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Likelihood of origin of Paleolithic tools as viewed from their entropy
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Lithic tools are physical objects whose surface can be characterised by the scars left on them by the removal of stone flakes. In a recent
article [1], we quantified the information contained in Paleolithic stone tools about their manufacturing process using Shannon’s information
theory [2], with the notions of amount of information and entropy. The approach permitted to assess the probability that such objects were
made by our hominid ancestors, and also the amount of information they carry. Here, we dig deeper into the physico-mathematical aspects
of the subject and show that the entropy of a lithic tool can be defined on a physical basis following Boltzmann’s arguments [3]. Thus, the
entropy of a stone tool acquires a physical meaning that considerably enlightens their interest. We also extend our previous treatment by
considering the effects of curvature of the lithic surface on the probability density of strokes imparted randomly on it, and by taking into
account the fact that there can be many tools effectively similar to the one being investigated. Although the number of tools equivalent
to a given one is exceedingly large, the probability of observing any of them is still much smaller than that of observing a similar but
roughly battered stone. In this work, however, we have not dealt with the archaeological implications of this work, which will be considered
elsewhere.
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1. Entropy and information of stone tools

The rise of stone-tool technology in the Pleistocene played a
crucial r̂ole in the process of humanisation [4]. Recently [1]
we calculated how extremely unlikely it is for a stone to be
shaped as a tool solely by random natural forces. The ap-
proach relied on the concepts of Shannon’s entropy and infor-
mation [2]. Here we show that the entropy of a lithic tool, LT,
has physical meaning, following arguments similar to those
used by Boltzmann in a famous paper [3]. This new physi-
cal approach complements the informational treatment, rein-
forces our conclusions and opens new avenues of inquiry.

The statistical meaning of entropy was created by Boltz-
mann [3] and more modernly can be expressed in its general
form as

S = −k
∑

j

Pj ln Pj , (1)

wherePj is the probability for a physical system to be in its j-
th complexion (as Boltzmann named a microstate). A crucial
proposition of Boltzmann was to state thatP (Y ), the proba-
bility for the system being in macro stateY with a certain dis-
tribution of energy among its elements is proportional to the
number of complexions accessible in the stateY . The con-
stantk in Eq. (1) is introduced to giveS the same units as it
has in Thermodynamics. Seventy years later, Shannon intro-
duced the concept of the amount of information of a message
j, an element of a set of messagesM, by

IShan
j = − log2 P Shan

j , (2)

whereP Shan
j is the probability of choosing the message from

the setM. It is customary in information science to use de

log2 basis so that the unit of information quantity is the bit.
Shannon also introduced the average information or uncer-
tainty ofM by

H = −
∑

j∈M
P Shan

j log2 P Shan
j . (3)

Disregarding the difference in the meaning ofPj , the formal
identity betweenS andH in Eqs. (1) and (3) is remarkable;
hence,H is also known as the informational entropy.H has
been used in Archaeology to quantify richness, heterogeneity
and complexity in archaeological collections.

In our previous work we determined the probability that a
given LT could have been produced by a natural random pro-
cess,i.e., without hominin intervention. We also determined
Shannon’sI andH, for 10 stone tools, between 3.3 My and
160 ky-40 ky of age and exhibited that with the passage of
time and the evolution of technology, the entropy of a typical
LT decreases and its quantity of information increases.

2. The stone tool as a physical system

But the stone tool is, after all, a physical system. Its surface
shows the scars of flakes, thin slices of stone removed each by
a blow imparted at a certain pointr and oriented in a certain
directionk, see the illustration in Fig. 1. Hence the pattern
of scars characterises the LT. For a given shape of the LT,r is
determined by two polar angles(u, v) and if the strength of
the blow is disregarded, the directork is also determined by
two polar angles(θ, φ) giving its orientation with respect to
the normal to the surface; see illustration in Fig. 2.
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FIGURE 1. Classic Levallois lithic core from the Mousterian tradi-
tion. The inner irregular lines mark the boundaries between neigh-
bouring scars. The arrows show the points of impact of 22 strokes
and their direction. Drawing by PdRM based on Fig. 4 of [5].

FIGURE 2. The state of a lithic tool is described by the scars left by
the removal of flakes by strokes. a) The characteristic conchoidal
scars left on an obsidian piece. [Photograph courtesy of Prof. G.
Jackson.] b) Each stroke is described by a point of impact vectorr
and a director of the blowk.

2.1. Configuration of a stone tool

The blow that produces a flake scar on the stone core is then
represented by four angles(u, v), (θ, φ), which are in turn
represented by a point in a 4-dimensional spaceΓc, which
is the product of two subspaces,:Γc = Γpos ⊗ Γdir. See
Fig. 3. It is convenient, however, to discretise these spaces by
defining elemental cells of sizeδa partitioningΓpos andδω
partitioningΓdir. See Fig. 4. The configuration of a LT with
m strokes, with respect to its reduction process, is given by
m cells inΓc. Hence an elemental configuration is denoted:

Φelem = {δγj = (δaj , δωj); j = 1, 2, ...,m}, (4)

where j indicates a cell. IfA is the surface area of the
LT and Ω the available solid angle for a blow, there are
Na = A/δa cells in Γpos andNω = Ω/δω in Γdir for a
total ofNγ = Na ×Nω cells. The elemental parameters are
δa = 0.33 cm2 andδω = π/1000 sr, and are set from the
estimated precision of the stone knappers. We propose that
the cellsδγj play the r̂ole of Boltzmann’s complexions.

FIGURE 3. a) The configuration of a lithic tool is represented
by a pointγc in the four-dimensional spaceΓc formed by a two-
dimensional position subspace,Γpos, and b) a two-dimensional di-
rector subspace,Γdir.

FIGURE 4. Discrete versions of the subspacesΓpos andΓdir parti-
tioned respectively in elemental cells of sizesδa andδω. Γpos has
an areaA characteristic of each lithic tool, and the solid angleΓdir

measures2π sr for all convex tools.

2.2. A thought experiment: the rolling stones

Imagine an experiment in whichN À 1 identical stone cores
are subjected each tom random blows –random both in space
and direction– such as stones rolling down on a riverbed or
being carried by an avalanche. At the end we examine the
stones for blow scars. The blows on a stone are denoted
{gα;α = 1, 2, ..., m]. How to tell whether one of these bat-
tered stones looks like a tool?

A roughly battered stone shows scars scattered all over
its external surfaceA without any resemblance of order –
actually some blows do not remove any flake because their
directionkα is not well oriented. In contrast, a stone tool
has strokes arranged in patterns that imply a correlation be-
tween both their positions and directions. The ordering is
not absolutely precise, however: in the real world(rα,kα)
may appear slightly perturbed while keeping the effective use
of the tool. For the LT this means that there are small re-
gions (∆a,∆ω) on which (rα,kα) can be focalised while
maintaining the practical use of the tool, but when the per-
turbation is large and(∆a,∆ω) are too large, the stone has
no practical use. These least focalised strokes correspond to
(∆a = A/2, ∆ω = Ω/2). In summary there are two relevant
features of the arrays (configurations): their focalisation and
correlation. We have shown that the degree of focalisation of
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the strokes is enough to distinguish between a stone tool and
a roughly battered stone.

This means that we shall not be interested in whether the
blow is observed in a certain elemental cellδγ, but rather on
whether it is found within a given subregion∆γ of Γc.

A stone tool is the result of strokes{gα;α = 1, 2, ..., m]
focalised in small regions forming certain patterns. In con-
trast, a roughly battered stone corresponds to observe scat-
tered strokes; the observation with the most scattered results
has∆a = A/2 and∆ω = Ω/2.

2.3. Example of a lithic tool

In order to illustrate our discussion, we shall refer to a specific
LT: a unifacial tool from Gona, Ethiopia, withm = 9 blows,
and areaA = 124.75 cm2. This stone tool has756, 700 ele-
mental cells and34, 550 effective subregions(∆γ).

2.4. Observations of strokes as events

Keeping in mind the rolling-stones experiment, we now con-
sider the probability that each of the{gα} strokes is found
within given subregions∆aα located atr0

α and∆ωα with its
axis atk0

α and call this an effective observation, and denote:

Λeff = {rα ∈ (∆aα; r0
α),kα ∈ (∆ωα;k0

α)}. (5)

Then the fraction of stones found with strokes in those effec-
tive subregions determines its probability

N (Λeff)/N → P (Λeff). (6)

For simplicity we keep∆aα = ∆a and∆ωα = ∆ω constant
for a given stone tool. The effective configuration of focused
blows corresponds to the stone tool:

Λtool = Λeff(∆a ¿ A, ∆ω ¿ Ω). (7)

3. Basic assumptions

We assume the rolling-stones experiment to be completely
random, as natural elements tend to be. Hence any stroke
hits randomly on the surface S of the stone tool, and sok and
r are independent events. For a continuousΓc with proba-
bility density p(u, v) with r = (u, v) on the surfaceS, we
have

P (r ∈ ∆a) =
∫

∆a

dudv p(u, v). (8)

The collision frequencyf(u, v) at a point(u, v) of S of a
stone, hit randomly by other stones, has been investigated by
several authors and found to depend linearly on the Gaus-
sian and mean curvatures of S at that point,ρG(u, v) and
ρm(u, v) [7, 8]. Hence we make the plausible assumption
that the probability density

p(u, v) ∝ f(ρm(u, v), ρG(u, v)). (9)

Using the result from the literature and normalising the den-
sity, we find

p(u, v) =
1 + 2Reffρm(u, v) + R2

effρG(u, v)
16πR2

m

. (10)

Here,Reff is an effective radius of mean curvature and the
shape of S is a parametric relation(x, y, z) = ψ(u, v). We
have also assumed, for simplicity, that the stone core has
approximately a tri-axial ellipsoidal shape with semi-axes
(a, b, c). All the necessary quantities have been calculated
for a wide range of eccentricities and expressed in terms of
the semi-axes(a, b, c).

A final simplifying assumption is to neglect the effect of
curvature and assume a uniform density, which normalised
reads

p(u, v) = p(u)p(v) =
1
A

. (11)

The probability for joint positive outcomes(σa, σω) =
(+, +) in position and direction in finite effective subregions
∆γ = (∆a,∆ω) is

P∆γ(+,+) = P (r ∈ ∆a)P (k ∈ ∆ω). (12)

The uniform probability densities in Eq. (11) arep(r) =
p(u, v) = 1/A andp(k) = p(θ, φ) = 1/Ω, therefore

P∆γ(+, +) = (∆a/A)(∆ω/Ω). (13)

In order to reach an important result, we multiply and di-
vide by the elemental cellsδa, δω to write

∆a/A = (∆a/δa)/(A/δa) = N∆a/NA, (14)

and
∆ω/Ω = (∆ω/δω)/(Ω/δω) = N∆ω/NΩ, (15)

with N∆a,N∆ω,NA andNΩ respectively equal to the num-
ber of elemental cells in∆a, ∆ω, A andΩ. Then, of course,

N∆γ = N∆aN∆ω. (16)

The probability to observe strokegα in the subregion∆γ
is, in terms of elemental cells,

Pα(+, +) = P
(α)
∆γ (+, +) = N (α)

∆γ /NΓc , (17)

whereNΓc is the number of elemental cells inΓc.
Assuming the strokes to be non-overlapping

P (m)(+, +) =
m∏

α=1

Pα(+, +)

=
1
Nα

Γc

N (m)
∆γ !

m!(N (m)
∆γ −m)!

. (18)

In conclusion, the probability to haveΛeff equals the
fraction of combinations of accessible elemental cells. Al-
though, of course, this differs in many ways from the thor-
ough and ample work of Boltzmann, the fact is that the prob-
ability of making an effective observation of the set of strokes
is proportional to the combinatorial expression in Eq. (18),
and this is in the direction of his great work. This assertion
completes the analogy with Boltzmann’s treatment.
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3.1. Observing the outcomes of a stroke

The single process of observing an effective blow on the
stone core has four outcomes with probability distribution

Pα(σa, σω) = {Pα(+, +),

Pα(−, +), Pα(+,−), Pα(−,−)}. (19)

The first outcome has a probability determined by Eq.(12),
the rest are

P∆γ(−, +) = (1−∆a/A)(∆ω/Ω), (20)

P∆γ(+,−) = (∆a/A)(1−∆ω/Ω), (21)

and
P∆γ(−,−) = (1−∆a/A)(1−∆ω/Ω). (22)

Since for a focalised stroke∆a/A ¿ 1 and∆ω/Ω ¿ 1
the distributionP foc

α (σa, σω) is very skewed. In our LT ex-
ample from Gona the focalised distribution is

P
(α)−ex
foc = {1.06×10−5, 9.89×10−4, 1.06×10−2, 0.975}.

But in sharp contrast, the scattered distribution is always uni-
form

P
(α)
scat = 1/4, 1/4, 1/4, 1/4. (23)

4. Probability, information and entropy of a
stone tool

The probabilityP (Λeff) of observing in the random rolling-
stones experiment a stone tool characterised by a certain fo-
calised configuration, is that of observing each of itsm blows
within a corresponding focalised region∆γα. We associate
this probability with the stone tool, explicitly

Ptool =
m∏

α=1

P
(α)
foc (+, +). (24)

As a result, the Gona LT example has

P ex
tool = 4.66× 10−43.

The rough stone has probability

Prough =
m∏

α=1

P
(α)
scat(+, +), (25)

which gives
P ex

rough = 3.82× 10−6.

So the lithic tool is2.4×10−93 less probable than the natural
battered stone.

The quantity of information conveyed by a message oc-
curring with probabilityPα has been introduced as [2,6]

Iα = − log2 P (α), (26)

where we have opted to keep the unit of bit forI. We thus de-
fine the amounts of information obtained by finding the tool,
that is, by observing them blows within the focalised regions
∆γfoc

α as

Itool = −
m∑

α=1

log2 P
(α)
foc (+,+), (27)

and by observing the fully scattered blows on a rough stone

Irough = −
m∑

α=1

log2 P
(α)
scat(+,+). (28)

For the stone of our example, we obtain

Iex
tool = 140.6 bits; Iex

rough = 18 bits. (29)

Originally, the entropy of a message was introduced by
Shannon as the mean information carried by it. For an iso-
lated event with probabilitiesp(+) andp(−) = 1−p(+), the
mean information carried by both outcomes of the distribu-
tion P = (p(+), p(−)) is

〈I〉(p) = −p(+) log2 p(+)− p(−) log2 p(−), (30)

a quantity that is zero for both certain outcomesp(+) = 0
andp(+) = 1, but reaches its maximum〈I〉 = log2 2 = 41
when the two outcomes are equally likely:p(+) = p(−) =
1/2. [Information quantities are given in units of bits.]

The probability distribution corresponding to a stone tool
involves all its outcomes. The distribution for strokegα its
distribution is given by Eq, (19). Thus the event of giving one
blow has entropy (also meaning information or uncertainty)
given by

S
(α)
foc = −

∑
σa,σω

P
(α)
foc(σa, σω) ln P

(α)
foc (σa, σω). (31)

We have omitted the Boltzmann constant factor ofk in this
definition but kept the natural logarithm, then the units ofS
are nats. For the stone tool, in similarity with Eq. (27), we
defineStool on the positive outcomes that gave rise to the LT,
that is,

Stool = −
m∑

α=1

S
(α)
foc(+,+). (32)

We note that this differs from the entropy reported in our pre-
vious publication [1]. Now, for the rough stone

Srough = −
m∑

α=1

S
(α)
scat(+,+). (33)

For the lithic tool of the example:Stool = 9.90 × 10−4

nats, andSrough = 1.355 nats. The entropy of a stone tool
is really a property of the reduction process. The scattered
process that leads to the rough stone is 1400 times more en-
tropic or uncertain than the process that leads to the tool of
the example.
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4.1. Uniqueness of lithic tool

Up to this point we have analised a lithic tool characterised
by blows in certain subregions of its surface and within cer-
tain solid-angle cones. We must consider, however, the fact
that there are many other equivalent arrangements of strokes
but located on different parts of the surface. By equivalent
we mean that the elements∆aα and∆ωα are the same in
numberm and size, but located in different places of the area
A and directions within the solid angleΩ.

Since there areNa = ∆a/A subareas inA andNω =
∆ω/Ω sub-cones inΩ, and there arem strokes, the num-
ber of equivalent LT with the same effective observation is
increased by the double combinatorial factor

Mm =
(Na

m

)(Nω

m

)
, (34)

and the probability of finding any equivalent tool is

Pequi = Mm × Ptool. (35)

We find that, even thoughMm can be a very large num-
ber, the probability for an equivalent LTPequi remains small.
Thus, for the example at hand, we find thatPequi = 6.50 ×
10−14.

5. Selected results

There is scarce information in the literature about the param-
etersδa andδω. There are experimental studies with modern
knappers. [13, 14]. On this basis, our choice of parameters
wasδa = 0.33 cm2 andδω = π/1000 sr; the latter corre-
sponds to an apex angle of3.5o.

5.1. Stone tools analised

In the previous paper [1], we treated 10 lithic tools from dif-
ferent sites and dates. Here we illustrate the method with
information about 5 lithic tools of the same sites. The tools
denoted by the name of the site. Their site (abbreviation), age
and reference are the following: 1) Lomekwi, Kenya, (Lom)
3.3 My [17]; 2) Gona, Ethiopia, (Gona) 2.3 / 2.5 My [16];

FIGURE 5. Observations as events. The blows are within subre-
gions(∆aα, ∆ωα) a) focalized effective observation of 9 strokes
on a lithic tool from Gona, Ethiopia. b) Scattered effective obser-
vation of the same 9 blows on the same lithic tool. The available
solid angle is half a hemisphere,∆ωscat = π sr.

FIGURE 6. a) Depiction of lithic tools from Lomekwi, Kenya [17]
and b) from Omo, Ethiopia [15]. Drawing by PdR; the tools are not
to scale.

FIGURE 7. a) Depiction of lithic tools from Gona, Ethiopia [16]
and b) from Melka Kundera, also in Ethiopia [18]. Drawing by
PdR; the tools are not to scale.

3) Omo, Ethiopia, (Omo) 2.3 My [15]; 4) Melka Kunture,
Ethiopia, (MK) 1.5 / 0.83 My [18]; 5) Corbehem, France,
(Cor);150 / 40 ky [19]. Drawings of the first four of these LT
are shown in Figs. 5, 6 and 7.

The relevant probability measuresPtool andPrough about
the five LT analysed here are given in Table I. The same table
includes the (larger) probability of observing an equivalent
flaked stonePequi form in Eq. (35), which even if it is much
larger thanPtool is still much smaller thanPrough. Observing
a focalised set of strokes on a stone is much, much less likely
than observing a naturally battered stone. This unlikeness be-
comes accentuated as time changes from the oldest LT with
3.3 My of age to the most recent one with only between 150
ky and 40 ky.

Table II shows, for each LT treated here, the number of
strokesm, the entropiesStool andSrough. In all casesStool is
consistently smaller thanSrough, meaning that the probabil-
ity distribution for the LT is more skewed than for the scat-
tered distribution, which in all cases is uniform and reaches
its maximum value; this last situation, in the realm of

TABLE I. Probability of observation of lithic tools vs rough stones.

Site Ptool Pequi Prough

Lom-2 6.77× 10−44 1.02× 10−11 3.81× 10−6

Omo-1 2.15× 10−38 3.30× 10−10 1.53× 10−5

Gona-1 4.66× 10−43 6.50× 10−11 3.82× 10−6

MK -1 7.03× 10−230 1.61× 10−75 2.07× 10−25

Cor-1 8.84× 10−105 8.83× 10−20 3.64× 10−12

Supl. Rev. Mex. Fis.6 011314
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TABLE II. Number of strokes, entropies and quantities of informa-
tion of lithic tools vs rough stones; the unit of entropy is nat and
the unit of quantities of information is bit.

Site m Stool Srough Itool Irough

Lom-2 9 6.99× 10−4 1.355 143.4 18

Omo-1 8 7.37× 10−4 4.816 125.1 16

Gona-1 9 9.90× 10−4 1.355 140.6 18

MK -1 41 8.70× 10−4 6.171 761.3 82

Cor-1 19 3.47× 10−4 2.860 361.4 38

TABLE III. Effect of curvature: Effective radiusReff and probabil-
ity densities on ellipsoid: uniformp0 and at verticesp(a), p(b) and
p(c).

Site Reff /cm p0 p(a) p(b) p(c)

Lom-2 6.25 0.00145 0.00356 0.00288 0.00123

Omo-1 2.45 0.01481 0.0492 0.0275 0.0062

Gona-1 3.30 0.00802 0.0188 0.0069 0.0053

MK -1 5.40 0.00330 0.0191 0.0076 0.0011

Cor-1 2.97 0.01011 0.0290 0.0192 0.0043

thermodynamics, would correspond to the equilibrium states.
This difference also means that the effective observation of
the LT is a process with relatively small uncertainty.

The quantities of information forItool andIrough also ap-
pear in Table II. The LT, in all cases, contains much more
information than the roughly battered stone, and the ratio
Itool/Irough increases as time passes.

Finally, Table III contains the results about the influence
of the curvature on the probability densityp(u, v) for each of
the LT considered here. The shape of each LT was assumed
to be ellipsoidal, with semi-axes(a, b, c) evaluated from pre-
vious publication [1]. The densitiesp(u, v) were calculated
from Eq. (10). For a given LT the points of largest curva-
ture are the two vertices at the end of the largest semi-axis
a, where the probability densityp(a) is also largest. The
densityp(c) is the smallest at the vertices at the end of the

shortest axesc, where the ellipsoids are flatter. Of course,
p(c) < p(b) < p(a). For reference, the table includes the
uniform densityp0 and the effective radius obtained from the
integrated mean curvature.

6. Conclusions

The entropy of a lithic tool can be defined by physical ar-
guments following the arguments of Boltzmann in his 1877
paper. This fact establishes a bridge with the equivalent treat-
ment based on Shannon’s Theory of Information. The proba-
bility that a stone tool is produced by random natural strokes
is extremely small. Much less than that of observing an
equivalent rough stone with scattered scars. The entropy as-
sociated with the stone tool is much smaller than that of the
roughly battered stone, which is the maximum entropy, as oc-
curs to a thermodynamic system when reaching equilibrium.
The lithic tool and its process of manufacture contain a con-
siderable amount of information. A first analysis of 10 stone
tools showed that the entropy of the lithic tools decreases and
their information content increases with the course of prehis-
toric time. Nevertheless, the sample analysed is rather small
to allow for archaeological conclusions. This proposal con-
tributes a new quantitative tool in the Archaeology.

Work in course has provided with the practical basis to
carry out the ellipsoidal model for the probability density.
Here we have presented results to judge the effect of curva-
ture. The focalised observation of strokes is being extended
to account for correlation between strokes. The determina-
tion of elemental parametersδa andδω is being improved by
a Bayesian analysis. Most importantly, several distinguished
archaeologists from the Universidad de Valencia, led by Prof.
Valent́ın Villaverde Bonilla are joining the project, therefore
enriching its scope.
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