approach is to consider that Shannon entropy in
thors to have a more fundamental role in connection with staEq. 4) measures how de-localized the wave function is, that
tistical mechanics [5,6]. is to say, it measures the spread of the wave function. How-
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ever, there already exists a quantity doing this work: the stan- Consider a Hilbert space given Bye = L?(R, du(z))

dard deviatiomx given by wheredyu(x) is a Gaussian measure of the form
1 2
Az = /(U|Z2|T) — (T[Z|D)2. 7 du(z) = —— e~ /0" dg, 11
V(UE2[0) — (U[2[T) @) “()W (11)

Hence, one might wonder what actually captures the Shannomhich is normalized,

entropy defined in Eq4).
The answer to these questions can be formulated using /du(w) =1 (12)
two arguments. First, the Shannon entropydpfrovides a ) o )
measure of how spread the probability distributi&) i§ in As a result of this normalization, the constant unit state
the whole real line, while the dispersiaz measures this #(#) = 1is an element of the Hilbert spag#;. Notice that -
spreading but around the mean val@éz| ). In this regard this state plays the role of a uniform-like distribution and this

Shannon entropy is a more robust measure of the uncertainfjStribution, when considered in the discrete scheme, max-
of the wave function [10]. imizes (I). However, in this case, it is not clear which ex-

The second argument goes hand in hand with the worlression for the Sr_]annon entropy is the appropriatg one. For
of Iwo Bialynicki-Birula and Jerzy Mycielski in Ref. [1]. €X@mple, when using, the Shannon entropy of(z) is

Bialynicki-Birula and Mycielski introduced the EUR,
y Y Hgli= - [P @)d=0.  @3)

This contradicts the previous intuition, that is, the uniform

and proved that it constitutes a stronger version of the uncefOntinuum distributiorhas zero Shannon entropy. Moreover,
tainty relations compared to Heisenberg uncertainty relation1e Fourier dual of>(z) = 11is a Dirac delta;>(p) = 4(p),
(HUR), that is, one can derive the HUR using the EUR ang@nd its Shannon entropy is clearly divergent. A direct con-
not the contrary [10,11]. As a result, a stronger version off€dquence of these results is that no clear version of the EUR
the HUR, in the form of the EUR, has paved the way for anfor these states using(is available. Additionallys(z) is
analysis of the uncertainty principle through new lenses [11]°t in L”(d), hence, the duality notion is also altered when
Itis also worth pointing out that the EUR is derived with- & NOn-Lebesgue measure is considered. o
out using the representation of the Canonical Commutation Another argument is that representations in Hilbert
Relations (CCRs), but only referring to intrinsic features onSPaces with Gaussian measures and configuration §ace
the Hilbert space used and its dual under the Fourier tran&an be used to construct singular representations of the CCRs
form. This feature captures our interest in the present project}3]- These singular representations are used in the context of
Let us briefly present our main motivations in the next sub-duantizing the gravitational field [14-16] and also in scenar-

H, (V) + H,[¥] > In(r e h), ®)

section. ios where some discretization of the space affects the CCRs
[17]. Therefore, once the form of the EUR within a Hilbert
1.1. EUR for general representations of the CCs space likeHs and its dual is obtained, we can expect that

under certain limiting process we will obtain the uncertainty
An important aspect of the EUR is that they were obtainedelations for singular representations of the CCRs.

for LP —spaces with standard Lebesgue measudiéanddp. Finally, when the configuration space is also different,
This yields a notable protagonism to a particular representsgay, given by the Schwartz spagand the measure is also
tion of the CCRs, the one given by Gaussian-like, then the EUR can be cast in the context of
quantum field theory [18,19]. In this regard, an important as-
22U(Z) = 2 U (D), (9)  pect when considering quantum field theory is whether the
) spacetime symmetries can be used to fix the quantum rep-
o U (Z) = T agb U(L), (10)  resentation [18], such as on curved spacetimes. Therefore,

extending the EUR to Hilbert spaces not only with Gaussian-
and calledSchibdinger representatian As a consequence, like measures but also to different configuration spaces paves
the expression for the EUR, when using any other represerthe way for the study of the relation between the EUR and
tation, is an open question that has to be addressed and titat vacuum symmetries.
has not been considered to the best of the authors’ knowledge. Due to its relevance for our analysis, in Sec. 2 we pro-
On the other hand, one might argue that Stone-von Neuwvide a summarized description of the derivation of the EUR
mann’s theorems [12] guarantee that all regular representativen in Ref. [1]. In all these scenarios, the mathematical
tions of the CCRs are unitarily equivalent to the Salinger  formalism developed to construct quantum representations,
one in Egs.!9) - (10). Hence, there is no need to move to- for finite and infinite degrees of freedom, shall be cathed
wards exploring the EUR expression in other representationsmetrical quantizatioti. For this reason, in Sec. 3 we sketch
of the CCRs. But, as we will show, there are several reathe geometrical quantization procedure. In Sec. 4 we intro-
sons to study the expression for the EUR in non-8dimger  duce the main ingredients of the Polymer Quantum Mechan-
representations. ics scheme, which is used here as a representative of singular
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representations of the CCRs. Finally, in Sec. 5 we mentionwhereN = ||¥||,. If we take a normalized statgl||» = 1,

the next steps we plan to follow in order to carry out this re-then 21) can be written as in Eq8], whereH, and H,, are

search program. the Shannon entropies fdr(Z) and ¥(p) defined, respec-
tively, as

2. Entropic uncertainty relations ) )

W) =~ [d@P mp@P, @)
In this section, we describe the main steps followed in
i i 2\ i D n = ~ o ~
Ref. [1]. Fl_rst, they c_:0n3|dered astalfé_x) in af (R™, d¥) H,[¥] = —/dp|\11(§)|2 In |3 ()2 (23)
space. This space is formed by functiohs R" — C and

such thatitg—norm, [|¥|,,, defined as According to [1], the relation in Eq8J is a stronger ver-

1/p sion of the Heisenberg uncertainty relation because it yields a
|, == </ |¥(z) P df) ) (14)  stronger constraint. To check is, we can use Hirschman result
[10] (for A = 1) and state that
for a givenp > 1. 5
The other element considered in Ref. [1] is the Fourier- H,[¥] < In/2me(Az)?, (24)
dual statel(p) in LI(R"™, dp) which is given such that Hp[@] < In+/2me(Ap)2, (25)
U(p) = ﬁ / e~ WPT (T dT, (15)  from which we have that
T n
1 H,+H
and recall that this Fourier-transform is directly related with e € e < Az Ap, (26)

the fact that the momentum operator representation is of the . . .
form (10) since the plane waves are eigenfunctions of the mo@nd after insertingg), we obtain
mentum operator. 1
Heregq is the Hblder conjugate op given by 5 < Az lp, (27)

gl +p =1, (16)  which are the form of the familiar HUR.

Let us now describe the main ingredients used in the for-
and the next step is to relate thenorm of the state to the  malism of geometrical quantization, which will be the core of
norm of its Fourier transform. Even though this step requiresur analysis when aiming at the form of the EUR for Gaus-
careful attention to technical mathematical details, it can ba&ian or more general Hilbert spaces.
carried out by defining thép, ¢)-norm [20,21] as the smallest

numberk(g, p) such that: 3. Geometrical quantization

1¥]lg < k(p, DIl 17 In this section, we will sketch the main steps used in what
we call the formalism of geometrical quantization. For sim-
plicity, we will consider a system with only one degree of
freedom and we will focus on the kinematical description,

for all stateW. Takingq > 2 and considering the &lder
condition, it turns out that

or\ 24 o\ T, i.e., no dynamics.
k(p,q) = <q) <p> ho=. (18) Consider the spade = (R?, §2), where() is a symplectic
structure
Once we have introduced all these elements, let us define
the positive quantity Q= ( 01 é ) , (28)
Wiq) = k(p(@), DI[¥lpq) — ¥][q, (19 and let us consideF as a real linear space. We then intro-

which, according to Parseval-Plancherel theorem yield§luce (and fix) a linear complex structuse which is a map

. > ) : . ;
W (2) = 0. Moreover, Parseval-Plancherel theorem togethet’ * 1 _)hr ‘T‘(UCh Lhat]h = —I. Herel |Isfthe identity matrix.
with Eq. (17) implies that It can checked that the more general form/as given by

d a b
lim aw >0, (20) J = ( G+ ) . (29)
b
with which, after inserting the expression for the right deriva-The eigenvalues of are+:, hence its eigenvectois, ¢ T
tive, we obtain The eigenvector with a positiver{) eigenvalue is callethe

) ) positive frequencgigenvector, while the other eigenvector is
Hy + Hy >nn(reh) N” —4N" In N, 1)  called thenegative frequency
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We now complexify the spacE — T'c and verify that 4. Polymer quantum mechanics

every vectorX € I'c can be written as ) ) .
Consider a Hilbert given b¥,,.;, = L?(R,, dz.) whereR,

X=Xt4+X", (30) is the real line equipped with the discrete topology rather than
the usual standard topology add. is the counting measure
where on it. Functions on this Hilbert space are given by linear com-
binations of discrete Kronecker deltas
. 1 - [
+_ e
X+ = 2X F 2JX. (31) U(z) = Z Uy O (35)
h St b )
The spac iven
P g y and such that the norm
ST =Spar{X*}, 32
Partx 42 el =[5 1,2 < oo, (36)
calledspace of positive frequenciesll be used to construct Lz
what is called theone-particle Hilbert spaceTo do so, we s finite.
first associate the inner product This Hilbert space is a non-separable Hilbert space as can
o . . be seen from having an uncountable number of basis ele-
(XHY ), = (XD)TavH, (33)  mentsd, ,,, each one labeled by;, which is an arbitrary

point over the real line. A direct consequence of this is that
and construct the spadé™, (,)) formed by positive fre-  there are no possible infinitesimal translations and as a result,
quency vectors. Then, Cauchy completes this space with tho momentum operatgris possible.
norm induced by this inner product. The Cauchy completion  To handle this situation, instead of working with infinites-
gives the Hilbert spacg(,. This Hilbert space is now used imal translations, finite translation operators are used and are

to construct the Fock spaces [22] called theholonomyoperatoil/,, because they borrowed their
names from the loop quantum gravity scheme. The parameter
Fp=CoH,; & (H;@H;),®(H;@H;®Hy),®...,  uisadimension-full parameter with length units and, in the

context of a discrete sp&éeit is also assumed that there is a
minimum length scale, denoted a%, whose value is unde-
termined but fixed. This minimum scale implies that for any
0 space pointg; andx, they satisfy the following relation

]:F:(C@HJ@(HJ®HJ)Q@(HJ@HJ@HJ)G@...7

where the indexa and s stand for the antisymmetrization
or the symmetrization of the tensor product. In the case o%

fermionic systems, the antisymmetric tensor product is the (21 — 22) /1" € Z, (37)
appropriate Fock space while for the case of bosonic systems
is the symmetric one. i.e., they can be reached by a finite number of jumps of size

The quantum representation using this Fock-Hilbertu™.
space has been studied together with its unitary relation with  With all these elements, it can be checked that the CCRs
the Schodinger Hilbert spacé{s.; [19,23,24], in both flat ~are now given by
and curved spacetimes for real scalar fields. At this point, the o~ ~
relevant observation is that in order to have a unitary relation [% Uu*} = 1" Uy, (38)
between Fock representation and Sdlinger representation,
we have to consider that the Sodinger representation is
given in a Hilbert space of the form

which constitutes an example of modified CCRs [17] and the
representation of this modified CCRs is given as

Hsen = L2(S, duy), (34) A (2) = 2¥(z) (39)
U¥(x) = TU(x+ p). (40)
whereS is the Schwartz space in the case of the real scalar ) _ o
field andR™ in the case of mechanical systems wittde- An immediate consequence of this representation is that the

grees of freedom. Concerning the measdye; depends on Kronecker deltas are the eigenstates of the position operator,

the parametelr of the complex structure given in E29). In
the limit whenb goes ta) or to oo, the Hilbert space used in
polymer quantum mechanics is obtained [13]. As for the reathus, according to Born’s postulate, the quantum particle is
scalar field, it is fixed using the symmetry of the spacetimeywell localized. This is a crucial difference between this sin-
see [19,24] for more details. gular representation and the Sétinger representation in
Let us now move to briefly describe the main ingredientsEgs. 0), (10) where the eigenstates of the position operator in
of the polymer quantization, which serves as a simplified exEq. (9) are Dirac deltas and as we know, they are not vectors
ample to explore singular representations. in H. On the other hand, no momentum operator exists in

fdr,mj =Ty 5.1:,mja (41)

Supl. Rev. Mex. Fis6 011308



TOWARDS ENTROPIC UNCERTAINTY RELATIONS FOR NON-REGULAR HILBERT SPACES 5

this singular representation but still, a Fourier transformatiorof the polymer quantum mechanics, we are considering Haar

can indeed be defined as and discrete measures.
~ . Geometrical quantization allows us to connect the
F : Hpoty = Hpoty; Fl0o,a,] = €77, (42)  Fock-Hilbert space representation with the Gaussian-like

- ] ] o Schibdinger representations. For the case of real scalar fields,
whereH,,1,, is the Fourier-dual space f,,,;, and itis given  i4is was done in Refs. [19,24] but it has to be done for
by systems with finite degrees of freedom. Furthermore, in
Ref. [13], a connection between the Gaussian-like represen-

~ o —
Hpoty = LR, dpricar)- (43) tation as described in Subset.1) was already given. This
Here, the configuration spafeis the Bohr-compactification result was obtained by considering the two limits in which
of the real line [25]. The states iH,,;, can be written as the parameters in the Gaussian measure go to zero (CpOI’dI-
nate representation) or to infinity (momenta representation).
\T;(p) = Z v, ehPT5 (44) One of the most evident consequences of the “changing”
(@} measure is to obtain a different momentum operator. For

example, we can indeed see that for a probability measure
where the coefficients are those given in E85)(@nd the in-  4,(z) overR, i.e. J duu(z) = 1 such that:
ner product when using the Haar measipg .. yields
=M(z 47
<3%P9€j |e%17zk> _ 51.7,119' (45) du(x) (T)dl‘, ( )
. . . with M(z) # 0. The more general momentum operator is
Notably, the Fourier-dual of the position eigenstates are agaigiven by:
the plane waves similar to what we have in the standard quan-
tum mechanics but again, the plane waves are indeed ele-
ments ofH,,.;,, whereas in the standard quantum mechanics

they are not. . . . :
Y whereg(z) is a real function. We obtain these different forms

Finally, it is worth emphasizing that Stone-von Neu- since we require that the momentum operator is a first-order
mann’s theorems [12] conditions do not hold for these sin- d P

gular representations. In particular, the representation of th%ymmetrlc opgratgr that satisfies the. CCR. Since in the geo-
holonomy operator metrical quantization procedure the induced measure on the

Hilbert space is related to the choice of the parameters defin-
(02,0, |ﬁu5m¢> = (02,0, |00.0,—pu) = 62;.0;—n,  (46) ing the complex structure, we can also relate these parameters
' ' ' ' ‘ to the momentum operator.
is not weakly continuoud which is one of the assumptions The eigenvalue problem associated with the momentum
of the theorems. As a result, there is no unitary transformaeperator induces a different version of the Fourier trans-
tion that relates the physics obtained using this representatidiorm, which will be related to the EUR for Gaussian-measure
with the physics of the standard Sodinger representation. Hilbert spaces. The modified Fourier transforms will be a
To achieve some sort of equivalence, certain coarse grainingateway of the project and will lead to a challenge of the
procedures have to be implemented, see for example [16]. problem of extending the results in Refs. [20,21], and later
These are the main ingredients regarding the polymeto consequently extend the EUR reported in Sec. 2.

guantum representation. Our main questions and the outline We hope that this project helps shed light on the under-
of the next steps will be described in the next section. standing of the EUR in more general contexts, and of course,
we aim to present our findings in the next symposium: “Ap-
plications of Information Theory in Natural Sciences”.

ho , 0log(M()

1 0x ! Ox +9(@), (48)

ﬁ:

5. Conclusions

We have seen how different quantization procedures are sunicknowledgements

marized in Secs. 3 and 4 lead to different Hilbert spaces, and

how this difference relies on the measure used. In the sefA.G.Ch would like to thank the CONAHCyYT for a post-
ting of Geometrical Quantization, the induced Hilbert spacedoctoral fellowship. F.Z. is partially founded by FWO-EoS
is endowed with the Gaussian measure, while in the contextroject “Beyond symplectic geometry”.

1. In position representation, indicated by the labe&ind the in- metric quantization formalism.
dex p refers to the Shannon entropy in momentum representa;;. Another discretization of space different from that given by the
tion. topology of the configuration spaée;.

7. This name is to differentiate it from the very well-known geo- iv. For this analysis we have to consider an unfixed
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