
Suplemento de la Revista Mexicana de Fı́sica6 011315 (2025) 1–8

Topological exploration of chemical hypergraphs using Information theory
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A chemical hypergraph represents a set of chemical reactions. Hypernodes consist of sets of substances that act as reactants or products, while
hyperedges correspond to chemical reactions, linking reactants to products. Another key structure in the hypergraph is the intersection of
hypernodes, representing substances that participate in multiple reactions. In this work, we study a random walker on a chemical hypergraph
under two different transition probability regimes. We characterize the random walker using network entropy, highlighting differences
between these regimes. Additionally, we examine the structure of hypernodes by defining chemically inspired random variables and analyzing
their joint and marginal Shannon entropies, as well as their mutual information. For largeN , we observe bounds in these quantities.
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1. Introduction

A graphG is a mathematical representation of a network con-
sisting of a set of verticesv ∈ V connected by edgese ∈ E.
A defining characteristic of a graph is that each edge connects
exactly two vertices,i.e., e = {v1, v2}wherev1, v2 ∈ V . In a
pictorial representation ofG, vertices are depicted as points,
and edges as lines connecting these points [1–3]. An illustra-
tion of a graph is shown in Fig. 1.

A hypergraph is a generalization of a graph that allows re-
lationships between more than two vertices [4]. These multi-
vertex relationships are called hyperedges and are typically
represented pictorially as curves enclosing the related ver-
tices.

FIGURE 1. A graph with vertex setV = {A, B, C, D, E, F} and
edge setE = {e1, e2, e3, e4, e5}.

A hypergraph model accounts for higher-order relation-
ships (involving more than two vertices) and enables the
study of features that are not apparent in traditional graphs.
For example, consider a citation network where each au-
thor is represented as a vertex-multiple co-authors on a pa-
per can be naturally represented by a hyperedge. Moreover,
every graph can be represented as a hypergraph, but the con-
verse is not always true, indicating that hypergraphs provide
a more general framework for modeling real-world systems
(networks). This generality is particularly relevant because
real systems often extend beyond simple pairwise (binary) re-
lationships. Therefore, if the goal is to model real-world sys-
tems accurately, it is essential to develop appropriate models
for higher-order interactions.

Figure 2 illustrates a hypergraph. Mathematically, a hy-
pergraph is defined as the pair(V,H) whereV is the set of

FIGURE 2. The hypergraph with vertex setV =
{A, B, C, D, E, F} and hyperedge setH = {e1, e2, e3, e4}. Note
the different size of hyperedgesei. For instance,e1 ande3 have
size 3 (three vertices belong to each of them) whilee2 ande4 have
sizes 2 and 1, respectively.
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FIGURE 3. Chemical hypergraph for chemical reactionsr1 to r3.
Substances (nodes) are represented as black dots and reactions (hy-
peredges) as coloured lines labelled asri, hypernodes correspond
to coloured regionsh1 to h4.

nodes, andH ⊆ P(V )\∅ is a collection of non-empty sub-
sets ofV , forming the hyperedge set.

Another structure, known as thechemical hypergraph,
extends the concept of hypergraphs by allowing additional
types of relationships beyond those present in a standard hy-
pergraph and, consequently, in a graph [5, 6]. Figure 3 illus-
trates an example of a chemical hypergraph (ChemHy). A
ChemHy, is the pair(V, H) such that

H ⊆ {{X,Y } : X, Y ∈ P(V )\∅ andX ∩ Y = ∅}. (1)

As can be seen, a ChemHy has

• Nodes: denoted asv ∈ V which are called substances
in chemical contexts.

• Hypernodes: denoted asX ∈ P(V )\∅, which are
called collections of substances, again in connection
with their application in chemistry, and notice that∅ is
not allowed.

• Hyperedges: connections between two hypernodes.
These represent non-autocatalytic chemical reactions.

There is another structure that models decision-making
processes in laboratories such as the selection of a substance
to trigger a further chemical reaction. These decisions are
modeled as intersections between hypernodes. We call these
decisions chemical jumps [7]. It is worth mentioning that
there are several approaches to the study of chemical reaction
networks by using network science and hypergraphs [8,9].

In the ChemHy model, features are defined to represent
both the properties of substances and chemical reactions.
One of the key features is the degree of a substance, which
refers to the number of reactions in which a substance partic-
ipates. Specifically, it corresponds to the number of hyper-
nodes to which a substance belongs. Reactions are charac-
terized by their size, which is determined by the number of
substances involved in the transformation.

In this work, we represent idealized chemistry using a
chemical hypergraph and study, on one hand, the probability

of transition between hypernodes based on their connectivity
and structure, and on the other hand, random variables related
to the structure of the chemical reactions and their associated
probability distributions. This approach reveals several prob-
ability distributions related to the topological structure of the
ChemHy, making it suitable to apply information theory to
study various topological features of the ChemHy.

2. The model

The ChemHy model represents an idealized chemical spacei

where all possible non-autocatalytic reactions occur. The
model is constructed as follows: given a set ofN substances
denoted as

V = {v1, v2, ..., vN}, (2)

consider the setE of all possible non-autocatalytic reactions.
It can be checked [5] that the number of all the possible chem-
ical reactions is given by

Nr =
1
2

(
3N − 2N+1 + 1

)
, (3)

which is a huge number if one considers that the number of
substances reported by Reaxys [10] is around 27 millions.
Reaxys is one of the largest databases of chemical informa-
tion. If we consider thiscompleteChemHy then we can con-
struct its adjacency matrix, which is given as

Mi,j =
{

1 if r(Xi, Xj) ∈ E
0 if r(Xi, Xj) /∈ E

. (4)

Let us provide an example to better illustrate this con-
struction. ConsiderN = 5 and let us say thatV =
{A,B, C, D,E}. The number of chemical reactions in the
complete ChemHy isNr = 90. The reactions

A + B −→ C, (5)

A −→ B, (6)

A + C + D −→ E + B, (7)

are allowed, but the auto-autocatalytic reactions, such as

A + B −→ A + C, (8)

B + C + D + E −→ B + A, (9)

are not allowed since at least one of the substances appears
among the products and among the reactants. The adjacency
matrix for this example is shown in Fig. 4, where reactants
are represented in rows while products in columns. Exam-
ination of this adjacency matrix gives us information about
the connection of the hypernodes.

It is worth mentioning that the direction of the reaction,
although explicitly written for this example, is not actually a
variable in our model.
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FIGURE 4. Adjacency matrix of the idealized complete chemistry with 5 substances. Empty cells denote not allowed reactions.

3. Network entropy

The topological exploration of thehyperedge structure of
ChemHy and its interplay with theinternal hypernode
structure can be carried out using a random walker that
moves between hypernodes based on chemical reactions. In
this context, a random walk over the reaction hypergraph can
be interpreted as a stochastic exploration of plausible reac-
tion pathways. This framework enables the identification
of highly connected substances or reaction motifs that may
act as hubs or bottlenecks in synthetic routes. Furthermore,
by adjusting the transition probabilities according to chem-
ically inspired constraints –such as thermodynamic favora-
bility, reaction type, or known kinetic preferences– the walk
can be biased to reflect more realistic pathways. Therefore,
random walks offer a way to simulate exploratory synthe-
sis and analyze the structure of feasible transformation path-
ways in complex chemical systems. At this stage, we apply
this framework to study the influence of connectivity and the
number of substances on the walk. Let us now introduce the
definition in the context of a network –a graph [11]– as fol-
lows.

Consider a network withN nodes and letki be the de-
gree of nodei,ii define the probability of going from nodei
to nodej as

pi→j =

{
0, for aij = 0
1
ki

, for aij = 1
, (10)

whereaij is the adjacency matrix element that indicates if the
nodesi andj are connected (aij = 1) or not (aij = 0). Note
that for each nodei,

∑
j pi→j = 1 if and only if the node is

not isolated, that is,ki = 0.

The entropy of each node can be defined as

`[pi→·] = −
N−1∑

j=1

pi→j ln pi→j = ln ki, (11)

where we formally consider that

lim
pi→j→0

pi→j ln pi→j = 0. (12)

The normalized node entropy is calculated by dividing the
entropy of each node by the maximum possible entropy that
a node can have, that is,ln (N − 1):

s(i) =
`[pi→·]

ln (N − 1)
=

ln ki

ln (N − 1)
, (13)

and the normalized network entropy is calculated averaging
the normalized node entropy

S =
1
N

N∑

i=1

s(i) =
1

N ln (N − 1)

N∑

i=1

ln ki. (14)

Let us provide some insights about the role of both,
s(i) and S in the exploration of the topological aspects of
the chemical hypergraph. Consider, for example, the case
of a system with a discrete probability distributionP =
{1/2, 1/2}. It is already known that the Shannon entropy for
P , is given bySe[P ] = log(2), which, when the logarithm
is written in base 2, gives justSe[P ] = 1. In this regard, the
Shannon entropy is providing information about the number
of bits,1 in this case, within the system.

Consider now the expression fors(i). Using logarithm
rules, it can be rewritten in the form

s(i) = logN−1 ki, (15)

hence indicating what we can call the number ofchemical
bits stored in the node(i) of the chemical hypergraph.
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When using this approach in the expression forS, the in-
terpretation is thus the mean number ofchemical bitsstored
in the chemical hypergraph. Of course, this mean value is cal-
culated per substance, becauseN is the number of substances
in the chemical hypergraph.

To apply these entropic tools to the ChemHy case, we first
need to introduce the degree of the hypernodes. This requires
an additional structure. Let us begin by constructing the set
HCH of hypernodes in a ChemHy, defined as follows:

HCH = {X : X ∈ E}. (16)

Then, the degree of a hypernodeX ∈ HCH is given as the
map

k : HCH → N; X 7→ kX =
∑

r∈E

δX∈r, (17)

whereδX∈r = 1 if the nodeX participates in the chemical
reactionr (which means that it is counting the connection of
one hypernode with the others). Consider now the hypernode
cardinality which is given as the map

λ : HCH → N; X 7→ λX = |X|. (18)

We can now use these quantities to study the probability
of transition from one hypernode (i) to another (j), thereby
exploring both the hyperedge structure of the hypergraph and
the internal structure of the hypernodes. Let us introduce two
probabilities of transition between hypernodes. The first is
the chemical probability of transition

Pi→j =
1
ki

, (19)

which in this case, was considered as uniform among the hy-
pernodes connected by a chemical reaction, hence the name.

The other one is the cardinality probability of transition

Pi→j =
1
λj

, (20)

which states that the transition depends on the cardinality of
the neighboring hypernodej independently of the cardinality
or connectivity of the hypernodei. The larger the number of
substances, the lower the probability of visiting the hypern-
odej.

Figure 5 shows the behavior of the network entropy com-
puted for several complete ChemHy models with different
numbers of chemicals. It can be observed that in both cases,
the entropies approach an asymptotic value. In the case
where the probability depends on the cardinality of the desti-
nation node, a maximum is observed.

In the case of1/ki, a global maximum is reached in the
vicinity of N → 10. In the case of1/λj , the supremum is
lower than the maximum value of the black curve. This re-
sult indicates that indeed, the entropy of the path followed by
the random walker is affected by the jump probability of the
random walker. Selecting different probabilities for the jump,

FIGURE 5. Network entropy computed for two different probabil-
ity regimes for a random walker transition from hypernodei to-
wards hypernodej. Black: probability depends on the degree of
the initial hypernode (i). Red: probability depends on the size of
the final hypernode (j).

will tell us different information about the topological struc-
ture of the network: selecting1/ki covers the networkfaster
than selecting1/λj .

Chemically speaking, this finding suggests that the ran-
dom walker’s behavior is influenced by both the information
contained within a hypervertex and its intrinsic properties,
specifically, whether it is the origin or destination of the jump.
Notably, knowing the size of the hypervertex to which the
walker will jump leads to a different outcome than knowing
the size of the hypervertex from which the jump originates.
In the former case, the entropy is lower compared to the lat-
ter; in other words, there is less knowledge when the desti-
nation is unknown (i.e., what is to be chemically obtained)
than when it is already known. Moreover, a random walker
covering the network with1/λj provides information about
a fraction of thechemical qubitsof the network when com-
pared with thechemical qubitsaccessible with1/ki. This is
a clear manifestation of how the entropy can be used to detect
structural topological features of the ChemHy.

One might wonder how these patterns are affected when
considering realistic chemical reaction sets, and whether
these limiting values can be interpreted as bounds for realistic
networks. Furthermore, how are they influenced by limiting
the number of substances that can participate in a chemical
reaction? These and other related questions can be explored
within this framework.

Other options for the probability of transition worth con-
sidering are the following:

Pi→j =
1
kj

. (21)

Here, the transitions depend on the number of connections of
the neighboring hypernodej rather than on the hypernodei.
Hypernodes that participate in a larger number of chemical
reactions are less likely to be visited.

Another case is

Pi→j =
β

λj
. (22)
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Here, the cardinality probability of transition is modified by
a parameterβ. This parameter can be used to model other
effects on the probability of transition. For example,β could
depend on the number of times a substance, sayA, partici-
pates in chemical reactions (its degree). Ifchemically rele-
vant substances are involved in the transition, the transition
becomes more likely (with a largerβ), allowing the study of
the interplay between these two features: the connectivity of
the hypernode and the degree of a substance. This approach
is grounded in the fact that, historically, few substances ap-
pear in a large number of chemical reactions, whereas most
substances participate in only a few reactions [10]. Other ef-
fects and considerations could be incorporated in a similar
way usingβ.

Some open questions connected to these explorations are
the following:

• Can the parameterβ be adjusted to produce a distinct
pattern formation?

• Is it possible to define a correlation measure between
hypernodes?

• Exploring paths in a hypergraph that represents the
chemical space is crucial for synthetic routes and de-
sign. What insights can entropy provide about the
paths in the ChemHy?

Up to this point, the topological explorations have fo-
cused on general information about hypernodes, hyperedges,
the number of substances present, and the number of hyper-
edges for each hypernode. However, we are also interested in
more specific information about the hypernodes that could be
chemically relevant. The purpose of the following sections is
to discuss some ideas and proposals in this regard.

4. Information theory

Let X and Y be two discrete random variables with a
joint probability distributionP (X,Y ). Mutual information
[12, 13] is a special case of the Kullback-Leibler [14] dis-
tance and quantifies the statistical correlation between two
variables. It is defined as:

IXY =
∑

X

∑

Y

P (X, Y ) ln
P (X, Y )

P (X)P (Y )

= sX + sY − SXY ≥ 0, (23)

with the joint Shannon entropy [12],SXY , defined by

SXY = −
∑

X

∑

Y

P (X,Y ) ln P (X, Y ), (24)

and the marginal Shannon entropies,SX andSY , by

SX = −
∑

X

P (X) ln P (X), (25)

SY = −
∑

Y

P (Y ) ln P (Y ), (26)

where the marginal probability distributions are given by

P (X) =
∑

Y

P (X,Y ), (27)

P (Y ) =
∑

X

P (X,Y ). (28)

Shannon entropies are interpreted as measures of uncer-
tainty associated with the probability distribution. Its max-
imum value (ln n with n the number of events) is achieved
when all events are uniformly distributed. Its minimum value
(0) is obtained when only one event has probability1 and the
others have probability0.

If X andY are independent random variables,IXY = 0.
If X andY are not independent, some information aboutX
can be inferred fromY and viceversa, andIXY > 0.

In order to clarify the above-mentioned notions, let us
use an example of joint probability. Consider a dice (six
outcomes:1, 2, 3, 4, 5, 6) and a coin (two outcomes:0, 1).
Throw the dice and the coin and each time register both as
a pair (this is one event), it is possible to obtain one of the
twelve possible events:

{(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),

(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)} .

In this case, both variables are independent and all have
the same probability; hence,SX,Y = ln 12, sX =
ln 6, sY = ln 2, IXY = 0.

Considering that any deviation from zero for mutual in-
formation is indicative of the statistical correlation between
the variables, we wonder if somechemical informationcan
be obtained from this correlation. For example, if the pres-
ence of a specific substanceA influences the selection of an-
other chemical to trigger a chemical reaction. In order to per-
form this analysis, we need to consider the adjacency matrix
and focus our attention on the structure of the hypernodes.
An example of this approach is presented in the next section.
It should be mentioned that other possibilities can likewise be
explored.

5. Chemically inspired random variables

A topological exploration of thereaction structure can be
achieved by defining chemically inspired random variables
for the chemical reactions presented in the adjacency matrix,
as in the illustration of Fig. 6, where we present a specific
example. In this case, the random variableX is built by clas-
sifying reactions depending on the number of reactants (NR)
and products (NP ) as follows:

X=





0 if NR = NP (exchange-type reactions)

1 if NR < NP (decomposition-type reactions)

2 if NR > NP (synthesis-type reactions)

, (29)
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FIGURE 6. Definition of two specific random variables on the idealized chemistry with five substances.

The random variableY contains information about the pres-
ence of specific substances:

Y =
{

1 if A or B are present in the reaction
0 if neither A nor B are present in the reaction

. (30)

Note that random variables can be inspired by a variety
of situations, for example, inquiring if one specific substance
(A) participates in the chemical reaction, also if two (A and
B), three (A and B and C), etc. The options (A or B), (A
or B or C) can also be considered. Of course, as can be
inferred, different combinations are possible.

It remains an open question which random variables can
be used to explore the chemical information contained in the
set of reactions under consideration, particularly in the case
of realistic reaction sets. For instance, once a chemical is
used by chemists in one reaction, it is reasonable to assume
that they will test this chemical with other substances in pur-
suing similar reactions. Therefore, its presence could serve
as a marker for specific chemical reactions.

FIGURE 7. Joint probability distribution of the events(X, Y ) =
(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), for the random variables
defined in the text.x-axis is the logarithm of the number of sub-
stances (log(N)). Green (P10) and violet (P20) curves are super-
imposed due to the symmetry of the adjacency matrix in the com-
plete chemistry model, the same happens between the red (P11) and
brown (P21) curves.

In the example presented here, a joint event(X,Y ) is
associated with each valid reaction, and the six possible
outcomes are(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1). These
outcomes are not equiprobable, and the probability of occur-
rence depends on the number of substances considered.

Figure 7 shows the joint probability distribution of ran-
dom variablesX andY . It is important to note that there are
bounds for the probabilities. At smallN , there are variations
in the order of the probabilities, which can impact the results,
particularly when dealing with sets of reactions involving a
small number of substances. For example, this could be rel-
evant when applying the model to a specific metabolic path-
way.

Figure 8 shows the Shannon entropy of the joint distribu-
tion. The maximum observed for smallN reflects the varia-
tions and intersections between the probabilities depicted in
Fig. 7 (the more balanced the probabilities, the higher the
entropy). It is important to note that there appears to be an
entropy bound at higher values ofN . How does this bound
change if we define another chemically inspired random vari-
able, as discussed earlier in the text?

Figure 9 shows the marginal probabilities of the random
variableX, while those ofY are omitted for the sake of
brevity. Notably, the probabilities tend toward an asymptotic
value after a certain crossing point.

FIGURE 8. Shannon entropy of the joint probability distribution
depicted in Fig. 7.x-axis is in log-scale.
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FIGURE 9. Marginal probability distribution of the random vari-
ableX defined in the text. Thex-axis is in log-scale.

FIGURE 10. Shannon entropy of the marginal probability distribu-
tion depicted in Fig. 9. Thex-axis is in log-scale.

Figure 10 shows the Shannon entropy of the probability
distribution depicted in Fig. 9. The entropy reaches a maxi-
mum due to the observed crossing point in the probabilities
and also tends toward an asymptotic value. How these trends
are influenced by the definition of the random variables, and
what chemical information can be inferred from the interpre-
tation of such bounds, are two open questions in this analysis.

Mutual information is shown in Fig. 11, where the mono-
tonic decreasing behavior indicates that the information one
variable provides about the other diminishes as the number of
substances increases. In other words, as the number of sub-
stances grows, it becomes harder to associate the presence
of specific substances (e.g., A, B) with the type of chemical
reaction (e.g., exchange type, decomposition type, or synthe-
sis type). This raises the question of how these two random
variables correlate in realistic sets of chemical reactions, as
certain substances are specific to synthesis reactions and oth-
ers to decomposition reactions. How is mutual information
affected in these more realistic scenarios, and can it be used
to characterize specific regions of the chemical hypergraph,
i.e., particular sets of chemical reactions?

FIGURE 11. Mutual information between random variablesX and
Y . x-axis is in log-scale.

Variations in mutual information and other entropic mea-
sures were observed under different choices of random vari-
ables. However, these findings are not included, as the focus
of the present manuscript is to outline the initial concepts un-
derlying these topological approaches. Future research will
aim to elucidate the chemical significance of these behaviors.

There are many open questions related to these topics.
Two of the most interesting ones are whether these quantities
can be used to detect pattern formation in chemical hyper-
graphs and whether they can help distinguish between differ-
ent types of patterns, such as cycles (closed regions) formed
within the chemical hypergraph.

6. Conclusions

Information-theoretical tools seem to be reliable in perform-
ing topological explorations on chemical hypergraphs.

Different transition probability regimes can be explored
through network entropy. These probabilities can be de-
signed to account for various features of hypernodes (sets
of substances), allowing for the representation of realistic
chemical reaction sets. In this work, we show that different
regimes lead to distinct entropy behaviors. Further research
is needed to interpret the bounds of network entropy and the
occurrence of maxima in transition probability, which depend
on the cardinality of one of the hypernodes.

In the same spirit, parametric definitions of probabilities
can be used to test other characteristics of reaction networks.

Chemically inspired random variables were introduced
to explore different internal hypernode structures. In this
work, a specific example is presented to illustrate this ap-
proach. Various chemical properties can be incorporated into
this framework, such as the presence of specific substances
and their relationships with other features of the hypergraph.
Detecting topological patterns is one of the most intriguing
questions raised by this exploration.

Several open questions emerged from the analyses con-
ducted in this work. In fact, unanswered questions outnumber
the resolved ones. Those related to pattern detection could be
of interest to various scientific communities and will be a fo-
cus of future research.

It remains an open question whether the approach de-
veloped in this work, grounded in the internal structures of
hypernodes and hyperedges, can be used alongside existing
models of chemical reaction networks to more effectively
capture chemical phenomena.

One of our main interests is the nature of the random vari-
ables used in these explorations. In this work, the choice of
variables preceded the analysis of the data represented in the
chemical hypergraph. Our goal is to develop models that al-
low the data to “speak” and reveal patterns, helping us iden-
tify the most informative random variables. This approach
could be highly useful for detecting biases in the data.
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i. In this work, the notion of chemical space refers to the set of
substances and the set of chemical reactions between these sub-
stances.

ii. The number of edges connected to this node.
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and G. Restrepo, Chemically inspired Erdös-Ŕenyi oriented hy-
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