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The Entropic Uncertainty Relations (EUR) result from inequalities that are intrinsic to the Hilbert space and its dual with no direct connection
to the Canonical Commutation Relations. Bialynicky-Mielcisnky obtained them in Ref. [1] attending Hilbert spaces with a Lebesgue measure.
The analysis of these EUR in the context of singular Hilbert spaces has not been addressed. Singular Hilbert spaces are widely used in
scenarios where some discretization of the space (or spacetime) is considered,e.g., loop quantum gravity, loop quantum cosmology and
polymer quantum mechanics. In this work, we present an overview of the essential literature background and the road map we plan to follow
to obtain the EUR in polymer quantum mechanics.
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1. Introduction

Information theory has emerged in the last decades as a con-
solidated branch of research permeating a vast number of
disciplines, ranging from theoretical physics, chemistry, and
statistics to artificial intelligence and data science [2-9]. In
physics and chemistry, a particular role is played by the
Entropic Uncertainty Relations (EUR) [1] which constitute
stronger conditions to characterize uncertainty in the quan-
tum realm than the usual Heisenberg uncertainty relations
(HUR). The EUR are based on the Shannon entropy –hence
the term entropic– which, for a discrete probability distribu-
tion {pj}, is defined as

H = −
N∑

j

pj ln pj , (1)

where the sum ofpj ∈ [0, 1] is normalized

N∑

j

pj = 1, (2)

and such that for an impossible event,pj = 0, we impose

lim
pj→0

pj ln pj := 0. (3)

The expression in Eq. (1) characterizes the entropy of an in-
formation source [2] and has been considered by some au-
thors to have a more fundamental role in connection with sta-
tistical mechanics [5,6].

However, the Shannon entropy in Eq. (1) is formulated in
its discrete version. Its continuum expressioni

Hx[ρ] = −
∫

ρ(~x) ln ρ(~x) d~x, (4)

lacks, when applied to quantum mechanics, of an interpreta-
tion similar to that in Eq. (1). In Eq. (4), ρ(~x) is a probability
density which, in the case of a pure state, takes the form

ρ(~x) = |Ψ(~x)|2, (5)

whereΨ(~x) ∈ H. Here,H is the Hilbert space used in what
we call the standard description of quantum mechanicsand
it is given by

H = L2(Rn, d~x), (6)

wheren is the number of degrees of freedom of the system.
To clarify our point, notice that when working with dis-

crete probability distributions, as in Eq. (1), it is clear that the
maximum entropyHmax = lnN acquires a direct meaning:
the entropy takes its maximum value when all the probabili-
ties are equal, implying that the system has no bias towards
any preferred outcome. This interpretation is not possible in
the case of a continuous probability distribution [4] because
the constant function with support in the entire real line is not
an element ofH.

Another approach is to consider that Shannon entropy in
Eq. (4) measures how de-localized the wave function is, that
is to say, it measures the spread of the wave function. How-
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ever, there already exists a quantity doing this work: the stan-
dard deviation∆x given by

∆x =
√
〈Ψ|x̂2|Ψ〉 − 〈Ψ|x̂|Ψ〉2. (7)

Hence, one might wonder what actually captures the Shannon
entropy defined in Eq. (4).

The answer to these questions can be formulated using
two arguments. First, the Shannon entropy in (4) provides a
measure of how spread the probability distribution (5) is in
the whole real line, while the dispersion∆x measures this
spreading but around the mean value〈Ψ|x̂|Ψ〉. In this regard,
Shannon entropy is a more robust measure of the uncertainty
of the wave function [10].

The second argument goes hand in hand with the work
of Iwo Bialynicki-Birula and Jerzy Mycielski in Ref. [1].
Bialynicki-Birula and Mycielski introduced the EUR,

Hx[Ψ] + Hp[Ψ] ≥ ln(π e ~), (8)

and proved that it constitutes a stronger version of the uncer-
tainty relations compared to Heisenberg uncertainty relations
(HUR), that is, one can derive the HUR using the EUR and
not the contrary [10,11]. As a result, a stronger version of
the HUR, in the form of the EUR, has paved the way for an
analysis of the uncertainty principle through new lenses [11].

It is also worth pointing out that the EUR is derived with-
out using the representation of the Canonical Commutation
Relations (CCRs), but only referring to intrinsic features on
the Hilbert space used and its dual under the Fourier trans-
form. This feature captures our interest in the present project.
Let us briefly present our main motivations in the next sub-
section.

1.1. EUR for general representations of the CCs

An important aspect of the EUR is that they were obtained
for Lp−spaces with standard Lebesgue measures,d~x andd~p.
This yields a notable protagonism to a particular representa-
tion of the CCRs, the one given by

x̂a Ψ(~x) = xa Ψ(~x), (9)

p̂b Ψ(~x) =
~
ı

∂

∂xb
Ψ(~x), (10)

and calledSchr̈odinger representation. As a consequence,
the expression for the EUR, when using any other represen-
tation, is an open question that has to be addressed and that
has not been considered to the best of the authors’ knowledge.

On the other hand, one might argue that Stone-von Neu-
mann’s theorems [12] guarantee that all regular representa-
tions of the CCRs are unitarily equivalent to the Schrödinger
one in Eqs. (9) - (10). Hence, there is no need to move to-
wards exploring the EUR expression in other representations
of the CCRs. But, as we will show, there are several rea-
sons to study the expression for the EUR in non-Schrödinger
representations.

Consider a Hilbert space given byHG = L2(R, dµ(x))
wheredµ(x) is a Gaussian measure of the form

dµ(x) =
1√
π l2

e−(x/l)2 dx, (11)

which is normalized, ∫
dµ(x) = 1. (12)

As a result of this normalization, the constant unit state
ϕ(x) = 1 is an element of the Hilbert spaceHG. Notice that
this state plays the role of a uniform-like distribution and this
distribution, when considered in the discrete scheme, max-
imizes (1). However, in this case, it is not clear which ex-
pression for the Shannon entropy is the appropriate one. For
example, when using (4), the Shannon entropy ofϕ(x) is

H[ϕ] := −
∫

ϕ2(x) ln(ϕ2(x)) dx = 0. (13)

This contradicts the previous intuition, that is, the uniform
continuum distributionhas zero Shannon entropy. Moreover,
the Fourier dual ofϕ(x) = 1 is a Dirac delta,̃ϕ(p) = δ(p),
and its Shannon entropy is clearly divergent. A direct con-
sequence of these results is that no clear version of the EUR
for these states using (4) is available. Additionally,δ(x) is
not inLp(dµ), hence, the duality notion is also altered when
a non-Lebesgue measure is considered.

Another argument is that representations in Hilbert
spaces with Gaussian measures and configuration spaceRn,
can be used to construct singular representations of the CCRs
[13]. These singular representations are used in the context of
quantizing the gravitational field [14-16] and also in scenar-
ios where some discretization of the space affects the CCRs
[17]. Therefore, once the form of the EUR within a Hilbert
space likeHG and its dual is obtained, we can expect that
under certain limiting process we will obtain the uncertainty
relations for singular representations of the CCRs.

Finally, when the configuration space is also different,
say, given by the Schwartz spaceS, and the measure is also
Gaussian-like, then the EUR can be cast in the context of
quantum field theory [18,19]. In this regard, an important as-
pect when considering quantum field theory is whether the
spacetime symmetries can be used to fix the quantum rep-
resentation [18], such as on curved spacetimes. Therefore,
extending the EUR to Hilbert spaces not only with Gaussian-
like measures but also to different configuration spaces paves
the way for the study of the relation between the EUR and
the vacuum symmetries.

Due to its relevance for our analysis, in Sec. 2 we pro-
vide a summarized description of the derivation of the EUR
given in Ref. [1]. In all these scenarios, the mathematical
formalism developed to construct quantum representations,
for finite and infinite degrees of freedom, shall be calledge-
ometrical quantizationii. For this reason, in Sec. 3 we sketch
the geometrical quantization procedure. In Sec. 4 we intro-
duce the main ingredients of the Polymer Quantum Mechan-
ics scheme, which is used here as a representative of singular
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representations of the CCRs. Finally, in Sec. 5 we mention
the next steps we plan to follow in order to carry out this re-
search program.

2. Entropic uncertainty relations

In this section, we describe the main steps followed in
Ref. [1]. First, they considered a stateΨ(~x) in aLp(Rn, d~x)
space. This space is formed by functionsΨ : Rn → C and
such that itsp−norm,||Ψ||p, defined as

||Ψ||p :=
(∫

|Ψ(~x)|p d~x

)1/p

, (14)

for a givenp ≥ 1.
The other element considered in Ref. [1] is the Fourier-

dual statẽΨ(~p) in Lq(Rn, d~p) which is given such that

Ψ̃(~p) =
1

(2 π ~)n

∫
e−

ı
~ ~p~x Ψ(~x) d~x, (15)

and recall that this Fourier-transform is directly related with
the fact that the momentum operator representation is of the
form (10) since the plane waves are eigenfunctions of the mo-
mentum operator.

Hereq is the Ḧolder conjugate ofp given by

q−1 + p−1 = 1, (16)

and the next step is to relate thep-norm of the state to theq-
norm of its Fourier transform. Even though this step requires
careful attention to technical mathematical details, it can be
carried out by defining the(p, q)-norm [20,21] as the smallest
numberk(q, p) such that:

||Ψ̃||q ≤ k(p, q)||Ψ||p (17)

for all stateΨ. Taking q ≥ 2 and considering the Ḧolder
condition, it turns out that

k(p, q) =
(

2π

q

)n/2q (
2π

p

)−n/2p

~
n(2−q)

2q . (18)

Once we have introduced all these elements, let us define
the positive quantity

W (q) = k(p(q), q)||Ψ||p(q) − ||Ψ̃||q, (19)

which, according to Parseval-Plancherel theorem yields
W (2) = 0. Moreover, Parseval-Plancherel theorem together
with Eq. (17) implies that

lim
q→2+

dW

dq

∣∣∣∣
2+

≥ 0, (20)

with which, after inserting the expression for the right deriva-
tive, we obtain

Hx + Hp ≥ n ln(π e ~)N2 − 4N2 ln N, (21)

whereN = ||Ψ||2. If we take a normalized state||Ψ||2 = 1,
then (21) can be written as in Eq. (8), whereHx andHp are
the Shannon entropies forΨ(~x) and Ψ̃(~p) defined, respec-
tively, as

Hx[Ψ] := −
∫

d~x |Ψ(~x)|2 ln |Ψ(~x)|2, (22)

Hp[Ψ̃] := −
∫

d~p |Ψ̃(~p)|2 ln |Ψ̃(~p)|2. (23)

According to [1], the relation in Eq. (8) is a stronger ver-
sion of the Heisenberg uncertainty relation because it yields a
stronger constraint. To check is, we can use Hirschman result
[10] (for ~ = 1) and state that

Hx[Ψ] ≤ ln
√

2πe(∆x)2, (24)

Hp[Ψ̃] ≤ ln
√

2πe(∆p)2, (25)

from which we have that

1
2πe

eHx+Hp ≤ ∆x∆p, (26)

and after inserting (8), we obtain

1
2
≤ ∆x∆p, (27)

which are the form of the familiar HUR.
Let us now describe the main ingredients used in the for-

malism of geometrical quantization, which will be the core of
our analysis when aiming at the form of the EUR for Gaus-
sian or more general Hilbert spaces.

3. Geometrical quantization

In this section, we will sketch the main steps used in what
we call the formalism of geometrical quantization. For sim-
plicity, we will consider a system with only one degree of
freedom and we will focus on the kinematical description,
i.e., no dynamics.

Consider the spaceΓ = (R2, Ω), whereΩ is a symplectic
structure

Ω =
(

0 1
−1 0

)
, (28)

and let us considerΓ as a real linear space. We then intro-
duce (and fix) a linear complex structureJ , which is a map
J : Γ → Γ such thatJ2 = −I. HereI is the identity matrix.
It can checked that the more general form ofJ is given by

J =

(
a b

− (1+a2)
b −a

)
. (29)

The eigenvalues ofJ are±ı, hence its eigenvectors~u± /∈ Γ.
The eigenvector with a positive (+ı) eigenvalue is calledthe
positive frequencyeigenvector, while the other eigenvector is
called thenegative frequency.
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We now complexify the spaceΓ → ΓC and verify that
every vector~X ∈ ΓC can be written as

~X = ~X+ + ~X−, (30)

where

~X± =
1
2

~X ∓ ı

2
J ~X. (31)

The spaceS+ given by

S+ = Span{ ~X+}, (32)

calledspace of positive frequencieswill be used to construct
what is called theone-particle Hilbert space. To do so, we
first associate the inner product

〈 ~X+|~Y +〉J = −ı( ~X+)†Ω~Y +, (33)

and construct the space(S+, 〈, 〉J) formed by positive fre-
quency vectors. Then, Cauchy completes this space with the
norm induced by this inner product. The Cauchy completion
gives the Hilbert spaceHJ . This Hilbert space is now used
to construct the Fock spaces [22]

FB=C⊕HJ ⊕ (HJ ⊗HJ )s ⊕ (HJ ⊗HJ ⊗HJ)s ⊕ . . . ,

FF =C⊕HJ ⊕ (HJ ⊗HJ )a ⊕ (HJ ⊗HJ ⊗HJ)a ⊕ . . . ,

where the indexa and s stand for the antisymmetrization
or the symmetrization of the tensor product. In the case of
fermionic systems, the antisymmetric tensor product is the
appropriate Fock space while for the case of bosonic systems
is the symmetric one.

The quantum representation using this Fock-Hilbert
space has been studied together with its unitary relation with
the Schr̈odinger Hilbert spaceHSch [19,23,24], in both flat
and curved spacetimes for real scalar fields. At this point, the
relevant observation is that in order to have a unitary relation
between Fock representation and Schrödinger representation,
we have to consider that the Schrödinger representation is
given in a Hilbert space of the form

HSch = L2(S, dµJ), (34)

whereS is the Schwartz space in the case of the real scalar
field andRn in the case of mechanical systems withn de-
grees of freedom. Concerning the measure,dµJ depends on
the parameterb of the complex structure given in Eq. (29). In
the limit whenb goes to0 or to∞, the Hilbert space used in
polymer quantum mechanics is obtained [13]. As for the real
scalar field, it is fixed using the symmetry of the spacetime,
see [19,24] for more details.

Let us now move to briefly describe the main ingredients
of the polymer quantization, which serves as a simplified ex-
ample to explore singular representations.

4. Polymer quantum mechanics

Consider a Hilbert given byHpoly = L2(Rd, dxc) whereRd

is the real line equipped with the discrete topology rather than
the usual standard topology anddxc is the counting measure
on it. Functions on this Hilbert space are given by linear com-
binations of discrete Kronecker deltas

Ψ(x) =
∑

{xj}
Ψxj δx,xj , (35)

and such that the norm

||Ψ|| =
√∑

{xj}
|Ψxj

|2 < ∞, (36)

is finite.
This Hilbert space is a non-separable Hilbert space as can

be seen from having an uncountable number of basis ele-
mentsδx,xj , each one labeled byxj , which is an arbitrary
point over the real line. A direct consequence of this is that
there are no possible infinitesimal translations and as a result,
no momentum operator̂p is possible.

To handle this situation, instead of working with infinites-
imal translations, finite translation operators are used and are
called theholonomyoperatorÛµ because they borrowed their
names from the loop quantum gravity scheme. The parameter
µ is a dimension-full parameter with length units and, in the
context of a discrete spaceiii it is also assumed that there is a
minimum length scale, denoted asµ∗, whose value is unde-
termined but fixed. This minimum scale implies that for any
to space pointsx1 andx2 they satisfy the following relation

(x1 − x2)/µ∗ ∈ Z, (37)

i.e., they can be reached by a finite number of jumps of size
µ∗.

With all these elements, it can be checked that the CCRs
are now given by

[
x̂, Ûµ∗

]
= −µ∗ Ûµ∗ , (38)

which constitutes an example of modified CCRs [17] and the
representation of this modified CCRs is given as

x̂Ψ(x) = xΨ(x), (39)

Ûµ∗Ψ(x) = Ψ(x + µ∗). (40)

An immediate consequence of this representation is that the
Kronecker deltas are the eigenstates of the position operator,

x̂ δx,xj = xj δx,xj , (41)

thus, according to Born’s postulate, the quantum particle is
well localized. This is a crucial difference between this sin-
gular representation and the Schrödinger representation in
Eqs. (9), (10) where the eigenstates of the position operator in
Eq. (9) are Dirac deltas and as we know, they are not vectors
in H. On the other hand, no momentum operator exists in
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this singular representation but still, a Fourier transformation
can indeed be defined as

F : Hpoly → H̃poly;F [δx,xj ] = e
ı
~pxj , (42)

whereH̃poly is the Fourier-dual space ofHpoly and it is given
by

H̃poly = L2(R, dpHaar). (43)

Here, the configuration spaceR is the Bohr-compactification
of the real line [25]. The states iñHpoly can be written as

Ψ̃(p) =
∑

{xj}
Ψxj e

ı
~pxj , (44)

where the coefficients are those given in Eq. (35) and the in-
ner product when using the Haar measuredpHaar yields

〈e ı
~pxj |e ı

~pxk〉 = δxj ,xk
. (45)

Notably, the Fourier-dual of the position eigenstates are again
the plane waves similar to what we have in the standard quan-
tum mechanics but again, the plane waves are indeed ele-
ments ofH̃poly whereas in the standard quantum mechanics
they are not.

Finally, it is worth emphasizing that Stone-von Neu-
mann’s theorems [12] conditions do not hold for these sin-
gular representations. In particular, the representation of the
holonomy operator

〈δx,xj |Ûµδx,xj 〉 = 〈δx,xj |δx,xj−µ〉 = δxj ,xj−µ, (46)

is not weakly continuousiv which is one of the assumptions
of the theorems. As a result, there is no unitary transforma-
tion that relates the physics obtained using this representation
with the physics of the standard Schrödinger representation.
To achieve some sort of equivalence, certain coarse graining
procedures have to be implemented, see for example [16].

These are the main ingredients regarding the polymer
quantum representation. Our main questions and the outline
of the next steps will be described in the next section.

5. Conclusions

We have seen how different quantization procedures are sum-
marized in Secs. 3 and 4 lead to different Hilbert spaces, and
how this difference relies on the measure used. In the set-
ting of Geometrical Quantization, the induced Hilbert space
is endowed with the Gaussian measure, while in the context

of the polymer quantum mechanics, we are considering Haar
and discrete measures.

Geometrical quantization allows us to connect the
Fock-Hilbert space representation with the Gaussian-like
Schr̈odinger representations. For the case of real scalar fields,
this was done in Refs. [19,24] but it has to be done for
systems with finite degrees of freedom. Furthermore, in
Ref. [13], a connection between the Gaussian-like represen-
tation as described in Subsec. (1.1.) was already given. This
result was obtained by considering the two limits in which
the parameters in the Gaussian measure go to zero (coordi-
nate representation) or to infinity (momenta representation).

One of the most evident consequences of the “changing”
measure is to obtain a different momentum operator. For
example, we can indeed see that for a probability measure
dµ(x) overR, i.e.

∫
R dµ(x) = 1 such that:

dµ(x) = M(x)dx, (47)

with M(x) 6= 0. The more general momentum operator is
given by:

p̂ =
~
ı

∂

∂x
+ i

∂ log(M(x))
∂x

+ g(x), (48)

whereg(x) is a real function. We obtain these different forms
since we require that the momentum operator is a first-order
symmetric operator that satisfies the CCR. Since in the geo-
metrical quantization procedure the induced measure on the
Hilbert space is related to the choice of the parameters defin-
ing the complex structure, we can also relate these parameters
to the momentum operator.

The eigenvalue problem associated with the momentum
operator induces a different version of the Fourier trans-
form, which will be related to the EUR for Gaussian-measure
Hilbert spaces. The modified Fourier transforms will be a
gateway of the project and will lead to a challenge of the
problem of extending the results in Refs. [20,21], and later
to consequently extend the EUR reported in Sec. 2.

We hope that this project helps shed light on the under-
standing of the EUR in more general contexts, and of course,
we aim to present our findings in the next symposium: “Ap-
plications of Information Theory in Natural Sciences”.
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i. In position representation, indicated by the labelx and the in-
dexp refers to the Shannon entropy in momentum representa-
tion.

ii. This name is to differentiate it from the very well-known geo-

metric quantization formalism.

iii. Another discretization of space different from that given by the
topology of the configuration spaceRd.

iv. For this analysis we have to consider an unfixedµ.
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sentation for a scalar field on curved spacetime,Physical Re-
view D66 (2002) 085025,https://doi.org/10.1103/
PhysRevD.66.085025

25. J. M. Velhinho, The quantum configuration space of loop quan-
tum cosmology,Classical and Quantum Gravity24 (2007)
3745, https://dx.doi.org/10.1088/0264-9381/
24/14/013

Supl. Rev. Mex. Fis.6 011308

https://doi.org/10.1007/BF01608825�
https://doi.org/10.1007/BF01608825�
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x�
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x�
https://doi.org/10.1007/978-90-481-3890-6�
https://doi.org/10.1007/978-90-481-3890-6�
https://doi.org/10.1103/PhysRev.106.620�
https://doi.org/10.1103/PhysRev.106.620�
https://doi.org/10.1103/PhysRev.108.171�
https://doi.org/10.1103/PhysRev.108.171�
https://dx.doi.org/10.29356/jmcs.v69i1.2307�
https://dx.doi.org/10.29356/jmcs.v69i1.2307�
https://doi.org/10.1103/PhysRevLett.50.631�
https://doi.org/10.1103/PhysRevLett.50.631�
https://doi.org/10.2307/2372390�
https://doi.org/10.2307/2372390�
https://doi.org/10.1103/RevModPhys.89.015002�
https://doi.org/10.1103/RevModPhys.89.015002�
https://doi.org/10.1090/conm/365/06710�
https://doi.org/10.1090/conm/365/06710�
https://doi.org/10.12942/lrr-1998-1�
https://doi.org/10.1103/PhysRevD.76.044016�
https://doi.org/10.1103/PhysRevD.76.044016�
https://dx.doi.org/10.1088/0264-9381/28/21/213001�
https://dx.doi.org/10.1088/0264-9381/28/21/213001�
https://dx.doi.org/10.1088/0264-9381/24/6/008�
https://dx.doi.org/10.1088/0264-9381/24/6/008�
https://doi.org/10.1006/aphy.1996.0040�
https://doi.org/10.1006/aphy.1996.0040�
https://doi.org/10.1063/1.530684�
https://doi.org/10.1016/j.aop.2004.05.004�
https://doi.org/10.1016/j.aop.2004.05.004�
https://doi.org/10.1073/pnas.72.2.638�
https://doi.org/10.1073/pnas.72.2.638�
https://doi.org/10.1098/rspa.1975.0181�
https://doi.org/10.1098/rspa.1975.0181�
https://doi.org/10.1103/PhysRevD.66.085025�
https://doi.org/10.1103/PhysRevD.66.085025�
https://dx.doi.org/10.1088/0264-9381/24/14/013�
https://dx.doi.org/10.1088/0264-9381/24/14/013�

