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Spherically confined hydrogen atom: variational cut-off factor
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The hydrogen atom confined within an impenetrable spherical cavity of rdtliusder the influence of a uniform constant magnetic field

B is considered. For the ground state, using the variational method, we employ a physically meaningful trial wavefunction characterized
by three variational parameters, including a novel cut-off factor that acts as an additional degree of freedom in the optimization process.
This approach allows us to systematically analyze the interplay between quantum confinement and the external magnetic field, providing
insights into their combined effects on the energy spectrum and wavefunction behavior. Our results reveal how the ground state energy
E and eigenfunction evolve as functions of the cavity radius [1, 5] a.u. and magnetic field strength € [0, 1] a.u., offering a deeper
understanding of quantum confinement in atomic systems subjected to external fields. These findings have potential implications for confinec
guantum systems in astrophysical and nanotechnological applications.
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1. Introduction focus on the role of the cut-off factor in energy calculations.
The Born-Oppenheimer approximation is adopted, assuming
Spatial confinement plays a crucial role in determining vari-that the proton remains fixed at the cavity’s geometric center.
ous observable physical properties, such as the energy spec- geyera studies have employed trial functions incorporat-
trum, transition frequencies, optical characteristics, and POihg a cut-off factor of the formf(r, R) = 1 — (r/R)", with
larizability. To investigate the evolution of pressure and po-,, _ 1,2, 3,4 [10], where these values have been arbitrarily

larizability under compression, Michees al. [1] proposed  chosen in the literature, see also [11]. This cut-off factor en-

a model in which a hydrogen atom is confined at the cengreg that the wavefunction satisfies the Dirichlet boundary

ter of an impenetrable spherical cavity. Since then, the study,nqition. In contrast, this work proposes a modified cut-

of atomic and molecular systems under spatial confinemeni ¢ ctor that incorporates a variational term [12], treating it
has expanded significantly, encompassing cavities of differyi the same level of importance as other terms in the wave-
ent geometries and sizes [2]. These investigations have broggction.

applications in physics, chemistry, and materials science, in- Specifically, for the ground state, we employ the varia-

cluding energy storage, the development of novel materialsdonal method using a simple, compact, and physically mean-

and advancements in nanotechnolog.y. . . . ingful trial function based on three parameters to obtain the
. Thg study of a hydrogen.atom W't.hm a spherical CaV'tyenergyE = E(B,R). The goal of this study is not to es-
is particularly relevant to various confined systems, such ABblish reference values but to provide reasonably accurate

quantum dOt.S’ fullerene traps, and nanofluidic (_:hannels. l:Oénergy estimates within the non-relativistic regime. It goes
instance, an inverted Gaussian penetrable barrier was used hout saying that the development of physically relevant

Ref. [3] to model the hydrogen atom confined by;@nd G, trial functions in atomic and molecular physics remains an

fgllerenes. It al_so extgnds to cor!flneq Rydberg atoms and ictive and highly researched field, see [13-17] and references
citons in two-dimensional materials liRdoS, and graphene therein

[4-7]. Furthermore, these models can be generalized to ex-

plore systems subjected to an external magnetic fitldf-

fering insights into emergent quantum phenomena. Prior r . Theory

search has examined cases such as a two-dimensional hydro-

gen atom confined within a circular region under a perpeny, tne Bohr-Oppenheimer approximation, the Hamiltonian
dicular magnetic field, with the proton fixed at the center [8], 5 the hydrogen atom confined by an impenetrable spheri-

as well as hydrogenic impurities in quantum dots in the presg| cavity of radius? in the presence of a constant magnetic
ence of a magnetic field [9]. field B is of the forni

In this study, we analyze the behavior of a three-
dimensional hydrogen atom confined within an impenetrable
spherical cavity of radiu®, subjected to a uniform magnetic
field B along thez-axis. Using a variational approach, we
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where the proton is placed at the geometric center of thés the ground-state energy of the system without the proton,
spherical cavity (the origin of the reference system) and thd,, minus the ground-state energy of the system with the pro-
confinement potentidl, reads ton, E. Finally, it is important to emphasize the physical sig-
nificance of the cusp condition,
v, = { ’
(0.9]

In the symmetrical gauge, with the vector potentfalas

A = (1/2)B x r and choosing the magnetic field in the \nich dictates the correct short-range behavior of the elec-
z-dlre_ctlon, the expression for the Hamiltonian in sphericalyg, densityn(r) = [+|? near the origin due to the singular
coordinategr, ¢, ¢) turns out to be nature of the Coulomb potential. This condition ensures that
the trial wave function properly captures the electron-nucleus
cusp, a key physical feature in atomic systems. By evaluating
the right-hand side of[7) using the trial function defined in
(4), we find that it is identically equal te.. Therefore, the

ifr <R,
ifr>R. (2) 1 dn(r)

(@)

B B?
m——&—?rQsinZQ—i—Vc, )

- 1 1
H=_-A® _=
2 7"+ 2

where A®) s the 3-dimensional Laplacian operator and o . T
m = 0,+1,+2, ... is the magnetic quantum number. The cusp condition is exactly fulfilled when = 1, highlighting

presence of the impenetrable spherical cavity requires thdf€ fact that a physically accurate trial function must satisfy

the wave function)(r, 6, ¢) satisfies the boundary condition @ ~ 1. Deviations from this value Would.result in an incor-
W(r = R,0,6) = 0. rect representation of the electron density near the nucleus,

Since this system does not have an exact analytical SOlljhereby reducing the physical reliability of the variational ap-

tion, the variational method is employed to approximate throximation.
solution of the Schidinger equatiorf{y = E ¢ associated

with the Hamiltonian/8). To estimate the variational energy

of the ground state, a simple trial function is chosen, explic-3' Results

itly given by The variational energy of a hydrogen atom confined within

9 _ —ar—BE 17 sin?0 4 an impenetrable sphgriqal cgvity of radildn the presence
v(r,6,9) = f(r)e ! “) of a constant magnetic fielf is presented below.

The structure of this variational function, which has been im-  We first consider the case where the magnetic field is ab-

plemented previously [12], consists of three physically motj-S€Nt B = 0.0 a.u.). Under this condition, the trial wave func-
vated building blocks: tion depends on two variational parametgrs,» } only. The

corresponding variational energy values are shown in Table I.
e i) the hydrogen-like functione=®" describing the As expected, the total enerdy increases monotonically as
Coulomb interaction between the electron and the prothe cavity radiusk decreases, as illustrated in Table | and
ton, Flg 1.

e ii) the Landau orbitak=# (B/4)7sin® ¢ which takes
into account the interaction of the electron with the
magnetic field, and

TABLE |. Total energyFE of the ground state of the hydrogen atom
confined by an impenetrable spherical cavity of radiuisvithout
magnetic fieldB = 0. For comparative purposes, the third and
fourth columns present the results obtained using the Lagrange
mesh method and those reported in Ref. [18], respectively (both
results rounded).

e iii) the cut-off functionf(r) given as

r\V
r)=1-— (—) , 5
f(r) R ®) Rla.u]  E[Hartree] Mesh Ref [18]
introduced to satisfy the confining boundary conditon ~ 1.0 2.3783 2.373990866  2.373990866
P(R,0,¢0) =0. 1.5 0.4371 0.437018065 0.437018065
Tradii v, th | b is treated fixed 2.0 -0.1249 -0.125000000 -0.125000000
racitiona’ly, fne value ob IS realed as a fixed parame- -, g 0.3347  -0.334910185  -0.334910185
ter, limiting the flexibility of the trial functiony (4). In this
work, howevery is introduced as a variational parameter, re- 3.0 -0.4238 -0.423967288  -0.423967288
sulting in a total of three variational parametets:3,v. It 3.5 -0.4642 -0.464357128
will be demonstrated that this strategy is essential for enhanc- 4.0 -0.4832 -0.483265302  -0.483265302
ing the accuracy of variational results. 45 .0.4921 -0.492205428
The binding energy, 5.0 04964  -0.496417007  -0.496417007
B, =FEy—E, 6) 20.0 -0.5000 -0.500000000  -0.500000000
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It is worth mentioning that the accuracy of the computed
results is governed by the two fundamental parameters char-
] acterizing the system: the cavity radiftsand the magnetic
g field strengthB. In general, for systems subject solely to
—— spatial confinement, the accuracy tends to deteriorate as the
R cavity size decreases. Conversely, when only a magnetic field
] is present, increasing its strength typically reduces numerical
precision. In our case, both a spherical confinement and a
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magnetic field are simultaneously present. Consequently, to
02 F ensure that the last digit reported in the energy values of Ta-
04 3 ble Il is reliable, one would need to employ either a more so-
L ! . I = phisticated trial function or a refined computational method-
1 2 3 4 5 ology capable of achieving higher precision. Such enhance-
R [a.u.] ments, however, lie beyond the scope of the present study.

FIGURE 1. Total energy of a confined hydrogen atom as a function

of the impenetrable spherical cavity radilidor different valuesof 3.1, Optimal variational parameter v versus cusp con-
the magnetic field. dition

A comparison of our results with the values obtained ) o
by implementing the Lagrange mesh method (see for inIn Fig. 3, we present the optimal variational parametes a

stance [19]) and those reported in Ref. [18] reveals that th&nction of the confinement radiug for different values of
absolute energy difference is approximately > a.u. for the magnetic field3. Notably, v exhibits significant varia-

R ~ 2, improving to10—* a.u. for larger values oR. The tion within the rangeR < [1, 5], in one order of magnitude

flexibility of the trial function allows for an accurate recovery approx.imately. . _ o
of the free hydrogen atom energy in the limit of large cavity 10 illustrate the importance of treatingas a variational
radii (R ~ 10 a.u.). parameter, let us consider the specific casé3of= 1 a.u.
When a magnetic field3 is present, the energf of andR = 1.5 a.u. We analyze in detail how the ground-state
the confined hydrogen atom increases compared to the ca§8€rgy depends an By evaluating the energy at fixed val-
whereB = 0.0 a.u., for any given cavity radiug. Table II ~ uUes ofv = 1,2,3,4, we obtain the results summarized in
presents the energy valugsas a function of the spherical Table Ill. These results demonstrate that allowint vary
cavity radiusR for three magnetic field strength® = 0.2, ~ €nhances both the energy minimization and the fulfillment of
0.4, and1.0 a.u. Similar to the case d8 = 0.0 a.u., the thecusp c_ondmons. N o
energyE decreases as the cavity radidsncreases (see also In particular, when fixings = 1, the deviation from the
Fig. 1). Moreover, the variational parametdrs, 3, v} ex- ~ exact cusp condition exceeds 50%. /At= 4, this error is
hibit reasonably smooth behavior as functions of the cavityeduced to approximately 33%. This underscores the signifi-
radius R for the different magnetic field values considered,cance of treating as a variational parameter to improve the
as shown in Table II. accuracy of the model.

TABLE |l. Variational energy and optimal parametéts 3, v} for the ground state of the confined hydrogen atom as a function of the radius
R of the spherical cavity for magnetic field$ = 0.2,0.4 and1.0 a.u. The last value represents the unconfined hydrogen atom case, with
results rounded for clarity [20].

\ B=02a.u. \ B =0.4a.u. \ B=10au.
Rlau] Elaul] o 164 v FE[a.ul] @ 164 v Ela.ul] o B v
1.0 23783 1.047 1529 1936 2.3808 1.046 0774 1935 2.3984 1046 0337 1.934
15 0.4388 1.008 0.083 2225 04441 1008 0064 2226 04811 1.013 0.089  2.240
2.0 01220 1.071 -0.011 3.022 -0.1133 1.073 0036 3.030 -0.0533 1.082 0130 3.081
2.5 -0.3306  1.064 0.032 3.723 -0.3182 1.066 0.079 3736 -0.2349 1076 0204 3.795
3.0 -0.4184 1.047 0076 4.409 -0.4024 1.049 0.125 4420 -0.2992 1.058 0277 4.364
35 04577 1.032 0109 5112 -0.4385 1.034 0.165 5093 -0.3210 1.041 0333 4570
4.0 -0.4757 1.020 0.131 5.834 -0.4540 1.023 0197 5714 -0.3279 1.027 0.365 4.146
45 -0.4839 1.012 0144 6561 -0.4605 1.015 0221 6.188 -0.3300 1012 0377 3.316
5.0 -0.4876 1.007 0152 7.259 -0.4630 1.011 0.237 6.335 -0.3306 0.995 0.384 2.601
00 [20]  -0.4904 -0.4646 -0.3312
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FIGURE 2. Binding energy of the confined hydrogen atom as a

function of the impenetrable spherical cavity of radrRior differ-
ent values of the magnetic fiefd.
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FIGURE 3. Optimal variational parameter, appearing in the cut-
off factor f(r) = 1 — (r/R)", as a function of the radiug for
different values of the magnetic field.

TaBLE IlI. Confined hydrogen atom. Ground state endfgyvith
B =1.0a.u. andR = 1.5a.u., at fixed values of = 1, 2, 3, 4.

v Q@ 8 Ela.ul]

1 0.43626 0.215081 0.4823
2 0.93537 0.073197 0.4811
3 1.19349 0.194991 0.4821
4 1.33324 0.383351 0.4881

The binding energy¥;, (6), depicted in Fig. 2, is a mono-

tonically increasing function as the cavity radidslecreases.

Analysis of limiting cases

M. ACOSTA ROQUE, H. OLIVARES-PION, A. N. MENDOZA TAVERA, AND A. M. ESCOBAR-RUIZ

fined hydrogen atom system:

e Free atom limit (R — oo): As the cavity radius be-
comes large, the influence of spatial confinement van-
ishes. In this limit, the system approaches the behavior
of a free hydrogen atom, with a ground-state energy of
E = —0.5 a.u. Our variational results correctly repro-
duce this asymptotic value, as evidenced by the energy
at R = 20 a.u., which matches the known result to
within 10~* a.u.

e Zero magnetic field (B — 0): When the magnetic
field is absent, the problem reduces to that of a hy-
drogen atom confined in a spherical cavity. Our cal-
culations in this regime closely agree with established
results in the literature, confirming the validity of our
trial function in the absence of external fields.

e Strong confinement / high field limit (R — 1 or
B > 1): In the regime of small cavity radii or
large magnetic field strengths, the electron experiences
strong confinement, leading to a significant increase
in energy. The trial function adapts through the opti-
mization of variational parameters, particularly the cut-
off exponenty, which increases to enforce the bound-
ary conditiony)(R) = 0 more effectively. These ex-
treme cases are physically relevant in applications such
as quantum dots and high-field astrophysical environ-
ments.

These limiting behaviors support the consistency and ro-
bustness of the proposed variational model across a broad
range of physical conditions.

4. Conclusions

We have investigated the ground-state energy of a hydrogen
atom confined within an impenetrable spherical cavity of ra-
dius R under the influence of a uniform magnetic figltl
Using a variational approach with a trial wave function in-
corporating three variational parameters, including a novel
cut-off factor, we obtained energy estimates as a function of
R andB.

Our results confirm that the total enerdy increases
monotonically ask decreases due to quantum confinement
effects. WhenB = 0, the variational energy closely matches
previous results [18], with absolute differenceslof? a.u.
for R ~ 2, improving to10~* a.u. for larger cavity radii. The
trial function successfully recovers the free hydrogen atom
energy limit fork ~ 10 a.u..

For nonzero magnetic fields, the energy increases with
B for fixed R, reflecting the additional confinement imposed
by the Lorentz force. The optimized variational parameters
a, 3, v exhibit smooth behavior as functions Bf ensuring
stability in the optimization process. Even without explicitly

To validate the accuracy and physical relevance of our variaimposing the cusp condition on the trial function, the result-
tional approach, we analyze several limiting cases of the coring expression yields a remarkably accurate value compared

Supl. Rev. Mex. Fis6 011311
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to the exact result, thereby highlighting the physical signifi-Acknowledgments
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