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Instituto de Mateḿatica e Estat́ıstica, Universidade do Estado do Rio de Janeiro,
Rua S̃ao Francisco Xavier 524, 20550-900, Rio de Janeiro, RJ, Brazil.

Received 14 March 2025; accepted 21 May 2025

The celebrated LMC measure of complexity, advanced by López-Ruiz, Mancini and Calbet thirty years ago, is based on the idea that scenarios
exhibiting large amounts of order, or large amounts of disorder, are characterized by low or vanishing amounts of complexity. According
to this idea, complexity adopts its maximum value at some intermediate regime between extreme order and extreme disorder. Following
on the LMC steps, researchers have introduced several other statistical measures of complexity, akin to the original LMC one, that also
comply with the aforementioned requirements. These measures, which we collectively refer to as “LMC-measures”, are defined as products
of information or entropic-like quantities. The LMC measures have been applied by scientists to the study of diverse systems or processes
in physics, chemistry, and other fields, leading to a research literature of respectable size. In spite of the intriguing results yielded by those
investigations, various fundamental issues concerning the LMC measures remain unaddressed. It seems timely, thirty years after the original
LMC proposal, to reconsider its foundations. We shall discuss various basic aspects of the LMC measures, including some exploratory steps
regarding possible dynamical mechanisms leading to probability densities optimizing the measures under suitable constraints.
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1. Introduction

In 1995 Lopez-Ruiz, Mancini, and Calbet (LMC) entertained
the idea of defining a quantitative measure of complexity for
discrete probability distributions, or for continuous probabil-
ity densities [1]. The LMC proposal is based on the intuition
that systems exhibiting high order or high disorder, have low
or vanishing complexity. Most scientists studying complex-
ity in Nature agree with that intuition. When considering dis-
crete probability distributions, maximum order can be iden-
tified with certainty and maximum disorder with equiprob-
ability. In accordance with these identifications, the LMC
measure is defined in such a way that it vanishes in two ex-
treme situations: when the probability distribution has one
probability equal to one and the rest are equal to zero (cer-
tainty), and when all the probabilities are equal (equiproba-
bility). The LMC measure, on the other hand, adopts its max-
imum value at some intermediate situation between certainty
and equiprobability [2].

In their original paper from 1995, Lopez-Ruiz, Mancini,
and Calbet defined their statistical measure of complexity,
and provided an illustrative application to the logistic map,
for which the measure exhibits its maximum at the edge of
chaos [1]. The first work devoted to investigate the general
properties of the LMC measure, and to determine the form of

the probability distributions that optimize the measure, was
done by Anteneodo and Plastino in 1996 [2]. In subsequent
years the LMC measure attracted the attention of some lead-
ing researchers in the physics of complex systems [3]. Even
though some of those early investigations on the LMC mea-
sure were rather critical about the measure’s merits, the LMC
measure, together with various other complexity measures,
played a valuable role as testing grounds for exploring ba-
sic issues concerning the idea of assessing quantitatively the
amount of complexity exhibited by a system or process [4].
In this regard, it is worth mentioning that the LMC proposal
and its generalizations constitute only a small subset of all the
approaches that have been advanced by researchers, over the
years, in order to measure complexity in natural phenomena.
In the present contribution, we are going to consider only
the LMC proposal and its extensions. That is, complexity
measures are defined as products of entropic or information
quantities, evaluated on probability distributions or densities.
In the rest of this work we shall refer to the idea behind this
type of measures as the “LMC proposal”, and to the study of
this kind of measures, and their applications, as the “LMC
approach”. Towards the late 90s, the researchers interested in
the LMC measure and its various extensions and generaliza-
tions (here referred to as “LMC measures”) gradually shifted
their efforts from the foundations of the LMC approach, to
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its applications. There is already a vast research literature on
applications of the LMC measures to physics, chemistry, bi-
ology, and other fields. There are some remarkable works in-
dicating that, within some scenarios, the LMC measures yield
valuable insights into the properties of complex systems. It is
impossible to review here all the work that has been done on
applications of the LMC proposal and its various extensions
and generalizations. As a few notable examples, we can men-
tion the impressive body of research that Esquivel and collab-
orators have conducted on applications in quantum chemistry
[4,5], the interesting works by Ribeiro and collaborators on
the classification of music styles [6] and by Guisande and
Montani on applications to neuroscience [7], and a recent re-
markable application to planetary systems [8].

Despite the considerable effort that has been devoted over
the years to applications of the LMC measures, the funda-
mental reasons behind the phenomenological successes of
these measures are still poorly understood. There still are
basic issues that have to be addressed. Fundamental features,
such as composability and expansibility, have been largely
overlooked. Other basic subjects that remain largely unex-
plored are the dynamical mechanisms that lead to the con-
strained optimization of the LMC measure. Here we consider
some of these issues. In particular, as an exploratory step to-
wards elucidating the last-mentioned point, we advance, and
investigate the basic features of a Fokker-Planck-like nonlin-
ear equation that satisfies anH-theorem related to the LMC
measure.

2. The original LMC statistical measure of
complexity

In its original form, the LMC statistical measure of complex-
ity of a discrete probability distribution(p1, p2, . . . , pN ), is
defined as

C = S ·D, (1)

where

S = −
N∑

i=1

pi ln pi, (2)

is the Shannon entropy of the probability distribution{pi},
and

D =
N∑

i=1

[
pi − 1

N

]2

, (3)

is the “disequilibrium” of the probability distribution, which
provides a quantitative indication of how much does the prob-
ability distribution{pi} differ from the equiprobable distri-
bution {p(e)

i = 1/N}. The entropyS vanishes in the case
of certainty, while the disequilibriumD vanishes in the case
of equiprobability. Therefore, the product structure of the
measureC implies that it vanishes both forcertainty and
for equiprobability, satisfying the intuitive “boundary condi-
tions” desired for a complexity measure. It is obvious, how-
ever, that there are plenty of alternative choices for the fac-
tors entering the definition ofC, instead ofS and D, that

also yield measures satisfying the desired boundary condi-
tions. For example, instead of the Shannon logarithmic en-
tropyS, one can consider other entropic or information mea-
sures, such as Tsallis entropy. By the same token, instead of
the disequilibriumD, one can consider other quantities indi-
cating the deviation of the probability distribution{p′i} from
the equiprobable one. We shall refer to the original LMC
measure as the “LMC measure” (singular). On the other
hand, we shall refer, collectively, to the family of measures
defined by products of quantities complying with appropriate
boundary requirements, as the “LMC measures” (plural).

The LMC proposal, which constitutes arguably the most
simple and straightforward possible way of defining a mea-
sure of complexity, had a considerable impact on the scien-
tific community (the 1995 work where the LMC measure was
advanced has more than 1000 Google Scholar citations). As
already mentioned, the LMC measures provided a valuable
testing ground for exploring basic issues concerning the con-
cept of a quantitative measure of complexity. Work on the
LMC family of complexity measures was an important stim-
ulus for research into complex systems in various parts of
the world. In fact, several physicists (coming mostly, but not
only, from statistical physics) entered the field of complex
systems via the exploration of the LMC measures and their
applications.

In spite of the several applications of the LMC measures
of complexity that have been investigated so far, the basic
meaning of the measures still raises conceptual issues that
need further examination. Even the very motion of assigning
a quantitative amount of complexity to a probability distri-
bution might be problematic. The LMC measures might be
“shadows” of more elaborate measures that involve not just a
probability distribution, but also other specific structures as-
sociated with the systems or processes under consideration.
These hypothetical, context-dependent, more elaborate mea-
sures might be required in order to achieve a full understand-
ing of the phenomenological successes of the LMC measures.
Besides, they might provide an answer to the basic question
made by Feldman and Crutchfield in Ref. [3]: “What exactly
is the statistical complexity measuring?”. In order to shed
some light on these issues, and to understand the fundamen-
tal reasons for the phenomenological successes of the LMC
measures, it would presumably be useful to find operational
interpretations, and axiomatic characterizations of the LMC
measures. We believe that the points discussed in the follow-
ing sections may constitute useful steps towards those goals.

3. Other LMC-like measures of complexity

As already mentioned, Anteneodo and Plastino (AP), in
Ref. [2], were the first to explore the main properties of
the original LMC measure, including the probability distri-
butions that optimize the measure. AP discovered that the
original LMC measure of statistical complexity exhibits some
features that are at odds with what one would expect from a
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reasonable measure of complexity. In particular, AP showed
that the original LMC measure lacks two fundamental invari-
ance properties: it is neither invariant under scale changes
nor under replication. The lack of invariance under changes
of scale means that the continuous version of the measure,
evaluated on a continuous probability density, changes when
the probability density is modified according to a change of
scale. This is an undesirable property, because one expects
that a simple re-scaling should not affect the amount of com-
plexity associated with a probability density. The lack of in-
variance under replication means that a system consisting of
two identical, and statistically independent copies of an orig-
inal system, has an amount of complexity different from that
of the original single copy of the system. This feature vi-
olates a principle proposed by Lloyd and Pagels [9], accord-
ing to which complexity should not change under replication.
By pointing out the above fundamental defects that afflict
the original LMC proposal, the AP-1996 paper contributed
to establish the agenda regarding research on the fundamen-
tal properties that LMC-like measures of complexity should
have. Other researchers (including some of the authors of the
original LMC proposal) addressed these issues and proposed
new versions of the LMC measure. An important example
is given by a modification of the original LMC measure for
continuous systems, advanced by Catalán, Garay, and Ĺopez-
Ruiz (CGL) in 2002 [10]. The new version of the LMC mea-
sure reads

C[f ] = D[f ] exp(H[f ]), (4)

with

H[f ] = −
∫

f(x) ln(f(x))dx, (5)

and

D[f ] =
∫

f(x)2dx, (6)

wheref(x) is a normalized probability density (
∫

f(x)dx =
1), and we regardx andf as dimensionless quantities. The
modification (4) of the LMC measure cured some of the
deficiencies that afflicted the original LMC measure. The
new measure is invariant under re-scaling transformations
and under (a particular interpretation of) replication. It is
remarkable that a simple modification in the form of the
LMC measure is enough to obtain a measure that satisfies
the desired properties lacked by the original LMC measure.
The new measure adopts its minimum value, equal to 1, for
rectangular-like probability densities. A rectangular density
has, for some range ofx-values having a total lengthL, the
value1/L, and is equal to zero forx-values outside the al-
luded range. Interestingly, the new LMC measure can be ex-
pressed in terms of the Renyi entropies. Indeed, we have that

C[f ] = exp
(
R(1)[f ]−R(2)[f ]

)
, (7)

where

R(α)[f ] =
1

1− α
ln

(∫
f(x)α dx

)
, 0 < α, (8)

is the Renyi entropy of orderα. For α → 1, one recovers
the Shannon entropy. The basic properties of the LMC-like
measureC were studied in Ref. [10], and a generalization,
based on the Renyi entropies, was proposed in Ref. [11]. The
formulation in terms of Renyi entropies makes the validity
of some of the basic properties of the measure (4) specially
transparent. We want to emphasize, moreover, that the mea-
sure (4), and its Renyi-based generalizations are particularly
interesting members of the LMC-like statistical measures of
complexity, because they comply with another fundamental
property that has been largely overlooked in the literature
concerning the LMC measures:composability.

4. Composability of entropies and complexity
measures

Composability is an important notion that has been inves-
tigated mostly in connection with entropic and information
measures. As already mentioned, we want here to empha-
size that composability should also be regarded as essential
for complexity measures. In order to clarify this point, it is
instructive to briefly review first the idea of composability of
entropies.

4.1. Composability of entropies

The basic idea of composability of entropies is that, for two
statistically independent systemsA andB, the total entropy,
when one considers them to be a single systemA+B, has to
depend only on the individual entropies ofA andB, and not
on any other specific features of these systems (see [12,13]
and references therein). The property of composability can
be encapsulated in the equation

S(A + B) = Φ(S(A), S(B)), (9)

whereS(A), S(B), andS(A + B) are the entropies of sys-
temsA, B, and of the compositeA + B, andΦ(., .) is a
function describing the form of the composability law. Com-
posability plays an important role in connection with entropic
measures. It imposes strong constraints on the allowed forms
for entropies. Let us consider the general family of entropic
functionals

S[p] = G

(∑

i

h(pi)

)
, (10)

whereG(x) andh(x) are functions that comply withh(0) =
G(h(1)) = 0, and are also typically assumed to satisfy appro-
priate monotonicity and concavity properties [13]. Of special
relevance, among the above family of entropies, are those
with G(x) = x, which are known astrace form entropies.
Entropies of the form

S[p] = G

(∑

i

pα
i

)
, (11)
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are the only entropies of the general family (10) that com-
ply with composability. Sometimes it is stated that, formally,
the most general form for composable entropies within the
family (10) is G (

∑
i(c1pi + c2p

α
i )), with c1,2 appropriate

constants. But, if the probability distribution{pi} is normal-
ized, this more general form can always be re-cast under the
guise of (11), by recourse to an appropriate re-definition of
the functionG. Paradigmatic examples of entropies com-
plying with composability are the Renyi and the Tsallis en-
tropies. The Renyi entropies, which are parameterized by a
real parameterq, are given by

S(R)
q =

1
1− q

ln

(∑

i

pq
i

)
. (12)

Notice that the above entropies are the discrete versions of the
entropies defined in (8) (the parameterq corresponds to the
parameterα in (8)). We use here a slightly different notation,
in order to highlight the connection between the Renyi en-
tropies and the Tsallis entropies, which we shall define later.
The Renyi entropies are the most general additive entropies.
Additivity, of course, is a particular form of composability,
with a composability law of the form

S(R)
q (A + B) = S(R)

q (A) + S(R)
q (B). (13)

The Tsallis entropies, also parameterized by a real parameter
q, are given by

S(T )
q =

∑
i(pi − pq

i )
q − 1

=
1

q − 1

(
1−

∑

i

pq
i

)
, (14)

and are also important examples of entropies satisfying com-
posability. Indeed, they are the most general trace-form en-
tropies complying with composability (notice that the Tsal-
lis entropies can be written in two equivalent forms, one of
which is trace-form, but the other is not). The well-known
composability law for the Tsallis entropies is

S(T )
q (A + B) = S(T )

q (A) + S(T )
q (B)

+ (1− q)S(T )
q (A)S(T )

q (B). (15)

The Shannon entropy is a particular instance(q = 1) of the
above two families of entropies.

In summary, composability is nowadays regarded as a ba-
sic, fundamental property that physically sensible entropic
measures must satisfy. Shannon, Renyi, and Tsallis entropies
constitute important examples of composable entropies.

4.2. Composability of complexity measures

The composability requirement for measures of complexity
is similar to the one for entropies. We require that, for two
statistically independent systemsA andB, the total complex-
ity C[A + B], when one regardsA andB as a single system
A + B, has to depend only on the individual complexities,

C[A] andC[B], of A andB. The composability property is
expressed by the equation

C[A + B] = Φ(C[A], C[B]), (16)

whereΦ(x, y) is a function characterizing the composability
law. The composability of a complexity measure can be il-
lustrated by the following example. If one has a systemA
here on Earth, and another totally independent systemB far
away in Andromeda, one should be able to determine the to-
tal complexity ofA + B just from knowing the complexity
of A and the complexity ofB.

Weird things happen when a complexity measure is not
composable. For example, two independent systems with
zero complexity each can, jointly, constitute a composite
system with finite complexity. For instance, the original
LMC complexity measure,C = (−∑

i pi ln pi)(
∑

i(pi −
(1/N))2), is not composable. Consider the following pair
of independent systems, which individually have vanishing
complexity. On the one hand, one has the systemA1, with
N1 states, and a uniform probability distribution. One has
C(A1) = 0. On the other hand, one has the systemA2,
with N2 states, and one state with probability1. One has
C(A2) = 0. However, the composite systemA + B, with
N1 × N2 states, regarded as a single entity, has a non-
vanishing amount of complexity. That is,C(A + B) > 0.
In other words, the non-composability ofC leads to the ex-
istence of independent systems that individually have zero
complexity, but jointly have a finite amount of complexity.
No sensible measure of complexity should allow for this type
of undesired situation.

Interestingly, the modified version of the LMC measure
given by Eq. (4) satisfies the composability requirement. In
fact, let us consider two statistically independent systemsA
andB, described by the probability densitiesf (A)(x1) and
f (B)(x2), where the variablesx1 andx2 correspond to the
state spaces associated with systemsA andB. The joint com-
posite systemA+B is then described by the factorizable joint
probability densityf (A+B)(x1, x2) = f (A)(x1) f (B)(x2).
Then one has,

C[A + B] = C[A] · C[B]. (17)

In particular, if the two systemsA andB have the minimum
possible complexity,C[A] = C[B] = 1, then the composite
systemA+B also has minimum complexity,C[A+B] = 1,
thus avoiding the aforementioned kind of paradoxical situa-
tions.

The above state of affairs strongly suggests that, if one
wants to consider an LMC-like measure for discrete systems,
the discrete version of (4), given by

C(discrete)[p] =

(∑

i

p2
i

)
· exp

(
−

∑

i

pi ln pi

)
, (18)

which is composable, is superior to the original LMC mea-
sure (1). Notice that the minimum value of (18) is 1. Besides
adopting its minimum valueC(discrete) = 1 for certaintyand
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for equiprobability, the LMC-like complexity measure (18)
also adopts its minimum value for probability densities of the
more general formpi = 1/k, i = 1, . . . , k; pi = 0, i >
k, which are discrete versions of the rectangular probabil-
ity densities that we already mentioned in connection with
the continuous measure (4). The complexity measure (18)
can be expressed as the difference of two Renyi entropies,
C(discrete) = exp(S(R)

1 − S
(R)
2 ) (in this case, one of the en-

tropies happens to be Shannon’s), similarly to what occurs
in the continuous case. A notion of complexity based on the
differenceS

(R)
1 − S

(R)
2 has been studied in connection with

various quantum mechanical systems or processes (see [14]
and references therein), including the spread of wave-packets
in a tight-binding lattice [15]. It is straightforward to gener-
alize the measureC(discrete), along the same lines followed in
Ref. [16], and define a bi-parametric family of discrete mea-
sures, expressed in terms of the difference between Renyi en-
tropies, given by

C(discrete)
q1,q2

= exp
(
S(R)

q1
− S(R)

q2

)
, 0 < q1 < q2, (19)

which constitute discrete versions of the measures studied in
Ref. [18]. All the above complexity measures, defined in
terms of the difference between two Renyi entropies, com-
ply with composability. The conceptual superiority of com-
plexity measures based on the difference between Renyi en-
tropies, such as the LMC-like one (18), over the original
LMC measure (1), does not necessarily mean that, when used
as practical tools for the classification of patterns, these dif-
ferent measures will not lead to similar results [14]. However,
for studying the theoretical foundations of the phenomenon
of complexity, measures such as (18) (or its generalizations
(19)) may lead to deeper insights than the original LMC one
(1).

There is another property that a reasonable LMC-like
measure of complexity should satisfy, which isexpansibil-
ity. The property of expansibility means that adding a new
state of zero probability does not change the complexity of a
system. The original LMC measure (1) does not comply with
expansibility, but the modified version (18) does. The form
of the probability distributions corresponding to its minimum
value, together with the property of expansibility, lead to an
intuitive interpretation of the meaning of the measure (18):
it measures how different a probability distribution is from
an “even” distribution, which is a distribution that is uniform
over those states with non-vanishing probability. Said dif-
ferently, the statistical measure of complexity (18) provides
a quantitative assessment of the degree of “unevenness” ex-
hibited by a probability distribution. This is another sense in
which the measure (18) is superior to the original LMC: for
(18) one can give an answer to the question: what does this
quantity actually measure?

Summing up, in this Section we have considered the no-
tions of composability and expansibility as applied to LMC-
like measures of statistical complexity. We pointed out that
LMC measures that are not composable lead to some counter-

intuitive weird situations. On the other hand, we emphasized
the fact that the family of LMC measures for continuous
probability densities, constructed on the basis of the differ-
ence between two Renyi entropies, complies with compos-
ability. Moreover, the discrete version of these measures also
satisfies the important property of expansibility. It would be
interesting to re-visit, in connection with the notion of com-
posability, other LMC-like measures that have been proposed
in the literature (see, for instance, [18,19,20]).

5. A possible dynamical path to probability
densities optimizing the measureC under
suitable constraints

As already mentioned, many applications of the LMC-like
statistical measures of complexity, to physics and other fields,
have been considered by researchers. In many of these works,
the LMC-like measures proved to be useful tools for investi-
gating the phenomenology of various systems and processes.
To understand the basic reasons behind these phenomenolog-
ical successes, it would be convenient to have operational in-
terpretations, and axiomatic characterizations of the LMC-
like measures. We believe that the considerations made in
the previous sections may constitute useful guides towards
the achievement of those goals. On the other hand, it may
also be enlightening to explore the dynamical aspects of the
LMC measures. In particular, it would be interesting to ex-
plore dynamical mechanisms that are consubstantial with the
LMC measures, naturally leading to probability densities that
optimize the measures under suitable constraints. In order to
take some exploratory steps in that direction, we shall inves-
tigate a possible Fokker-Planck-like evolution equation satis-
fying anH-theorem based on the modified LMC measure (4)
(an equation of this kind, based on the original LMC mea-
sure, was proposed in Ref. [14]). We consider the nonlinear
evolution equation

∂f

∂t
= D1

∂2f

∂x2
−D2

∂2
(
f2

)

∂x2
+

∂

∂x

(
f

∂V

∂x

)
, (20)

where f(x, t) is a time-dependent probability density and
V (x) is a potential energy function. The quantitiesD1[f ]
andD2[f ] are effective diffusion coefficients given by

D1[f ] = δD[f ] exp(H[f ]),

D2[f ] = δ exp(H[f ]), (21)

whereδ is a diffusion constant, andH[f ] andD[f ] are given
by (5) and (6). Notice that the effective diffusion coefficients
D1[f ] andD2[f ], even though they depend upon the density
f , are just numbers, not functions of the spatial coordinatex.
They depend on global features off . The nonlinear evolution
equation (20) complies with anH-like theorem based on the
modified LMC measure (4). We define the functional

F [f ] =
(∫

f(x)V (x) dx

)
− δ C = 〈V 〉 − δ C, (22)
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akin to a free-energy, where〈V 〉 is the mean value of the po-
tential V (x), andC[f ] = D[f ] · exp(H[f ]) is the modified
version of the LMC measure (4). It is possible to prove that
the time derivative of the functionalF is always non-positive,

dF
dt

= −
∫

dx f(x)

[
∂V

∂x
− 2 δ

∂f

∂x
exp(H)

+ δD exp(H)
(

1
f

∂f

∂x

) ]2

dx ≤ 0. (23)

The probability densitiesf(x) that make the time derivative
dH/dt equal to zero have to comply with the differential
equation

∂V

∂x
− 2 δ

∂f

∂x
exp(H) + δD exp(H)

(
1
f

∂f

∂x

)
= 0. (24)

It is not evident that there exist densities satisfying the
Eq. (24) that are normalized stationary solutions of Eq. (20).
This issue deserves further investigation.

The nonlinear evolution Eq. (20), related to the measure
(4), has some important features akin to those exhibited by
other evolution equations that have been previously discussed
in the research literature. In particular, it exhibits interest-
ing connections with Fokker-Planck equations endowed with
nonlinear diffusion terms [15]. Evolution equations of this
type have proved, in recent years, to be useful tools for the
study of complex systems (see, for instance [16]). As is the
case with this kind of nonlinear Fokker-Planck equations (see
[17] and references therein), the evolution equation (20) ad-
mits anH-theorem in terms of a free-energy-like quantity
based on a non-standard entropy (or entropy-related) func-
tional. The evolution equation (20) has global regulation.
That is, the partial time derivative of a probability density
f(x, t) that evolves according to (20), depends on global fea-
turesf , given by the functionalsD andH. Something simi-
lar occurs, for example, with the reaction-diffusion evolution
equation investigated by Troncosoet al. in Ref. [18]. Finally,
the nonlinear evolution Eq. (20) exhibits a combination of
two different types of diffusion: one with a standard, linear
Laplacian term, and one with a Laplacian term acting upon
the square off . A similar situation happens with an evolu-
tion equation, advanced by Andrade Jret al. in Ref. [19],
which provides a thermostatistical, effective mean-field de-
scription of systems of confined interacting particles moving
in the overdamped-motion regime.

To recapitulate, in this Section, we introduced and inves-
tigated the basic properties of the nonlinear Fokker-Planck
evolution equation (20), which exhibits a dynamics closely
linked to the LMC-like measure (4). This equation satisfies
an H-theorem involving a functional, formally similar to a
free energy, related to the measure (4). The evolution equa-
tion (20) exhibits some features that are intriguingly similar
to those exhibited by other nonlinear evolution equations that
have been investigated in the literature, mostly in connection

with the study of complex systems. We studied equation (20)
as an exploratory step toward elucidating the kind of dynam-
ics that leads to the constrained optimization of LMC-like
measures.

6. Conclusions

The LMC statistical measure of complexity, and its vari-
ants, extensions, and generalizations, have had some intrigu-
ing phenomenological successes in various particular appli-
cations. This state of affairs indicates that the LMC proposal
and its applications deserve further theoretical and concep-
tual examination. In this regard, the LMC-like measures still
constitute useful testing grounds for exploring some basic no-
tions concerning complexity. It is plain that further theoret-
ical work is needed in order to explain the basic reasons for
the aforementioned phenomenological successes. Besides,
a deeper understanding of the LMC proposal may help to
elucidate if there exist any interesting connections between
the LMC idea and more general theoretical approaches to the
phenomenon of complexity [20]. In this regard, it is intrigu-
ing that, in spite of all the literature devoted to applications
of the LMC measures, the LMC treatment seems, to some
extent, to be a kind of isolated island, rather disconnected
from other prominent venues of current theoretical research
on complexity. In the present work we have discussed some
fundamental features of the LMC-like measures, highlight-
ing the important role played bycomposability. This notion,
which is now recognized as an essential property of entropic
and information measures [12], should also play a central
role in connection with the LMC family of complexity mea-
sures. Here we have discussed composability only in connec-
tion with the original LMC measure, and with the modified
LMC measure proposed in Ref. [10]. It would be interest-
ing to consider composability in relation to other LMC mea-
sures, defined as products of entropic or information quanti-
ties. In the case of discrete probability distributions, it seems
that all measures of this type that refer explicitly to the total
numberN of states of the system under consideration, and to
the corresponding equiprobable distribution, comply neither
with composability nor with expansibility.

In this work we have also investigated a possible dynam-
ical setting leading to the constrained optimization of the
CGL modified version of the LMC measure of complexity.
We advanced an example of a nonlinear Fokker-Planck-like
equation satisfying anH-theorem based on the CGL mea-
sure. We hope that our present considerations will stimulate
further research into the theoretical foundations of the LMC
family of complexity measures, and, in particular, into the
physical meaning, origin, and properties of the probability
densities yielded by the constrained optimization of the LMC
measures. The illustrative evolution equation advanced in the
present work admits some direct generalizations. It would be
interesting to explore suitable analytical approximations to,
or to conduct a numerical study of, the time-dependent solu-

Supl. Rev. Mex. Fis.6 011312



POSSIBLE DYNAMICAL PATHS TOWARDS THE CONSTRAINED OPTIMIZATION, AND OTHER FUNDAMENTAL ASPECTS,. . . 7

tions of this family of equations. Any advances along these
or related lines of inquiry will certainly be very welcome.
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11. R. López-Ruiz,et al., A generalized statistical complexity mea-
sure: Applications to quantum systems,J. Math. Phys.50
(2009) 123528.

12. C. Tsallis, Introduction to Nonextensive Statistical Me-
chanics: Approaching a Complex World (Springer-Verlag,
New York, 2009), https://doi.org/10.1007/
978-0-387-85359-8 .

13. A. Enciso and P. Tempesta, Uniqueness and characterization
theorems for generalized entropies,Journ. of Stat. Mech.(2017)
123101.

14. A. R. Plastino and R. S. Wedemann, Evolution Equations Ex-
hibiting H-Theorems related to the LMC Statistical Measures
of Complexity,J. Phys.: Conf. Ser.2839(2024) 012017.

15. A. R. Plastino and A. Plastino, Non-extensive statistical me-
chanics and generalized Fokker-Planck equation,Physica A
222(1995) 347.
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