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A chemical hypergraph represents a set of chemical reactions. Hypernodes consist of sets of substances that act as reactants or products, wt
hyperedges correspond to chemical reactions, linking reactants to products. Another key structure in the hypergraph is the intersection o
hypernodes, representing substances that participate in multiple reactions. In this work, we study a random walker on a chemical hypergrap!
under two different transition probability regimes. We characterize the random walker using network entropy, highlighting differences
between these regimes. Additionally, we examine the structure of hypernodes by defining chemically inspired random variables and analyzing
their joint and marginal Shannon entropies, as well as their mutual information. FotNange observe bounds in these quantities.
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1. Introduction A hypergraph model accounts for higher-order relation-
ships (involving more than two vertices) and enables the
AgraphG is a mathematical representation of a network constydy of features that are not apparent in traditional graphs.
sisting of a set of vertices € V connected by edgesc E.  For example, consider a citation network where each au-
A defining characteristic of a graph is that each edge connector is represented as a vertex-multiple co-authors on a pa-
exactly two vertices,e., e = {vi,v2} wherevy,v2 € V. Ina  per can be naturally represented by a hyperedge. Moreover,
piCtOI’ial representation (Iﬂ, vertices are depiCtEd as pOintS, every graph can be represented as a hypergraph, but the con-
and edges as lines connecting these points [1-3]. Anillustragerse is not always true, indicating that hypergraphs provide
tion of a graph is shown in Fig. 1. a more general framework for modeling real-world systems
Ahypergraph is a generalization of a graph that allows re{networks). This generality is particularly relevant because
Iationships between more than two vertices [4] These mUltirea| systems often extend beyond simp]e pairwise (binary) re-
vertex relationships are called hyperedges and are typicallationships. Therefore, if the goal is to model real-world sys-
represented pictorially as curves enclosing the related vetems accurately, it is essential to develop appropriate models
tices. for higher-order interactions.
Figure 2 illustrates a hypergraph. Mathematically, a hy-
Ce e pergraph is defined as the péif, H) whereV is the set of
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FIGURE 2. The hypergraph with vertex sef =
{A,B,C, D, E, F} and hyperedge séf = {e1, e2, €3, e4}. Note
the different size of hyperedges. For instanceg; andes have
FIGURE 1. A graph with vertex set = {A, B,C, D, E, F} and size 3 (three vertices belong to each of them) whil@ande, have
edge seft = {e1, e2,€e3,€4,€5}. sizes 2 and 1, respectively.
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ri:D—->C+F+FE of transition between hypernodes based on their connectivity
ro:C+E+F—-A+B+D and structure, and on the other hand, random variables related
r3:C+B—D to the structure of the chemical reactions and their associated

probability distributions. This approach reveals several prob-
ability distributions related to the topological structure of the

oK ChemHy, making it suitable to apply information theory to
study various topological features of the ChemHly.
/1:;
2. The model
e F e A
The ChemHy model represents an idealized chemical $pace
e B where all possible non-autocatalytic reactions occur. The
model is constructed as follows: given a sef\okubstances
FIGURE 3. Chemical hypergraph for chemical reactionsto . denoted as
Substances (nodes) are represented as black dots and reactions (hy-
peredges) as coloured lines labelledrashypernodes correspond V = {v1,v0, ..., un }, 2)

to coloured regioné to 4.

consider the selv of all possible non-autocatalytic reactions.
It can be checked [5] that the number of all the possible chem-
ical reactions is given by

nodes, andd C P(V)\0 is a collection of non-empty sub-
sets ofl/, forming the hyperedge set.

Another structure, known as thehemical hypergraph
extends the concept of hypergraphs by allowing additional N — 1 (3N _gNH1 1)
types of relationships beyond those present in a standard hy- ) ’

h and, tly, i h [5,6]. Fi 3illus- . . .
EZ;g;agn 22amc§285fq:ecnheymlir;; %;i)irg[rapal (é%lérriH;) u?A\whmh is a huge number if one considers that the number of
ChemHy, is the paifV, H) such that " substances reported by Reaxys [10] is around 27 millions.

' ’ Reaxys is one of the largest databases of chemical informa-
HC{{X,)Y}: XY eP(V)\DandX NY =0}. (1) tion. If we consider thiompleteChemHy then we can con-

struct its adjacency matrix, which is given as

3

As can be seen, a ChemHy has

e Nodes: denoted as< V which are called substances M; ;= { 1 'I r(Xi, X;) € E . 4)
in chemical contexts. 0 i (X, X)) ¢ B

e Hypernodes: denoted a& € P(V)\@, which are Let us provide an example to better illustrate this con-
called collections of substances, again in connectiorstruction. ConsiderV. = 5 and let us say that’ =
with their application in chemistry, and notice tifas {4, B, C, D, E}. The number of chemical reactions in the
not allowed. complete ChemHy iV, = 90. The reactions

e Hyperedges: connections between two hypernodes. A+ B — C, (5)

These represent non-autocatalytic chemical reactions.

There is another structure that models decision-making
processes in laboratories such as the selection of a substance A+C+D — E+B, (@)
to trigger a further chemical reaction. These decisions are . .
modeled as intersections between hypernodes. We call the@€ allowed, but the auto-autocatalytic reactions, such as
decisions chemical jumps [7]. It is worth mentioning that
there are several approaches to the study of chemical reaction
networks by using network science and hypergraphs [8, 9]. B+C+D+FE— B+ A, 9)

In the ChemHy model, features are defined to represent
both the properties of substances and chemical reactionare not allowed since at least one of the substances appears
One of the key features is the degree of a substance, whicimong the products and among the reactants. The adjacency
refers to the number of reactions in which a substance partignatrix for this example is shown in Fig. 4, where reactants
ipates. Specifically, it corresponds to the number of hyperare represented in rows while products in columns. Exam-
nodes to which a substance belongs. Reactions are chardoation of this adjacency matrix gives us information about
terized by their size, which is determined by the number ofthe connection of the hypernodes.
substances involved in the transformation. It is worth mentioning that the direction of the reaction,

In this work, we represent idealized chemistry using aalthough explicitly written for this example, is not actually a
chemical hypergraph and study, on one hand, the probabilityariable in our model.

A+B— A+C, )
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FIGURE 4. Adjacency matrix of the idealized complete chemistry with 5 substances. Empty cells denote not allowed reactions.

3. Network entropy The entropy of each node can be defined as

The topological exploration of theyperedge structure of
ChemHy and its interplay with theinternal hypernode
structure can be carried out using a rando_m Walker thatyhere we formally consider that
moves between hypernodes based on chemical reactions. In
this context, a random walk over the reaction hypergraph can lim p;;lnp;—; =0.
be interpreted as a stochastic exploration of plausible reac- P
tion pathways. This framework enables the identificationThe normalized node entropy is calculated by dividing the
of highly connected substances or reaction motifs that magntropy of each node by the maximum possible entropy that
act as hubs or bottlenecks in synthetic routes. Furthermord node can have, thatis, (N —1):
by adjusting the transition probabilities according to chem- 0 lpi.] Ink;
ically inspired constraints —such as thermodynamic favora- S T (N —1) T (N_1)
bility, reaction type, or known kinetic preferences— the walk ) ] .
can be biased to reflect more realistic pathways. Thereforé@nd the normalized network entropy is calculated averaging
random walks offer a way to simulate exploratory synthe-the normalized node entropy
sis and analyze the structure of feasible transformation path- I 1 N
ways in complex chemical systems. At this stage, we apply S==3 50 =—e0——>"Ink. (14)
this framework to study the influence of connectivity and the NI Nln(N -1) i=1
number of substances on the walk. Let us now introduce the | et ys provide some insights about the role of both,
definition in the context of a network —a graph [11]- as fol- 5() and S in the exploration of the topological aspects of
lows. the chemical hypergraph. Consider, for example, the case
of a system with a discrete probability distributidh =
{1/2,1/2}. ltis already known that the Shannon entropy for
P, is given byS.[P] = log(2), which, when the logarithm
is written in base 2, gives just.[P] = 1. In this regard, the
Shannon entropy is providing information about the number
of bits, 1 in this case, within the system.

Consider now the expression fef). Using logarithm
rules, it can be rewritten in the form

N-1
lpi.] = — Z pi—jlnp;i; =Ink;, (11)
=1

(12)

(13)

Consider a network withV nodes and lek; be the de-
gree of node,’ define the probability of going from node

to nodej as
0, for
Pi—sj =

1
T for Qij = 1

Qi = 0
; (10)

whereq;; is the adjacency matrix element that indicates if the
nodesi andj are connecteds; = 1) or not (@;; = 0). Note
that for each node, Zj pi—; = 1if and only if the node is
not isolated, that isy; = 0.

s =logyn_y ki, (15)

hence indicating what we can call the numberch&mical
bits stored in the nodé:) of the chemical hypergraph.
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When using this approach in the expressionpthe in- 0.500 1
terpretation is thus the mean numbercbemical bitsstored 0475 1
in the chemical hypergraph. Of course, this mean value is cal-
culated per substance, becadses the number of substances
in the chemical hypergraph. 0:4251

To apply these entropic tools to the ChemHy case, we first * o.100 |
need to introduce the degree of the hypernodes. This require!
an additional structure. Let us begin by constructing the set
Hc g of hypernodes in a ChemHy, defined as follows:

0.450 4

0.375 1

1
Piaj:k_.[

—_—

pP.. =1
—_— i—] /\1

0.325 4

Honw ={X : X € E}. (16)

10! 10°
N
FIGURE 5. Network entropy computed for two different probabil-
ity regimes for a random walker transition from hypernad®-
. . . wards hypernodg. Black: probability depends on the degree of
kiHom = N X ky = Z Oxer, 17 the initial hypernodes). Red: probability depends on the size of
the final hypernodej{.

Then, the degree of a hypernode € Hcy is given as the
map

rckE

wheredx, = 1 if the nodeX participates in the chemical ) ) ) )
reactionr (which means that it is counting the connection of Will tell us different mformgnon about the topological struc-
one hypernode with the others). Consider now the hypernodf!'e Of the network: selecting/k; covers the networfaster

cardinality which is given as the map than selecting /A;. -
Chemically speaking, this finding suggests that the ran-
AN Hen — N; X = Ay =|X|. (18)  dom walker’s behavior is influenced by both the information

contained within a hypervertex and its intrinsic properties,
We can now use these quantities to study the probabilitgpecifically, whether it is the origin or destination of the jump.
of transition from one hypernodé)(to another f), thereby  Notably, knowing the size of the hypervertex to which the
exploring both the hyperedge structure of the hypergraph andalker will jump leads to a different outcome than knowing
the internal structure of the hypernodes. Let us introduce twehe size of the hypervertex from which the jump originates.
probabilities of transition between hypernodes. The first idn the former case, the entropy is lower compared to the lat-
the chemical probability of transition ter; in other words, there is less knowledge when the desti-
1 nation is unknowni(e., what is to be chemically obtained)
—, (19) than when it is already known. Moreover, a random walker
ki covering the network with /A; provides information about
which in this case, was considered as uniform among the hya fraction of thechemical qubitsof the network when com-
pernodes connected by a chemical reaction, hence the namiared with thechemical qubitsaccessible with /&;. This is
The other one is the cardinality probability of transition & clear manifestation of how the entropy can be used to detect
structural topological features of the ChemHy.
P .= i7 (20) One might wonder how these patterns are affected when
Aj considering realistic chemical reaction sets, and whether

which states that the transition depends on the cardinality Otpese limiting values can be interpreted as bounds for realistic

the neighboring hypernodeindependently of the cardinality ?hetworksb. Fu:ctherbmtore, homatre they irlflqen;:e(_:l by Iirr]nitin_g |
or connectivity of the hypernode The larger the number of € number of substances that can parlicipate in a chemica

substances, the lower the probability of visiting the hypern-re.ac.t'on.' These and other related questions can be explored
ode;. within this framework.

Figure 5 shows the behavior of the network entropy com- . O_ther options for the probability of transition worth con-
puted for several complete ChemHy models with dif'ferents’Iderlng are the following:
numbers of chemicals. It can be observed that in both cases, P 1 21)
the entropies approach an asymptotic value. In the case R

kj
Whgre the probablllyy dep_ends on the cardinality of the deStIHere, the transitions depend on the number of connections of
nation node, a maximum is observed.

. : . the neighboring hypernoderather than on the hypernode
. ."? the case ol /k;, a global maximum is reached in t_he Hypernodes that participate in a larger number of chemical
vicinity of N — 10. In the case ofl/);, the supremum is

. . reactions are less likely to be visited.
lower than the maximum value of the black curve. This re- :
e . Another case is
sult indicates that indeed, the entropy of the path followed by
the random walker is affected by the jump probability of the P_;= ﬁ (22)
random walker. Selecting different probabilities for the jump, Aj
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Here, the cardinality probability of transition is modified by where the marginal probability distributions are given by
a parametef;. This parameter can be used to model other

effects on the probability of transition. For examplesould P(X) = Z P(X,Y), 27)
depend on the number of times a substance,Aayartici- Y

pates in chemical reactions (its degree).chemically rele-
vantsubstances are involved in the transition, the transition
becomes more likely (with a largeéh), allowing the study of
the interplay between these two features: the connectivity of Shannon entropies are interpreted as measures of uncer-
the hypernode and the degree of a substance. This approagly, ., associated with the probability distribution. Its max-

is grqunded in the fact that, hlstprlcally, fgw substances aPjnum value {an with n the number of events) is achieved
pear in a large number of chemical reactions, whereas MOFhen all events are uniformly distributed. Its minimum value

substances participate in only a few reactions [10]. Other ef 0) is obtained when only one event has probabilignd the
fects and considerations could be incorporated in a simiIaE)therS have probabilitg

way usingg.
Some open questions connected to these explorations afe
the following:

P(Y)=> P(X,Y). (28)
X

If X andY are independent random variablég, = 0.
X andY are not independent, some information ab&ut
can be inferred fronY” and viceversa, anflyy > 0.
e Can the paramete? be adjusted to produce a distinct  In order to clarify the above-mentioned notions, let us
pattern formation? use an example of joint probability. Consider a dice (six
utcomes:1,2,3,4,5,6) and a coin (two outcomed), 1).
hrow the dice and the coin and each time register both as
a pair (this is one event), it is possible to obtain one of the
e Exploring paths in a hypergraph that represents thaéwelve possible events:
chemical space is crucial for synthetic routes and de-
sign. What insights can entropy provide about the {(1,0),(2,0),(3,0), (4,0), (5,0), (6,0),

paths in the ChemHy?
o _ _ (1,1),(2,1),(3,1),(4,1),(5,1), (6, 1)} .
Up to this point, the topological explorations have fo-

cused on general information about hypernodes, hyperedges, this case, both variables are independent and all have
the number of substances present, and the number of hypghre same probability; henceSyy = Inl12, sx =
edges for each hypernode. However, we are also interestedifg, sy, =1In2, Ixy =0.

more specific information about the hypernodes that could be Considering that any deviation from zero for mutual in-

chemically relevant. The purpose of the following sections isggrmation is indicative of the statistical correlation between

e Is it possible to define a correlation measure betwee
hypernodes?

to discuss some ideas and proposals in this regard. the variables, we wonder if sonuhemical informatiorcan
be obtained from this correlation. For example, if the pres-
4. Information theory ence of a specific substandeinfluences the selection of an-

other chemical to trigger a chemical reaction. In order to per-
Let X and Y be two discrete random variables with a form this analysis, we need to consider the adjacency matrix
joint probability distributionP(X,Y"). Mutual information  and focus our attention on the structure of the hypernodes.
[12,13] is a special case of the Kullback-Leibler [14] dis- An example of this approach is presented in the next section.
tance and quantifies the statistical correlation between twit should be mentioned that other possibilities can likewise be

variables. It is defined as: explored.
P(X
Lo = 33 PO g
Xy 5. Chemically inspired random variables
=sx +sy —Sxy >0, (23)
. o ) A topological exploration of theeaction structure can be
with the joint Shannon entropy [12}xy, defined by achieved by defining chemically inspired random variables
Syy = — Z Z P(X,Y)InP(X,Y), (24) for _the chgmical r_eactiong presented in the adjacency ma_tr_ix,
<~ 5 as in the illustration of Fig. 6, where we present a specific

example. In this case, the random variaklés built by clas-
sifying reactions depending on the number of reactaNtsg) (

Sx = — ZP(X) In P(X), (25) and productsi{r) as follows:
X

and the marginal Shannon entropifs, andSy, by

0 if Ngr = Np (exchange-type reactions)
Sy = — Z P(Y)In P(Y), (26)  x={ 1 Ni < Np (decomposition-type reactions)  (29)
Y 2 if Ng > Np (synthesis-type reactions)

Supl. Rev. Mex. Fis6 011315
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BDE | (2,1) 2,1) 1) NR < Np 1 (0'1)
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FIGURE 6. Definition of two specific random variables on the idealized chemistry with five substances.

The random variabl& contains information about the pres- In the example presented here, a joint evekitY) is
ence of specific substances: associated with each valid reaction, and the six possible
outcomes ar¢0, 0), (0,1), (1,0),(1,1),(2,0),(2,1). These
Ve { 1 if Aor Bare presentin the reaction (30) outcomes are not equiprobable, and the probability of occur-
0 if neither A nor B are present in the reaction rence depends on the number of substances considered.

Figure 7 shows the joint probability distribution of ran-
Note that random variables can be inspired by a varietyjom variablesY andY'. It is important to note that there are
of situations, for example, inquiring if one specific substanceyounds for the probabilities. At smaW, there are variations
(4) participates in the chemical reaction, also if twb&nd jn the order of the probabilities, which can impact the results,
B), three @ and B and C), etc. The options{ or B), (A particularly when dealing with sets of reactions involving a
or B or C) can also be considered. Of course, as can b@mall number of substances. For example, this could be rel-
inferred, different combinations are possible. evant when applying the model to a specific metabolic path-
It remains an open question which random variables cagyay.
be used to explore the chemical information contained in the  Figure 8 shows the Shannon entropy of the joint distribu-
set of reactions under consideration, particularly in the casgon. The maximum observed for small reflects the varia-
of realistic reaction sets. For instance, once a chemical ifons and intersections between the probabilities depicted in
used by chemists in one reaction, it is reasonable to assunfgg. 7 (the more balanced the probabilities, the higher the
that they will test this chemical with other substances in pur'entropy)_ Itis important to note that there appears to be an
suing similar reactions. Therefore, its presence could serventropy bound at higher values af. How does this bound
as a marker for specific chemical reactions. change if we define another chemically inspired random vari-
able, as discussed earlier in the text?

10 Ry PVn= N AV ) Figure 9 shows the marginal probabilities of the random
0 Py = P[Np = Np, AV B] variable X, while those ofY are omitted for the sake of
NG 1(3;]3” brevity. Notably, the probabilities tend toward an asymptotic
5 06 e P PlNa> N ~[AV 5] value after a certain crossing point.
0.4 —— Py =P[Np>Np AV B|
0.2 et 1.75
1.50
0.0 — 195
10t 10 .
N § 1.00
9075
FIGURE 7. Joint probability distribution of the evenfsY,Y) = 0.50
(0,0),(0,1),(1,0),(1,1),(2,0),(2,1), for the random variables 025
defined in the textx-axis is the logarithm of the number of sub- 0.00
stanceslpg(V)). Green Pio) and violet (P»o) curves are super- 1ot 10°

imposed due to the symmetry of the adjacency matrix in the com- il

plete chemistry model, the same happens between thé&repand FIGURE 8. Shannon entropy of the joint probability distribution
brown (P»:) curves. depicted in Fig. 7z-axis is in log-scale.
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10 —— R=P[Na= Nyl Variations in mutual information and other entropic mea-
08 - ;’;;’Rﬁﬂj sures were observed under different choices of random vari-
06 ables. However, these findings are not included, as the focus
& o of the present manuscript is to outline the initial concepts un-
R - derlying these topological approaches. Future research will
02 \ aim to elucidate the chemical significance of these behaviors.
04 - - 3, There are many open questions related to these topics.
N Two of the most interesting ones are whether these quantities

can be used to detect pattern formation in chemical hyper-
graphs and whether they can help distinguish between differ-
ent types of patterns, such as cycles (closed regions) formed
within the chemical hypergraph.

FIGURE 9. Marginal probability distribution of the random vari-
able X defined in the text. The-axis is in log-scale.

0.8

o 08 6. Conclusions
0.4
02 Information-theoretical tools seem to be reliable in perform-
00 ‘ ing topological explorations on chemical hypergraphs.
v N md v Different transition probability regimes can be explored

through network entropy. These probabilities can be de-
signed to account for various features of hypernodes (sets
of substances), allowing for the representation of realistic
Figure 10 shows the Shannon entropy of the probabilitychemical reaction sets. In this work, we show that different
distribution depicted in Fig. 9. The entropy reaches a maxifegimes lead to distinct entropy behaviors. Further research
mum due to the observed crossing point in the probabilitieds needed to interpret the bounds of network entropy and the
and also tends toward an asymptotic value. How these trend¥currence of maxima in transition probability, which depend
are influenced by the definition of the random variables, an®n the cardinality of one of the hypernodes.
what chemical information can be inferred from the interpre-  In the same spirit, parametric definitions of probabilities
tation of such bounds, are two open questions in this analysigan be used to test other characteristics of reaction networks.
Mutual information is shown in Fig. 11, where the mono-  chemically inspired random variables were introduced
tonic decreasing behavior indicates that the information ongy explore different internal hypernode structures. In this
variable provides about the other diminishes as the number Qfork, a specific example is presented to illustrate this ap-
substances increases. In other words, as the number of SUsach, Various chemical properties can be incorporated into
stances grows, it becomes harder to associate the presenggs framework, such as the presence of specific substances
of specific substances.g, A, B) with the type of chemical  and their relationships with other features of the hypergraph.

reaction ¢.g, exchange type, decomposition type, or synthe-petecting topological patterns is one of the most intriguing
sis type). This raises the question of how these two ra”dorﬂuestions raised by this exploration.

variables correlate in realistic sets of chemical reactions, as

certain substances are specific to synthesis reactions and otcﬂ]
ers to decomposition reactions. How is mutual information[
affected in these more realistic scenarios, and can it be use
to characterize specific regions of the chemical hypergra
i.e., particular sets of chemical reactions?

FIGURE 10. Shannon entropy of the marginal probability distribu-
tion depicted in Fig. 9. The-axis is in log-scale.

Several open questions emerged from the analyses con-
cted in this work. In fact, unanswered questions outnumber
e resolved ones. Those related to pattern detection could be
interest to various scientific communities and will be a fo-
pr&us of future research.

It remains an open question whether the approach de-
veloped in this work, grounded in the internal structures of

030 hypernodes and hyperedges, can be used alongside existing
0.25 models of chemical reaction networks to more effectively
. capture chemical phenomena.
5015

One of our main interests is the nature of the random vari-
ables used in these explorations. In this work, the choice of
variables preceded the analysis of the data represented in the

0.10
0.05

0.00

e 02 chemical hypergraph. Our goal is to develop models that al-

N low the data to “speak” and reveal patterns, helping us iden-

FIGURE 11. Mutual information between random variabl&sand  tify the most informative random variables. This approach
Y. z-axis is in log-scale. could be highly useful for detecting biases in the data.
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