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Spherically confined hydrogen atom: variational cut-off factor
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The hydrogen atom confined within an impenetrable spherical cavity of radiusR under the influence of a uniform constant magnetic field
B is considered. For the ground state, using the variational method, we employ a physically meaningful trial wavefunction characterized
by three variational parameters, including a novel cut-off factor that acts as an additional degree of freedom in the optimization process.
This approach allows us to systematically analyze the interplay between quantum confinement and the external magnetic field, providing
insights into their combined effects on the energy spectrum and wavefunction behavior. Our results reveal how the ground state energy
E and eigenfunction evolve as functions of the cavity radiusR ∈ [1, 5] a.u. and magnetic field strengthB ∈ [0, 1] a.u., offering a deeper
understanding of quantum confinement in atomic systems subjected to external fields. These findings have potential implications for confined
quantum systems in astrophysical and nanotechnological applications.
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1. Introduction

Spatial confinement plays a crucial role in determining vari-
ous observable physical properties, such as the energy spec-
trum, transition frequencies, optical characteristics, and po-
larizability. To investigate the evolution of pressure and po-
larizability under compression, Michelset al. [1] proposed
a model in which a hydrogen atom is confined at the cen-
ter of an impenetrable spherical cavity. Since then, the study
of atomic and molecular systems under spatial confinement
has expanded significantly, encompassing cavities of differ-
ent geometries and sizes [2]. These investigations have broad
applications in physics, chemistry, and materials science, in-
cluding energy storage, the development of novel materials,
and advancements in nanotechnology.

The study of a hydrogen atom within a spherical cavity
is particularly relevant to various confined systems, such as
quantum dots, fullerene traps, and nanofluidic channels. For
instance, an inverted Gaussian penetrable barrier was used in
Ref. [3] to model the hydrogen atom confined by C36 and C60

fullerenes. It also extends to confined Rydberg atoms and ex-
citons in two-dimensional materials likeMoS2 and graphene
[4-7]. Furthermore, these models can be generalized to ex-
plore systems subjected to an external magnetic fieldB, of-
fering insights into emergent quantum phenomena. Prior re-
search has examined cases such as a two-dimensional hydro-
gen atom confined within a circular region under a perpen-
dicular magnetic field, with the proton fixed at the center [8],
as well as hydrogenic impurities in quantum dots in the pres-
ence of a magnetic field [9].

In this study, we analyze the behavior of a three-
dimensional hydrogen atom confined within an impenetrable
spherical cavity of radiusR, subjected to a uniform magnetic
field B along thez-axis. Using a variational approach, we

focus on the role of the cut-off factor in energy calculations.
The Born-Oppenheimer approximation is adopted, assuming
that the proton remains fixed at the cavity’s geometric center.

Several studies have employed trial functions incorporat-
ing a cut-off factor of the formf(r,R) = 1 − (r/R)ν , with
ν = 1, 2, 3, 4 [10], where these values have been arbitrarily
chosen in the literature, see also [11]. This cut-off factor en-
sures that the wavefunction satisfies the Dirichlet boundary
condition. In contrast, this work proposes a modified cut-
off factor that incorporates a variational term [12], treating it
with the same level of importance as other terms in the wave-
function.

Specifically, for the ground state, we employ the varia-
tional method using a simple, compact, and physically mean-
ingful trial function based on three parameters to obtain the
energyE = E(B, R). The goal of this study is not to es-
tablish reference values but to provide reasonably accurate
energy estimates within the non-relativistic regime. It goes
without saying that the development of physically relevant
trial functions in atomic and molecular physics remains an
active and highly researched field, see [13-17] and references
therein.

2. Theory

In the Bohr-Oppenheimer approximation, the Hamiltonian
of the hydrogen atom confined by an impenetrable spheri-
cal cavity of radiusR in the presence of a constant magnetic
field B is of the formi

Ĥ = −1
2

(p + A)2 − 1
r

+ Vc , (1)
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where the proton is placed at the geometric center of the
spherical cavity (the origin of the reference system) and the
confinement potentialVc reads

Vc =
{

0 if r < R ,
∞ if r ≥ R .

(2)

In the symmetrical gauge, with the vector potentialA as
A = (1/2)B × r and choosing the magnetic field in the
z-direction, the expression for the Hamiltonian in spherical
coordinates(r, θ, φ) turns out to be

Ĥ = −1
2
∆(3) − 1

r
+

mB

2
+

B2

8
r2 sin2 θ + Vc , (3)

where ∆(3) is the 3-dimensional Laplacian operator and
m = 0,±1,±2, . . . is the magnetic quantum number. The
presence of the impenetrable spherical cavity requires that
the wave functionψ(r, θ, φ) satisfies the boundary condition
ψ(r = R, θ, φ) = 0.

Since this system does not have an exact analytical solu-
tion, the variational method is employed to approximate the
solution of the Schr̈odinger equation̂Hψ = E ψ associated
with the Hamiltonian (3). To estimate the variational energy
of the ground state, a simple trial function is chosen, explic-
itly given by

ψ(r, θ, φ) = f(r) e−α r−β B
4 r2 sin2 θ . (4)

The structure of this variational function, which has been im-
plemented previously [12], consists of three physically moti-
vated building blocks:

• i) the hydrogen-like functione−α r describing the
Coulomb interaction between the electron and the pro-
ton,

• ii) the Landau orbitale−β (B/4) r2 sin2 θ which takes
into account the interaction of the electron with the
magnetic field, and

• iii) the cut-off functionf(r) given as

f(r) = 1−
( r

R

)ν

, (5)

introduced to satisfy the confining boundary condition
ψ(R, θ, φ) = 0.

Traditionally, the value ofν is treated as a fixed parame-
ter, limiting the flexibility of the trial functionψ (4). In this
work, however,ν is introduced as a variational parameter, re-
sulting in a total of three variational parameters:α, β, ν. It
will be demonstrated that this strategy is essential for enhanc-
ing the accuracy of variational results.

The binding energyEb

Eb = E0 − E , (6)

is the ground-state energy of the system without the proton,
E0, minus the ground-state energy of the system with the pro-
ton,E. Finally, it is important to emphasize the physical sig-
nificance of the cusp condition,

1 = − 1
2n(r)

dn(r)
dr

∣∣∣∣
r→0

, (7)

which dictates the correct short-range behavior of the elec-
tron densityn(r) = |ψ|2 near the origin due to the singular
nature of the Coulomb potential. This condition ensures that
the trial wave function properly captures the electron-nucleus
cusp, a key physical feature in atomic systems. By evaluating
the right-hand side of (7) using the trial function defined in
(4), we find that it is identically equal toα. Therefore, the
cusp condition is exactly fulfilled whenα = 1, highlighting
the fact that a physically accurate trial function must satisfy
α ≈ 1. Deviations from this value would result in an incor-
rect representation of the electron density near the nucleus,
thereby reducing the physical reliability of the variational ap-
proximation.

3. Results

The variational energyE of a hydrogen atom confined within
an impenetrable spherical cavity of radiusR in the presence
of a constant magnetic fieldB is presented below.

We first consider the case where the magnetic field is ab-
sent (B = 0.0 a.u.). Under this condition, the trial wave func-
tion depends on two variational parameters,{α, ν} only. The
corresponding variational energy values are shown in Table I.
As expected, the total energyE increases monotonically as
the cavity radiusR decreases, as illustrated in Table I and
Fig. 1.

TABLE I. Total energyE of the ground state of the hydrogen atom
confined by an impenetrable spherical cavity of radiusR without
magnetic fieldB = 0. For comparative purposes, the third and
fourth columns present the results obtained using the Lagrange
mesh method and those reported in Ref. [18], respectively (both
results rounded).

R [a.u.] E [Hartree] Mesh Ref [18]

1.0 2.3783 2.373990866 2.373990866

1.5 0.4371 0.437018065 0.437018065

2.0 -0.1249 -0.125000000 -0.125000000

2.5 -0.3347 -0.334910185 -0.334910185

3.0 -0.4238 -0.423967288 -0.423967288

3.5 -0.4642 -0.464357128

4.0 -0.4832 -0.483265302 -0.483265302

4.5 -0.4921 -0.492205428

5.0 -0.4964 -0.496417007 -0.496417007

20.0 -0.5000 -0.500000000 -0.500000000
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FIGURE 1. Total energy of a confined hydrogen atom as a function
of the impenetrable spherical cavity radiusR for different values of
the magnetic fieldB.

A comparison of our results with the values obtained
by implementing the Lagrange mesh method (see for in-
stance [19]) and those reported in Ref. [18] reveals that the
absolute energy difference is approximately10−3 a.u. for
R ∼ 2, improving to10−4 a.u. for larger values ofR. The
flexibility of the trial function allows for an accurate recovery
of the free hydrogen atom energy in the limit of large cavity
radii (R ∼ 10 a.u.).

When a magnetic fieldB is present, the energyE of
the confined hydrogen atom increases compared to the case
whereB = 0.0 a.u., for any given cavity radiusR. Table II
presents the energy valuesE as a function of the spherical
cavity radiusR for three magnetic field strengths:B = 0.2,
0.4, and1.0 a.u. Similar to the case ofB = 0.0 a.u., the
energyE decreases as the cavity radiusR increases (see also
Fig. 1). Moreover, the variational parameters{α, β, γ} ex-
hibit reasonably smooth behavior as functions of the cavity
radiusR for the different magnetic field values considered,
as shown in Table II.

It is worth mentioning that the accuracy of the computed
results is governed by the two fundamental parameters char-
acterizing the system: the cavity radiusR and the magnetic
field strengthB. In general, for systems subject solely to
spatial confinement, the accuracy tends to deteriorate as the
cavity size decreases. Conversely, when only a magnetic field
is present, increasing its strength typically reduces numerical
precision. In our case, both a spherical confinement and a
magnetic field are simultaneously present. Consequently, to
ensure that the last digit reported in the energy values of Ta-
ble II is reliable, one would need to employ either a more so-
phisticated trial function or a refined computational method-
ology capable of achieving higher precision. Such enhance-
ments, however, lie beyond the scope of the present study.

3.1. Optimal variational parameter ν versus cusp con-
dition

In Fig. 3, we present the optimal variational parameterν as a
function of the confinement radiusR for different values of
the magnetic fieldB. Notably,ν exhibits significant varia-
tion within the rangeR ∈ [1, 5], in one order of magnitude
approximately.

To illustrate the importance of treatingν as a variational
parameter, let us consider the specific case ofB = 1 a.u.
andR = 1.5 a.u. We analyze in detail how the ground-state
energy depends onν. By evaluating the energy at fixed val-
ues ofν = 1, 2, 3, 4, we obtain the results summarized in
Table III. These results demonstrate that allowingν to vary
enhances both the energy minimization and the fulfillment of
the cusp conditions.

In particular, when fixingν = 1, the deviation from the
exact cusp condition exceeds 50%. Atν = 4, this error is
reduced to approximately 33%. This underscores the signifi-
cance of treatingν as a variational parameter to improve the
accuracy of the model.

TABLE II. Variational energy and optimal parameters{α, β, ν} for the ground state of the confined hydrogen atom as a function of the radius
R of the spherical cavity for magnetic fieldsB = 0.2, 0.4 and1.0 a.u. The last value represents the unconfined hydrogen atom case, with
results rounded for clarity [20].

B = 0.2 a.u. B = 0.4 a.u. B = 1.0 a.u.

R [a.u.] E [a.u.] α β ν E [a.u.] α β ν E [a.u.] α β ν

1.0 2.3783 1.047 1.529 1.936 2.3808 1.046 0.774 1.935 2.3984 1.046 0.337 1.934

1.5 0.4388 1.008 0.083 2.225 0.4441 1.008 0.064 2.226 0.4811 1.013 0.089 2.240

2.0 -0.1220 1.071 -0.011 3.022 -0.1133 1.073 0.036 3.030 -0.0533 1.082 0.130 3.081

2.5 -0.3306 1.064 0.032 3.723 -0.3182 1.066 0.079 3.736 -0.2349 1.076 0.204 3.795

3.0 -0.4184 1.047 0.076 4.409 -0.4024 1.049 0.125 4.420 -0.2992 1.058 0.277 4.364

3.5 -0.4577 1.032 0.109 5.112 -0.4385 1.034 0.165 5.093 -0.3210 1.041 0.333 4.570

4.0 -0.4757 1.020 0.131 5.834 -0.4540 1.023 0.197 5.714 -0.3279 1.027 0.365 4.146

4.5 -0.4839 1.012 0.144 6.561 -0.4605 1.015 0.221 6.188 -0.3300 1.012 0.377 3.316

5.0 -0.4876 1.007 0.152 7.259 -0.4630 1.011 0.237 6.335 -0.3306 0.995 0.384 2.601

∞ [20] -0.4904 -0.4646 -0.3312
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FIGURE 2. Binding energy of the confined hydrogen atom as a
function of the impenetrable spherical cavity of radiusR for differ-
ent values of the magnetic fieldB.

FIGURE 3. Optimal variational parameterν, appearing in the cut-
off factor f(r) = 1 − (r/R)ν , as a function of the radiusR for
different values of the magnetic fieldB.

TABLE III. Confined hydrogen atom. Ground state energyE, with
B = 1.0 a.u. andR = 1.5 a.u., at fixed values ofν = 1, 2, 3, 4.

ν α β E [a.u.]

1 0.43626 0.215081 0.4823

2 0.93537 0.073197 0.4811

3 1.19349 0.194991 0.4821

4 1.33324 0.383351 0.4881

The binding energyEb (6), depicted in Fig. 2, is a mono-
tonically increasing function as the cavity radiusR decreases.

Analysis of limiting cases

To validate the accuracy and physical relevance of our varia-
tional approach, we analyze several limiting cases of the con-

fined hydrogen atom system:

• Free atom limit (R → ∞): As the cavity radius be-
comes large, the influence of spatial confinement van-
ishes. In this limit, the system approaches the behavior
of a free hydrogen atom, with a ground-state energy of
E = −0.5 a.u. Our variational results correctly repro-
duce this asymptotic value, as evidenced by the energy
at R = 20 a.u., which matches the known result to
within 10−4 a.u.

• Zero magnetic field (B → 0): When the magnetic
field is absent, the problem reduces to that of a hy-
drogen atom confined in a spherical cavity. Our cal-
culations in this regime closely agree with established
results in the literature, confirming the validity of our
trial function in the absence of external fields.

• Strong confinement / high field limit (R → 1 or
B À 1): In the regime of small cavity radii or
large magnetic field strengths, the electron experiences
strong confinement, leading to a significant increase
in energy. The trial function adapts through the opti-
mization of variational parameters, particularly the cut-
off exponentν, which increases to enforce the bound-
ary conditionψ(R) = 0 more effectively. These ex-
treme cases are physically relevant in applications such
as quantum dots and high-field astrophysical environ-
ments.

These limiting behaviors support the consistency and ro-
bustness of the proposed variational model across a broad
range of physical conditions.

4. Conclusions

We have investigated the ground-state energy of a hydrogen
atom confined within an impenetrable spherical cavity of ra-
dius R under the influence of a uniform magnetic fieldB.
Using a variational approach with a trial wave function in-
corporating three variational parameters, including a novel
cut-off factor, we obtained energy estimates as a function of
R andB.

Our results confirm that the total energyE increases
monotonically asR decreases due to quantum confinement
effects. WhenB = 0, the variational energy closely matches
previous results [18], with absolute differences of10−3 a.u.
for R ∼ 2, improving to10−4 a.u. for larger cavity radii. The
trial function successfully recovers the free hydrogen atom
energy limit forR ∼ 10 a.u. .

For nonzero magnetic fields, the energy increases with
B for fixedR, reflecting the additional confinement imposed
by the Lorentz force. The optimized variational parameters
α, β, ν exhibit smooth behavior as functions ofR, ensuring
stability in the optimization process. Even without explicitly
imposing the cusp condition on the trial function, the result-
ing expression yields a remarkably accurate value compared
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to the exact result, thereby highlighting the physical signifi-
cance of the parameterα.

The introduction of a novel variational cut-off factor and
its role in improving the accuracy of variational results–both
for the ground-state energy and the fulfillment of the cusp
condition–was quantitatively demonstrated.

These findings provide insights into the interplay between
spatial confinement and external magnetic fields, with poten-
tial applications in nanostructured materials, quantum dots,
and astrophysical systems. Future work may extend this ap-
proach to excited states and relativistic effects.
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