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The celebrated LMC measure of complexity, advanceddpez-Ruiz, Mancini and Calbet thirty years ago, is based on the idea that scenarios
exhibiting large amounts of order, or large amounts of disorder, are characterized by low or vanishing amounts of complexity. According

to this idea, complexity adopts its maximum value at some intermediate regime between extreme order and extreme disorder. Following
on the LMC steps, researchers have introduced several other statistical measures of complexity, akin to the original LMC one, that also
comply with the aforementioned requirements. These measures, which we collectively refer to as “LMC-measures”, are defined as products
of information or entropic-like quantities. The LMC measures have been applied by scientists to the study of diverse systems or processes
in physics, chemistry, and other fields, leading to a research literature of respectable size. In spite of the intriguing results yielded by those
investigations, various fundamental issues concerning the LMC measures remain unaddressed. It seems timely, thirty years after the origing
LMC proposal, to reconsider its foundations. We shall discuss various basic aspects of the LMC measures, including some exploratory step:

regarding possible dynamical mechanisms leading to probability densities optimizing the measures under suitable constraints.
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1. Introduction the probability distributions that optimize the measure, was
done by Anteneodo and Plastino in 1996 [2]. In subsequent

In 1995 Lopez-Ruiz, Mancini, and Calbet (LMC) entertainedY&a'S the LMC measure attracted the attention of some lead-

the idea of defining a quantitative measure of complexity for'd résearchers in the physics of complex systems [3]. Even

discrete probability distributions, or for continuous probabil- though some of those early investigations on the LMC mea-
ity densities [1]. The LMC proposal is based on the intuition sure were rather critical about the measure’s merits, the LMC

that systems exhibiting high order or high disorder, have lowM€asure, together with various other complexity measures,

or vanishing complexity. Most scientists studying complex-P/@yed & valuable role as testing grounds for exploring ba-
ity in Nature agree with that intuition. When considering dis- SIC issues concerning the idea of assessing quantitatively the

crete probability distributions, maximum order can be iden-a2mount of complexity exhibited by a system or process [4].

tified with certainty and maximum disorder with equiprob- In this regard, it is worth mentioning that the LMC proposal
ability. In accordance with these identifications, the LMC and its generalizations constitute only a small subset of all the
measure is defined in such a way that it vanishes in two ex@pproaches that have been advanced by researchers, over the

treme situations: when the probability distribution has one/€ars, in order to measure complexity in natural phenomena.
probability equal to one and the rest are equal to zero (cefl! the present contribution, we are going to consider only
tainty), and when all the probabilities are equal (equiprobat’® LMC proposal and its extensions. That is, complexity
bility). The LMC measure, on the other hand, adopts its maxMeasures are defined as products of entropic or information
imum value at some intermediate situation between certaint§fu@ntities, evaluated on probability distributions or densities.
and equiprobability [2]. n the rest of this work we shall refer to the idea behind this
L . .. type of measures as the “LMC proposal”, and to the study of
In their original paper from 1995, Lopez-Ruiz, Mancini, y,ig kind of measures, and their applications, as the “LMC
and Calbet defined their statistical measure of complexitygnnroach. Towards the late 90s, the researchers interested in
and provided an illustrative application to the logistic map,the | MC measure and its various extensions and generaliza-
for which the measure exhibits its maximum at the edge ofjns (here referred to as “LMC measures”) gradually shifted
chaos [1]. The first work devoted to investigate the generaj,qir efforts from the foundations of the LMC approach, to
properties of the LMC measure, and to determine the form of
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its applications. There is already a vast research literature oglso yield measures satisfying the desired boundary condi-
applications of the LMC measures to physics, chemistry, bitions. For example, instead of the Shannon logarithmic en-
ology, and other fields. There are some remarkable works intropy S, one can consider other entropic or information mea-
dicating that, within some scenarios, the LMC measures yielgures, such as Tsallis entropy. By the same token, instead of
valuable insights into the properties of complex systems. It igshe disequilibriumD, one can consider other quantities indi-
impossible to review here all the work that has been done opating the deviation of the probability distributidp’,} from
applications of the LMC proposal and its various extensionghe equiprobable one. We shall refer to the original LMC
and generalizations. As a few notable examples, we can memeasure as the “LMC measure” (singular). On the other
tion the impressive body of research that Esquivel and collabhand, we shall refer, collectively, to the family of measures
orators have conducted on applications in quantum chemistrgefined by products of quantities complying with appropriate
[4,5], the interesting works by Ribeiro and collaborators onboundary requirements, as the “LMC measures” (plural).
the classification of music styles [6] and by Guisande and The LMC proposal, which constitutes arguably the most
Montani on applications to neuroscience [7], and a recent resimple and straightforward possible way of defining a mea-
markable application to planetary systems [8]. sure of complexity, had a considerable impact on the scien-
Despite the considerable effort that has been devoted oveific community (the 1995 work where the LMC measure was
the years to applications of the LMC measures, the fundaadvanced has more than 1000 Google Scholar citations). As
mental reasons behind the phenomenological successes gfeady mentioned, the LMC measures provided a valuable
these measures are still poorly understood. There still argsting ground for exploring basic issues concerning the con-
basic issues that have to be addressed. Fundamental featurespt of a quantitative measure of complexity. Work on the
such as composability and expansibility, have been largely MC family of complexity measures was an important stim-
overlooked. Other basic subjects that remain largely unexulus for research into complex systems in various parts of
plored are the dynamical mechanisms that lead to the conthe world. In fact, several physicists (coming mostly, but not
strained optimization of the LMC measure. Here we considebnly, from statistical physics) entered the field of complex
some of these issues. In particular, as an exploratory step t@ystems via the exploration of the LMC measures and their
wards elucidating the last-mentioned point, we advance, angpplications.
investigate the basic features of a Fokker-Planck-like nonlin- | spite of the several applications of the LMC measures

ear equation that satisfies ahtheorem related to the LMC  of complexity that have been investigated so far, the basic
measure. meaning of the measures still raises conceptual issues that
need further examination. Even the very motion of assigning
2. The original LMC statistical measure of @ gquantitative amount of complexity to a probability distri-
: bution might be problematic. The LMC measures might be
complexity . ) . .
shadows” of more elaborate measures that involve not just a

In its Origina| form’ the LMC statistical measure of Comp|ex- probablllty diStribUtion, but also other SpeCiﬁC structures as-

ity of a discrete probability distributiofipy, ps, ..., pn), is ~ Sociated with the systems or processes under consideration.
defined as These hypothetical, context-dependent, more elaborate mea-
C =S5-D, (1)  sures might be required in order to achieve a full understand-

ing of the phenomenological successes of the LMC measures.

N Besides, they might provide an answer to the basic question
S = — Z pi Inp;, 2) made by F_elglman and Cr_utchfield ir! Ref. [3|What exactly
i—1 is the statistical complexity measuririg?Iin order to shed

is the Shannon entropy of the probability distributipm }, some light on these issues, and to understand the fundamen-

where

and tal reasons for the phenomenological successes of the LMC
N 112 measures, it would presumably be useful to find operational
D = Z [Pz' - N] ) (3) interpretations, and axiomatic characterizations of the LMC
=1

measures. We believe that the points discussed in the follow-
is the “disequilibrium” of the probability distribution, which ing sections may constitute useful steps towards those goals.
provides a quantitative indication of how much does the prob-
ability distribution{p;} differ from the equiprobable distri-
bution {p!”’ = 1/N}. The entropyS vanishes in the case 3. Other LMC-like measures of complexity
of certainty, while the disequilibriun® vanishes in the case
of equiprobability. Therefore, the product structure of theAs already mentioned, Anteneodo and Plastino (AP), in
measureC' implies that it vanishes both fazertaintyand  Ref. [2], were the first to explore the main properties of
for equiprobability satisfying the intuitive “boundary condi- the original LMC measure, including the probability distri-
tions” desired for a complexity measure. It is obvious, how-butions that optimize the measure. AP discovered that the
ever, that there are plenty of alternative choices for the faceriginal LMC measure of statistical complexity exhibits some
tors entering the definition of’, instead ofS and D, that  features that are at odds with what one would expect from a
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reasonable measure of complexity. In particular, AP showeds the Renyi entropy of ordet. Fora — 1, one recovers

that the original LMC measure lacks two fundamental invari-the Shannon entropy. The basic properties of the LMC-like

ance properties: it is neither invariant under scale changesieasureC were studied in Ref. [10], and a generalization,

nor under replication. The lack of invariance under change®ased on the Renyi entropies, was proposed in Ref. [11]. The

of scale means that the continuous version of the measurégrmulation in terms of Renyi entropies makes the validity

evaluated on a continuous probability density, changes wheof some of the basic properties of the measd)especially

the probability density is modified according to a change oftransparent. We want to emphasize, moreover, that the mea-

scale. This is an undesirable property, because one expedsre @), and its Renyi-based generalizations are particularly

that a simple re-scaling should not affect the amount of cominteresting members of the LMC-like statistical measures of

plexity associated with a probability density. The lack of in- complexity, because they comply with another fundamental

variance under replication means that a system consisting @roperty that has been largely overlooked in the literature

two identical, and statistically independent copies of an origconcerning the LMC measuresomposability

inal system, has an amount of complexity different from that

of the original single copy of the system. This feature vi- o ) )

olates a principle proposed by Lloyd and Pagels [9], accord4- Composability of entropies and complexity

ing to which complexity should not change under replication. measures

By pointing out the above fundamental defects that afflict

the original LMC proposal, the AP-1996 paper contributedComposability is an important notion that has been inves-

to establish the agenda regarding research on the fundameifgated mostly in connection with entropic and information

tal properties that LMC-like measures of complexity shouldmeasures. As already mentioned, we want here to empha-

have. Other researchers (including some of the authors of tHéze that composability should also be regarded as essential

original LMC proposal) addressed these issues and proposé@r complexity measures. In order to clarify this point, it is

new versions of the LMC measure. An important exampleinstructive to briefly review first the idea of composability of

is given by a modification of the original LMC measure for entropies.

continuous systems, advanced by CatalGaray, and &pez-

Ruiz (CGL) in 2002 [10]. The new version of the LMC mea- 4.1. Composability of entropies

sure reads

C[f] = D|f] exp(H]f]), (4)  The basic idea of composability of entropies is that, for two
statistically independent systersand B, the total entropy,

with when one considers them to be a single systemB, has to
H[f] = - / f(z) In(f(z))dz, (5)  depend only on the individual entropies.4fand B, and not
on any other specific features of these systems (see [12,13]
and and references therein). The property of composability can
D[f] = /f(l‘)gd% (6)  be encapsulated in the equation
wheref(xz) is a normalized probability density (f (z)dz = S(A+ B) = ®(S(A), S(B)), 9)

1), and we regard: and f as dimensionless quantities. The

modification @) of the LMC measure cured some of the whereS(A), S(B), andS(A + B) are the entropies of sys-
deficiencies that afflicted the original LMC measure. Thetems 4, B, and of the compositel + B, and ®(.,.) is a

new measure is invariant under re-scaling transformationfunction describing the form of the composability law. Com-
and under (a particular interpretation of) replication. It is posability plays an important role in connection with entropic
remarkable that a simple modification in the form of the measures. It imposes strong constraints on the allowed forms

LMC measure is enough to obtain a measure that satisfiegr entropies. Let us consider the general family of entropic
the desired properties lacked by the original LMC measurefynctionals

The new measure adopts its minimum value, equal to 1, for

rectangular-like probability densities. A rectangular density Sl = G (Z h(m)) ; (10)

has, for some range af-values having a total length, the i

valuel/L, and is equal to zero faor-values outside the al- whereG () andh(z) are functions that comply with(0) =

luded range. Interestingly, the new LMC measure can be exg(x(1)) = 0, and are also typically assumed to satisfy appro-

pressed in terms of the Renyi entropies. Indeed, we have thgtiate monotonicity and concavity properties [13]. Of special
relevance, among the above family of entropies, are those

Clf] = exp (R(l)[f] - R® [f]) ; (7)  with G(2) = x, which are known asrace form entropies

Entropies of the form

R = ([ sera). o< @ Slel = G (Zp) (1)
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are the only entropies of the general fam(bO) that com-  C[4] andC[B], of A and B. The composability property is
ply with composability. Sometimes it is stated that, formally, expressed by the equation

the most general form for composable entropies within the

family (10) is G (32, (c1pi + c2p?)), With ¢, » appropriate ClA+ B] = @(C[A],C[B]), (16)
constants. But, if the probability distributigf; } is normal-  \yhered(z, ) is a function characterizing the composability
ized, this more general form can always be re-cast under thg,y, The composability of a complexity measure can be il-
guise of L1), by recourse to an appropriate re-definition of | ,strated by the following example. If one has a systém
the functionGG. Paradigmatic examples of entropies com-pare on Earth, and another totally independent syshefar

plying with composability are the Renyi and the Tsallis en-ayay in Andromeda, one should be able to determine the to-
tropies. The Renyi entropies, which are parameterized by g complexity of A + B just from knowing the complexity

real parametey, are given by of A and the complexity oB.
Weird things happen when a complexity measure is not
SéR) _ L In Zpg i (12) composable. .For example, two indepenldent systems vyith
1-g¢ ; zero complexity each can, jointly, constitute a composite

) ] . ) system with finite complexity. For instance, the original
Notice that the above entropies are the discrete versions of thac complexity measureC' = (=32, p; Inp; ) (3. (

entropies d_efined ir8j (the parametey corr_esponds to t_he 1/N))?), is not composable. Consider the folloi/v]ijrzg pair
parameter in (8)). We use here a slightly different notation, of independent systems, which individually have vanishing
in order to highlight the connection between the Renyi eNtomplexity. On the one hand, one has the systemwith
tropies and the Tsallis entropies, which we shall define IaterN1 states, and a uniform probability distribution. One has
The Renyi entropies are the most general additive entropie@(Al) = 0. On the other hand, one has the systdm
Additivity, of course, is a particular form of composability, ith N, states, and one state with probability One has
with a composability law of the form C(Az) = 0. However, the composite system+ B, with
N; x N, states, regarded as a single entity, has a non-
Sth) (A+B) = SzgR) (4) + SSR)(B)' (13) vanishing amount of complexity. That i§;(A + B) > 0.
. . . In other words, the non-composability 6f leads to the ex-
The TS‘?‘”'S entropies, also parameterized by a real paramet%rtence of independent systems that individually have zero
¢, are given by complexity, but jointly have a finite amount of complexity.
S (o — p7) 1 No sensible measure of complexity should allow for this type
S = &t Pi —Pi) _ (1 — Zp?) . (14)  of undesired situation.
¢—1 q—1 i Interestingly, the modified version of the LMC measure

and are also important examples of entropies satisfyin con?iven by Eq. §) satisfies the composability requirement. In
P P P 9 act, let us consider two statistically independent systeims

o e, ) e e o DT e O i, descre by e kit censugs (1) o
lis entropies can be written in two equivalent forms, one off(B) (w2), where thg variaplesl and corresp.orlld to the
which is trace-form, but the other is not). The Welliknown state spaces associated with systehamd 5. The joint com-

o ' . S posite systemil+ B is then described by the factorizable joint
composability law for the Tsallis entropies is

probability densityf(A+t5) (z1,25) = fA) (1) fB)(z).
Then one has,
SIT(A+ B) = S{(A) + S{"(B)
+ (1= (A)s(B).  (15)

C[A+ B] =C|A] - C[B]. (17)

i ) i In particular, if the two systemd and B have the minimum
The Shannon entropy is a p_artlcular instaige= 1) of the possible complexity’[A] = C[B] = 1, then the composite
above two families of entropies. systemA + B also has minimum complexit¢[A+ B] = 1,

~ In'summary, composability is nowadays regarded as a bap ;s avoiding the aforementioned kind of paradoxical situa-
sic, fundamental property that physically sensible entropigjgns.

measures .must satisfy. Shannon, Renyi, and Tsallis gntropies The above state of affairs strongly suggests that, if one
constitute important examples of composable entropies.  \yants to consider an LMC-like measure for discrete systems,

- ) the discrete version o, given by
4.2. Composability of complexity measures

The composability requirement for measures of complexity claeeresp] = (Z pf) " eXp <_ > pi hlpi) , (18)
is similar to the one for entropies. We require that, for two i i

statistically independent systemsand B, the total complex-  which is composableis superior to the original LMC mea-
ity C[A + B], when one regardd and B as a single system sure (). Notice that the minimum value c18) is 1. Besides
A + B, has to depend only on the individual complexities, adopting its minimum valu€(@sce® — 1 for certaintyand

Supl. Rev. Mex. Fis6 011312
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for equiprobability the LMC-like complexity measurél8) intuitive weird situations. On the other hand, we emphasized
also adopts its minimum value for probability densities of thethe fact that the family of LMC measures for continuous
more general fornp, = 1/k, i = 1,...,k; p;, = 0, i > probability densities, constructed on the basis of the differ-
k, which are discrete versions of the rectangular probabilence between two Renyi entropies, complies with compos-
ity densities that we already mentioned in connection withability. Moreover, the discrete version of these measures also
the continuous measurd)( The complexity measurél) satisfies the important property of expansibility. It would be
can be expressed as the difference of two Renyi entropiefteresting to re-visit, in connection with the notion of com-
cldiserety — oxp (S — 5{M) (in this case, one of the en- posability, other LMC-like measures that have been proposed
tropies happens to be Shannon’s), similarly to what occurén the literature (see, for instance, [18,19,20]).

in the continuous case. A notion of complexity based on the

i (R) (R) iad i i i . . -
dn‘ffarenceS1 ) - 55 :as' belen sttudled in connectlor(1 Wlth[li] A possible dynamical path to probability
various gquantum mechanical systems or processes (see . P
and references therein), including the spread of wave-packets de_nsmes optlml_zmg the measureC under

suitable constraints

in a tight-binding lattice [15]. It is straightforward to gener-

i (discretg i i . . . .
alize the measure , along the same lines followed in g already mentioned, many applications of the LMC-like

Ref. [16], and define a bi-parametric family of discrete Meastatistical measures of complexity, to physics and other fields,

Sures, expressed in terms of the difference between Renyi ®Have been considered by researchers. In many of these works,
tropies, given by the LMC-like measures proved to be useful tools for investi-
gating the phenomenology of various systems and processes.
To understand the basic reasons behind these phenomenolog-
ical successes, it would be convenient to have operational in-
lr.r?-:‘rpretations, and axiomatic characterizations of the LMC-
like measures. We believe that the considerations made in
the previous sections may constitute useful guides towards
the achievement of those goals. On the other hand, it may
Yso be enlightening to explore the dynamical aspects of the
MC measures. In particular, it would be interesting to ex-
lore dynamical mechanisms that are consubstantial with the
MC measures, naturally leading to probability densities that
. . ) optimize the measures under suitable constraints. In order to
for studylng the theoretical founda’uon; of the ph_eno.menoqake some exploratory steps in that direction, we shall inves-
of complexity, measures .S’U(.:h = (or its ge_ne_rallzatlons tigate a possible Fokker-Planck-like evolution equation satis-
(19)) may lead to deeper insights than the original LMC onefying an H-theorem based on the modified LMC meas4)e (
@ ) . (an equation of this kind, based on the original LMC mea-
There is another_ property tha’g a reagona_ble I"\_/IC_:'“kesure, was proposed in Ref. [14]). We consider the nonlinear
measure of complexity should satisfy, whichegpansibil- evolution equation
ity. The property of expansibility means that adding a new
state of zero probability does not change the complexity ofa ~ of D 0% f D 0? (f2) 0 oV 20
system. The original LMC measuig)does not comply with ot~ Tloxz T TP x2 Az (fax) ’ (20)
expansibility, but the modified versioi8) does. The form . . . .
of the probability distributions corresponding to its minimum Where f(z,?) is a time-dependent probability density and
value, together with the property of expansibility, lead to an¥ (¥) iS @ potential energy function. The quantiti®s /]
intuitive interpretation of the meaning of the measizg){  andD:[f] are effective diffusion coefficients given by

Céfisq‘;'ete = exp (ngi) - Séf)) , 0< g1 <q, (19)
which constitute discrete versions of the measures studied
Ref. [18]. All the above complexity measures, defined in
terms of the difference between two Renyi entropies, com
ply with composability. The conceptual superiority of com-
plexity measures based on the difference between Renyi e
tropies, such as the LMC-like ond8), over the original

LMC measurel), does not necessarily mean that, when use
as practical tools for the classification of patterns, these difL
ferent measures will not lead to similar results [14]. However,

it measures hc_JW c_Jifferen_t a _proba}bility Qistributipn is_ from Di[f] = 6 D[f] exp(H[f]),
an “even” distribution, which is a distribution that is uniform
over those states with non-vanishing probability. Said dif- Do[f] = & exp(H][f]), (21)

ferently, the statistical measure of complex/f8) provides h ) ifusi )
a guantitative assessment of the degree of “unevenness” e\g— ereé 'Za di usion Cr? nstﬁmt, f? nH.[f ] g.rf]fdp[f Jare fglyen
hibited by a probability distribution. This is another sense in?Y ?) @nd ). Notice that the effective diffusion coefficients

which the measurélg) is superior to the original LMC: for D1 [f] andDy|f], even though they depend upon the density

(18) one can give an answer to the question: what does thié’ are just numbers, not functions of the spatial coordinate
quantity actually measure? They depend on global featuresafThe nonlinear evolution

Summing up, in this Section we have considered the nogquation EQ) complies with anfi-like theorem based on the

tions of composability and expansibility as applied to LMC- modified LMC measurdd). We define the functional
like measures of statistical complexity. We pointed out that
LMC measures that are not composable lead to some counter- Flfl= / fla)Viz)de | =6C=(V)—-dC, (22)

Supl. Rev. Mex. Fis6 011312
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akin to a free-energy, whek®&") is the mean value of the po- with the study of complex systems. We studied equalt®@) (
tential V' (x), andC[f] = D[f] - exp(H][f]) is the modified as an exploratory step toward elucidating the kind of dynam-
version of the LMC measurd). It is possible to prove that ics that leads to the constrained optimization of LMC-like
the time derivative of the functiondl is always non-positive, measures.

dF ov of
—=— [ dx f(z) | =— — 26 == exp(H .
dt / fle) Ox Ox p(H) 6. Conclusions
2
10f The LMC statistical measure of complexity, and its vari-
+0D exp(H) (f ax> ] dz < 0. (23) ants, extensions, and generalizations, have had some intrigu-

ing phenomenological successes in various particular appli-
The probability densitieg(x) that make the time derivative cations. This state of affairs indicates that the LMC proposal
dH/dt equal to zero have to comply with the differential and its applications deserve further theoretical and concep-
equation tual examination. In this regard, the LMC-like measures still
constitute useful testing grounds for exploring some basic no-
10f tions concerning complexity. It is plain that further theoret-
) =0. (24) ical work is needed in order to explain the basic reasons for
fox the aforementioned phenomenological successes. Besides,
It is not evident that there exist densities satisfying thea deeper understanding of the LMC proposal may help to
Eq. (24) that are normalized stationary solutions of E20)(  €lucidate if there exist any interesting connections between
This issue deserves further investigation. the LMC idea and more general theoretical approaches to the
The nonlinear evolution Eq20), related to the measure phenomenon of complexity [20]. In this regard, it is intrigu-
(4), has some important features akin to those exhibited byng that, in spite of all the literature devoted to applications
other evolution equations that have been previously discussetf the LMC measures, the LMC treatment seems, to some
in the research literature. In particular, it exhibits interest-extent, to be a kind of isolated island, rather disconnected
ing connections with Fokker-Planck equations endowed witifrom other prominent venues of current theoretical research
nonlinear diffusion terms [15]. Evolution equations of this on complexity. In the present work we have discussed some
type have proved, in recent years, to be useful tools for théundamental features of the LMC-like measures, highlight-
study of complex systems (see, for instance [16]). As is théng the important role played byomposability This notion,
case with this kind of nonlinear Fokker-Planck equations (se&hich is now recognized as an essential property of entropic
[17] and references therein), the evolution equat@@) d- and information measures [12], should also play a central
mits an H-theorem in terms of a free-energy-like quantity role in connection with the LMC family of complexity mea-
based on a non-standard entropy (or entropy-related) funsures. Here we have discussed composability only in connec-
tional. The evolution equatior2() has global regulation. tion with the original LMC measure, and with the modified
That is, the partial time derivative of a probability density LMC measure proposed in Ref. [10]. It would be interest-
f(z,t) that evolves according t20), depends on global fea- ing to consider composability in relation to other LMC mea-
turesf, given by the functional® and?. Something simi- sures, defined as products of entropic or information quanti-
lar occurs, for example, with the reaction-diffusion evolutionties. In the case of discrete probability distributions, it seems
equation investigated by Troncosbal. in Ref. [18]. Finally, that all measures of this type that refer explicitly to the total
the nonlinear evolution Eq20) exhibits a combination of numberN of states of the system under consideration, and to
two different types of diffusion: one with a standard, linearthe corresponding equiprobable distribution, comply neither
Laplacian term, and one with a Laplacian term acting uporwith composability nor with expansibility.
the square off. A similar situation happens with an evolu- In this work we have also investigated a possible dynam-
tion equation, advanced by Andradeeiral. in Ref. [19], ical setting leading to the constrained optimization of the
which provides a thermostatistical, effective mean-field de-CGL modified version of the LMC measure of complexity.
scription of systems of confined interacting particles movingWe advanced an example of a nonlinear Fokker-Planck-like
in the overdamped-motion regime. equation satisfying arf{-theorem based on the CGL mea-
To recapitulate, in this Section, we introduced and invessure. We hope that our present considerations will stimulate
tigated the basic properties of the nonlinear Fokker-Planckurther research into the theoretical foundations of the LMC
evolution equation20), which exhibits a dynamics closely family of complexity measures, and, in particular, into the
linked to the LMC-like measuredj. This equation satisfies physical meaning, origin, and properties of the probability
an H-theorem involving a functional, formally similar to a densities yielded by the constrained optimization of the LMC
free energy, related to the measwd (The evolution equa- measures. The illustrative evolution equation advanced in the
tion (20) exhibits some features that are intriguingly similar present work admits some direct generalizations. It would be
to those exhibited by other nonlinear evolution equations thainteresting to explore suitable analytical approximations to,
have been investigated in the literature, mostly in connectiomr to conduct a numerical study of, the time-dependent solu-

— —2(58—JC exp(H) + 6 D exp(H) <
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tions of this family of equations. Any advances along theselecnobgico (CNPq), Fundd&p Carlos Chagas Filho de Am-

or related lines of inquiry will certainly be very welcome.
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