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ABSTRACT; The basic features of Hartree-Fock theory are the presence of a
single-particle hermitean common potential well operator and
the associated spectrum of (real) energies and orbitals. The
need for a renormalized Hartree-Fock approach to the pertur-
bation-theoretic study of many-fermion systems arises from the
possible singular nature of the two-body force as appears, e, Basy
in He® atoms and nucleons. The Brueckner-Hartree-Fock and
the Bethe-Brandow-Petschek theories (both ot which retain the

idea of real single-particle energies, orbital eigenfonctions
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and a hermitean common potential) are deduced from the dia-
grammatic Dyson equation for the exact one-particle Green
function, Consequently, the set of assumptions thar niust go
into this equation in order to obtain the different variants of

Brueckner theoty are rendered transparent and compact,

L. ORDINARY FORMULATION OF HARTREE-FOCK THEORY

There exist several formulations?! of the H_artree-Eock approximation;
we review briefly that of Goldstone which has been useful for previous dis-
cussions of Brueckner theory. Consider an N -nucleon system with
hamiltonian

H=T+v (la)
where .
. ﬁZ N 4 N
T=-2 3V and o= 3 v (1b)
2m i=1 °* pgg Y

and consider also the reconstruction

H 2H0+V (2a)
with
N 7?2 2 N N
H=3%(-"_V +y)and v= % v. -3 U (2b)
) ey 5 t 1 R !
1 b7/ 1< { 1 =1

where U; is an as yet undetermined single-particle operator, the choice of
which will control the convergence rate of a subsequent perturbation ex-
pansion in terms of the residual interaction V with the eigenstates of the
unperturbed hamiltonian Hf as « basis. Requirement that the expectation
value of If calculated between the lowest energy eigenstate of E, be station-
ary gives the HF choice of H_ and leads to a set of N coupled, one-parricle,

Schroedinger-like non-lincar equations with a non-local potential well:
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‘ﬁ V q:(x)-rUcp(xl)== Eigc".(xl) (3a)

7m

U, o, (xii = Ir.dx2 v(' x - x2D b {r.',;‘.},|:-x2) = frz) P; {xl) =

;=1
- o (x,) 9, (%) @, (x,)} | (3b)
fdx cpl.(x) P; (%)= 51‘;’ (3¢)

where | dx means Integration over continuous and summation over discrete
variaoles.  In occupation-number representation Eqs. (2) become

- * %
Hn—?eia’. a; (4a)

F HF 4+ )

e ( .
? }_k z;,kla a a, ay - Z U a ih)

;,-k.l*fd’" fdx fr)cp(x)v”x-—xl)q:kfx)u{x (5)

HF

u, ;jdx]cp*l.(xl)ulcpj(xlw (6)

and the label HF is introduced to stress the fact that Egs. (5) and (6) are
calculated with the HF solutions of Eqs. (3). If the lowest eigenvalue of
£q. (4) is non-degenerate then the total ground-state energy of the svstem

E=W + 8E = S € u + & 7)

where the first term on the r.h.s. is the lowese etgenvalue of H_s lves , ithe
state with n, =1 for the lowest N single-particle states and n; =0 for the

rest, and the energy shift 3E is expressible as a sum of contributions from
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all corresponding Feynman diagrams. These diagrams possess two kinds

of vertices: a) the four-vertices and b) the pair-vertices

Lt

(8)

shown with their respective contributions. The HF choice of {7 is such that

always the sum of the three fragments

|

p—
__g.__r__g._
i

{(9)

}

1s cancelled exactly. In view of Eq. (8), and the rule that a hole line (oc-
cupied orbiti as well as a closed-fermion loop each give a minus sign, just

means that

HF L ~HF )

! e % ¥

Ll] k yl‘k,]’knk 5 (lU..:
vz.?.‘k[ = U:'j.kf - U:‘j,lk . (10L)

The HF ener

grams determining 8F in Eq. (7) to all first order vacuum diagrams, namels

s e HUF o - ;
gv shife 3E7" is obtained by restricting the infinite set of dia-
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8 RER e WOF W

(11)

so that I.q. (8) and the abovementioned rule, as well as the additional new
rule that to cach vacuum diagram one ascribes the factor if/g, where g = 2
or L according as the diagram has or does not have left-right symmetry, gives

sEMF = ; I%.U;I;Iﬁ; ;= ?U n:. (12)
I'his together with Eqs. (7) and (10) finally gives
D
i PY o2 1
= ?(Ei—%Uﬁ.F)ni (13)

whereby it is clear that, in this approximation, the original system of inter-
acting bare particles has been replaced by one of non-interacting dressed
(or quasi) particles which are complctel) defined by the set of single-particle
(real) energies and orbital states {E (x ))z 1,2,...N;N+1,...0 }or,
equivalently, by the specification ()f the self consistent field operator v,
This very simple and physically appealing formalism must hnwcver
be abandoned in any reasonable generalization of the HF approximation.
Nevertheless, it 1s convenient to preserve the main pointof the above picrure:
the replacement of an interacting svstem of bare particles by some ideal
system of non-interacting dressed particles, excefr that now one must allow
for the possibility that the new quasiparticles might possess non-infinite
lifetimes. In that event, it will be impossible, in principle, to characterize
these quasi-particles with rea/ energies €; and three-dimensional spatial

funcrions v;(x ) which describe only stationan, states. By the same token,
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the

concept of a hemitean potential field operator U, will no longer be
useful.  On the other hand, the one-particle Green junction, or propagaror,
aveids these notions and is indeed found useful for a generalization ol 71
theory.  We thus introduce it below by formulating ordinary 111 thew

2. ONE-PARTICLE GREEN FUNCTION FORMULATION
S RG]

Before defining the one-particle Green function consider the
normal set of (plane-wave) solutions of the zero-order hamiltonian of iq. |

for particle 1 we have

232
F P .
~5 v = Togdad
i

where
Qs D 5
T,=5"% 2m
and

o W -
L/Ji(x])_Q e Os.,rf % 7
P ]

with

* Il <
Idxltf’)!. (x!) W (x1\ =10y (14)

In occupation-number representation this

with (! the normalization volume.

pives

5 ="
I afaj. a,a, (15a)

SN
.

oy
>0
)

ST
1 \.[ P —
= ‘-H’-[Z!.,f)
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and

! = ( [ e X ol — "--’_J /

v gy = A%, [ del(x) L/Jf ()} vlx ~x, 0ib, () fy () . (15D)

sigentunctions defined by Eq. (14),as well as those of the I[F Fgs. (3),
form = complete, orchonormal set related by the unitary transformation

=T (0; (=2 i P (16a, b)
I [
E‘C:kcjk = Sz’j = %c;'. ;- (16c)

2 - + =y = - - =
Since the fermi operators @, &, create and annihilate particles in the HF
state <. (

. & i
p; (x), while a, , a. do so in the free state \,b‘.(x), Eqgs. (16) lead to the
canonical transformations

_ " _ T
= ?Cjiaj’ a chf a - (17a,b)

ihen the field and number operators, respectively, can be written

Yx) = Z@i(x)a]-: 2l (x)a, (18)
] :

+
n=za;ar.=zaiai (19)
i i

Finally, because of Eq. (16a) we note that Egs. (5) and (15b) are related by

HF * * .
s S (2
"Ikt mgpqc”"’ €nj Spk Cqi Ymn 2q (284

Again, assuming the lowest eigenvalue of the unperturbed hamiltonian T to
be non-degenerate, the ground-state energy of If will now be

=E +AE =3 T.n.+AFE
0 1 )

g
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with AE the energy-shift based on the free-particle unperturbed hamiltonian
Iy
The one-particle Green function is defined as

Gy (b=t = <T{a;(n a’(t")}>

il

= <a;() @ (t) 6=t ) - a () a, ()6 -1)>

1]

-1 (i.j(t-r'w@(z'-t)f;[.].(r—t') (22)
with

a;.(r) = exp [%_Hr] a; exp [-_gHt] {22a)

where expectation values are taken between exact, fully interacting, ground-
state cigenfunctions of H. The bare one-particle propagator is now obtained
from Eq. (22) by replacing everywhere in it H by the pure kinetic energy oper-
ator T, since then ai(r)= exp [—%Ti!] a; from Eq. (22a), so that

0
Gy (T)= 8, G (7)

G2(T) = exp [—;_Tl.”."] {(L-n) BTy -n, (- T},  (23)

Also, using Eq. (17b) in Eq. (22) with H replaced by H, , and noting that
a (t)= exp [—;E tla a; , one gets the HF dressed one particle propagator.

(:‘ T\—Zc‘kckexp [ﬂ-; T] {(l—nk)Q(T)—ﬂkg("T)}

E'.t

= O(7 )3 (rY+8(-7) G “‘:*‘“(T)_ (24)
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Knowledge of the exact (or approximate) diagonal retarded one-parti-
cle Green function G, (7) in Eq. (22) is sufficient to determine the exact

(or approximate) energy shift of Eq. (21), since (see Appendix)

(25)

AE =+

270 1

1 ~ |
3 EL+r)6. 0,0 0]

g i 1 at ) 1 ,

=l

where g is the coupling constant in H{(g)= T + gv. This formula allows the

calculation of approximate values of AF, and hence of E by Eq. (21), solely

on the basis of the corresponding approximate form of fo Vb8 !g) -
The HF -dressed propagator is defined diagrammatically by

il
+

m
tl
(26)
and formally by
HF , 0 p
G,.]. (¢~2") = G (-1t )81.?.+
+Lj+°°d: S =) (=0) G kb =3
B lklmvil,km Hy WG K )ij t}-t )
(27)

where Eq. (10b) has been used to express both direct and exchange contri-
butions in a single term. Combining this with Eqs.(23) and (24), integrating
over times (after introducing the proper convergence factors) and using the
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unitarity relations Eqs. (16¢), one obtains
(F!--E].)c:. +5_,; ”lkm (Ecmschns)f;/‘j =l (28)

This infinite set of coupled algebraic equations obvious] ontains the

same information as the ordinary HF equations (3) for bo occupied (here
= 1) as well as unoccupied (here n; = 0) stares.
It must be verified that this new formulation of HF

cquivalent to other forms, in particular to that of Section I. Let us calcu-

late the integrand in Eq. (25) with the rerarded part of the HI ~dressed propa
gator of Eq. (24); one has

theory is indeed

lZ (-ﬁ—i‘f T.) HF(’ 4 Ig) :—]*2(6 -T. (.'_-.(".*'}i‘ =
2y i ot , 3 4 R A S
t =¢
= g 3 b L 3
-:?—ilzl’em U:'I,km (gcms Clsns)(zck :] I) 3 (297

the last step following from Eq. (28) with v — go.

Now Eq. (20) for v = gv
in Eq. (13) gives

E”F() ZEn—g Y o {Ec? (2 n,)

(30)
2 mnpq mn,bq s MmS ps s i ny q] ; E

from which, upon noting that both €'s and ¢'s now depend on g, we have

HF e
dE (g =3 i ‘_____I__ = f
S L TS IO CR
dc de
. ~ L % 4 ms * ps
J w:ﬁ«?v’””:P‘?(z njy ‘Un]) [%{—T&'_—(P ¥ Cms _dg }ns}
313

On the other hand, Eq. (28) for H(g)=T+gv

, afier deriving with respecr to £.
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multiplying by (:'7. n;, summing over (#,/) and again using Eq. (28), gives

mr 15 s

-3 Iy 4 ¥ ;H km(Zc c;rrzr)(chscfn ) +
7 LRm ’ r 3

A . . de;. 4
TE -f‘\'{ Lil, kem (hcmfis”s) I:z {Crm Ir 4 “mr Clr} #] =0.
1LEm - | r dg dg

(32)

This equation permits eliminating all derivative terms in r.h. s. of Eq. (31)

leaving, since d/dg AE(g) = d/dg [F (g) - Eo] =dE(g)/dg, the result

dhEHF 1 ~ , .
,__TIE#(_&) = = '.ilV.'_f,kl(é‘cfscksns)(zcjr Clrnr) . (33)

Finally, comparison of Egs. (33) and (29) leads to

il

S[(F 9 SHF ' i
- ST 2 +T) G lg)ir,_. (34)

7 { ¢t =1t

P\Jl'—‘

or, since AEPF(0) = 0,

AR = {‘1‘5.2[(“_+1;)6,-”f(t,t’|g>]t,: . 39)

1 .
2 g 7 i ot t
To summarize, the result just obtained for AEYF follows basically from Eqs.
(13),(23), (24) and (27).

To complete the proof of equivalence between the two formulations-
of HF theory thus far presented, we must show that the HF equations (28)
can indeed be obrained from Eqs. (3), (9) and (10). Using Eq. (16) one can
transform Eq. (3a) into

= < > =
(I". Ex') =7 &2 z, Cpy Ujk 0. (36)

Again, if Eq. (16) is used in Eqs. (10) together with (20), one gets
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3 e = ] * e U : (37
oo @i ai b ",;”k,,,,,zpqcm: nk pjSqkVmn, pq
Lse of IIq. (16¢) reduces this to
7 = N e 3y
l'jk m,_q jm,kq(‘;cmscqs”s‘ (38

which when inserted into Eq. (30) gives just Eq. (28).

Note that from the basic definition Eq. (26) of the HF -dressed one-
particle propagator, the free one-particle propagator is being dressed on/y
with the so-called first-order self-energy parts, namely

|
r_._..o and P ’

but account 1s taken of the possibility of inserting these parts into one
another an arbitrary number of times up toinfinity. Thus, in first and second
orders oné includes into (}‘:;F the following diagrams:
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but not the diagrams:

which are second-order self-energy parts. Correspondingly in AEYF one is
incorporating contributions of vacuum diagrams which are contracted from

the first-order self-energy parts mentioned above, 1. e. , whose external lines
are joined together. So, in first and second orders, for example, one in-

: A HF .
cludes into AF the diagrams

(R G

but not the diagrams

00 D
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3. GENERALIZED BRUECKNER-HARTREE-FOCK THEORY .

Coansider the generalization of the HF theory developed above, con-
(¢-1') as

— : o ) . ) .BHF
sisting in defining a new one-particle propagator (‘z'-;‘

r LI
4
Foa) y
D = 4=+
Alj
e e

(39)
or, formally as
BHF LA .0 '
G (t=¢")= (;ij(f—t ) Sﬁ +
§ + 0o + 0 ~
+ 1 . RN gty A0 -~ BHF By ,.B§IF{ r_
- Im dxllm dr! k.FmK'.Lkm(ti )G (1=t )G (2/=2 =0) Geg (5=,
(39a)
with
Ky om0 S Ko AT Dmly g TPV

The shaded “blob” in Eq. (39) is a generalized Brueckner reaction matrix de-

- y; N
fincd as - - .-\I._ il E—47) oF
f} } i
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and formally as

i S BHF , _ BHF g
Aiw dzlpq_;m i, mn O (F=1 )G (4=1)Ky 3 (2 ="} . (40B)

The above formulation is more general than the usual BHF theory in that
both particle-particle as well as hole-hole ladders?® are included, since in
Eqs: (40) 2> L oas well as r<r1 are possible. Also, as is clear from Eqgs.
(39), ladder 1insertions are possible both in hole as well as particle lines.

The vacuum diagrams whose contributions are accounted for in

1 7 g .
ARERR =1 1748 5 1R 20 14 ™m0 3], pa)
t =i

i 3 e

|
‘—a.IJ"

g 0 . 1 HF "
ire analogous to those mcluded in caleulating AEM previously, except that

mstead of the “bare” p-interaction lines we now have K-interaction “blobs™.



76 Tolmachev and de 1.]lano

- o . A ~BHEF : . : -
For example, into AFE one tncorporates the following diagrams

o (000 ()

efc,

etc.

eic.

etc.
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Note that a// first-and second-order vacuum diagrams are included in NETF

Also. manv but not all third order diagrams are included; in particular one is
including third-order diagrams with self-energy insertions of the first and

second order but one is not including third order diagrams like

NIRRT

Now, it seems that in principle 1t is impossible to reformulate the

atc.

above generalized BH I theory 1n such a way thar the notion of real single-
particle energies, orbital eigenfunctions and hermitecan common potentialwell
is retained. Nonetheless it is possible to introduce certain approximations
which allows us to keep this picwure and we now examine this in detail ob-
taining the usual Brucckner-Hartree-Fock” as well as the Bethe-3randow and
Petschek® schemes.

Consider the effective interaction K-operator tn Eqs. (39) to act

instantaneously namely put

el ] ry & t. > BHF ;
K (rl-fli—.ﬂti !1) ij km (

-
[§]
—

1j , km

This assumption makes Eq. (39a) entirely analogous to Eq. (27) of ordinary
£

i),

HF theory so that, correspondingly, one now has, instead of Fq. (2

putting # = 1,

BHE (") = E‘ik‘;k exp [=igg (1=t {0 =n ) Ot ="y =0, 01"~ 1)}

17

G

~

= 0=ty G (1=t + ("= 1) GEM (11" (43)
where the "s and €75 of this expression now satisfy the BHF cquations

(T.- €Y e, + & KBHF (3
ms

‘* N o P
’ / ] Eilm il . km (13??!) I»‘Cf = 0 (44)

als
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which are formally the same as the HF equations (28) except that the bare

interaction operator v is replaced by the (instantaneous) reaction operator
K BHF

Moreover, as in obtaining Eq. (30) previously, one now gets

;BHF y 1 : BHF .o
E = s B e 5 .3 .
g . 2 mnpg mrx pq( Cmr pr r)( - (uscqsﬂs)
. BHF ;
:2,(6.—l_u,. )n. (45)
‘ B T f

where we have defined

uBHI— = UBHF .* 8 (46)

% ik ki’
/BHF _ v  BHF S 47
U = XKy, (2 fe€, o) - (47)

Equations (44) to (47) constitute the basic expressions of standard BHF
theory. Now the main assumption Eq. (42) is strictly speaking not con-
sistent with the defining Eq. (40b) for the reaction operator K. To see this,
substitute Eq. (43) into Eq. (40b) and, defining

+ >0
Kl.j,k[(a))zim dtexp [zcut]K” e (2) (48)

multiply the result by exp [iw¢] integrating over ¢ from —oo to o and
making the appropriate change of variables, one obtains (with 77 a small
positive quantity).

=gl = ' ’ 5 * ¥
Kif:k[{w) ikl 2 Yij mn = “msps “urSgqr

mnpq sr
(1 - )(l—rz ) n.on_ i
e — pq .kl i
£+€-—u+;n €5+er—w-z7]
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which is clearly inconsistent with Eqs. (42)

and (48) which would give

. BHF
Ky p(@) =K% (50)

l.e., energy-independence of the reaction operator.

Standard BHF theory
ignores the last term>' °©

in Eq. (49) and furthermore attempts to reconcile
Eqgs. (49) and (50) by using an “average” value of w .

Finally, we discuss the Bethe-Brandow-Petschek theorem.® which is
essentially a scheme that again permits a standard single-particle interpre-
tation of Brueckner theory. The assumptions applied to the general formal-
ism Egs. (39) to (40) are: a) neglect completely all hole-hole ladders in Eqs.
(40), b) replace all particle propagators by their zero-order approximation
Eq. (23) and ¢) in dressing the bare hole lines consider only a certain class

of insertions namelv, those with time-orderings like, e. g., for second-order
insertions:

h time

t 4 h [

- but neg/ect those inscrtions with time orders like

[

LI o
t' O P .
time
te -
H
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Put briefly, in the BBP theory only hole lines appe

ar dressed and then only
with a restricted class of particle-particle ladders.

The reason for as-
sumption (c) is just summability of the selected set of insertions.

tience
in the BBP theory instead of Eq. (39a) one has: for ¢ <’

hole propagator)

i t

. £ P | g
Gy o (=1 =Gl -1V 8 4L [ ar [ ‘4’ 5 gBEP
iy H iy # 1 1

; (¢ —+")
4 s lklm U e ]

0 v B3p ' . BBpP ! [
= - - . K =
XG, (¢ LG, (£, ~f ~0G =8 )

i {51a)
and for +> ' (particle propagator) just
BBP oty el 5 =
G;’,‘ (t=1") G; (t=1 ),”. : (51b)
Instead of Eq. (40b) one now has for the B3P reaction operator: for ¢t <"
BBEP ' ;
o 52;
Ki,-',ki (-t }=10 (52a)
while, for ¢> ¢
BBP / . 0
; t-t"Y=y. L 80t-t'-0)-% [ dt S v.. @ b=y 3
Krf,kff 7= Yij ki ) £yt Lpg HhRqP 1
O BBP N 5
X(,q (¢ i]}l(pqﬁ[(f ’;J (52b)

: ; .y BHF .
and we note that K®®F is defined less restrictively than K above, Lq.
(42). Combining these two equations with Eq. (23) one obtains, for 7 posi-
tive only of course,

N T
,BBP o I . :
Ky gt (T)= v 4, 8(7-0) - [ dr ¥

P lpq!";']"pq(j."’?p )(I—qu) "

A . BBP
%l7P+ rq)(T_tll]KPq,M(tx)

*exp | -

whose Fourier transform by Fq. (48) is
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— ‘ (1 =y 1 —nq) HBP 5 . 4
Kr’j,kl () = Y% k1" 3‘,? Yiibg - e K gkl () (54)
A

Equartions (5])can now be solved by writing, in analogy with Eq. (24)

for the ordinary HF -dressed propagator,

(;!.‘j’.‘“’rx—r') = exp [—%Ti(t—!')](l—n’) 5,','9("“')‘

L&y

N oo ﬂs exp [—I_ Es(!—t‘)] @(['-—t)
s # (55)

Ot=1") G >" (¢=4") + 61" -1) G20 (e-1"),

il

the first term on the r.h. s. being the particle- and the second term the hole-
propagator and where the ¢’s and €’s are yet to be determined. Combining
i2gs. (55) and (23) into Eq. (51a), using [£q. (16¢) and Eq. (48), one arrives
at

(T; - €.)(n; exp [—% Tr.t] - ngexp [—‘;’; Est] ) Gt
. « ~BBp 1 z
* k%'m):[(il,km(er = Es)cmrc?rﬂrcks (exp [-.g th] - Exp [-,}; tsf] ,\1'1!-?132 0.

Thus, it follows directly that for occupied states s and /7, no=mn;, =1:

o - =BBP * -
(Ii Es) Gis ’ k%m Er:Kil,km (Er * 63) Soir Ui, Sy =0 (57a)

while for unoccupied states s and 7, B =n=0:

and for s and 7 such thar either me=0,n=1o0rn =1, n,=0:
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c..=0. (57€)
Finally, Eqs. (55) to (57) used in the equation

1 = -
AEBBPs L [Tdg 5 (9 -T)6oF (1, | ) (58)
2% g 4 ot 1°7H g

gives, analogously as before,

BBP _ D vBBP * *
E = 3 €N, ¥ Kij,kl (€, ¥€) Cz'sckscjrclr”s”r

s 2 ijkl rs
B 1, BBP 'y
:E(Es'gus ) (59a)
where one defines
BBP *
by =S 5P 4, q, (59b)
f
BBP _ v BBP %
Ut.k (3) = j}ir K!],kl erC['ﬂr (3()(:)

which are the basic equations of BBP theory.
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APPENDIX

For the hamiltonian H(g) = T + gv we prove that AF = E(1l)- E@D],
where F(g) = <l}’(g)iH(g) [ W(g)>, is given by

[y (T 2+g )8 et leil . ap
o g j i Ot vy

Using the definition Eq. (22) for the retarded Green function one has

F g = ' +
— 2L Gyl ) =i =it
7 or Gyt lel= L

a & + L > = - g 4 -1

5, <4 ()8 ) > = = <a (') [H, a,{2)] >

the last step following from Eq. (22a). In view of Egs. (15a) with v = go
[H,af{t)]: - Tja(t)- g zmuk s ak(t)a (1) a(t)

so that

- ﬁ a - I o F
;M('_ O +T) Gy (1,1 [g)] . i-,-k%,., <af(r)aj(t)a(t)a (t)>

- =g<¥()|v|WE) > . (1.2)

LAE@) =2 [B+AR@]= 2 <W(e)|T+gv|Wie)> =
dg dg dg

=<¥@)|v|¥@E) >,

so one finally has

1 1 1
AE = [ dAE(g)= [ <W(g)|v|W(g)> de
0

0

which from Eq. (1.2) gives Eq. (I1.1).
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225.

RESUMEN

Los elementos basicos de la teoria de Hartree-Fock son la exisren-
cia de un operador hermitiano, que corresponae al potencial comun de una
sola particula, y el espectro asociado de energias reales. [a necesidad dc
emplear una teoria de Hartree-Fock renormalizada surge de la posible exis-
tencia de singularidades en la fuerza de dos cuerpos como succde, por ¢jem-
plo, cntre dtomos de 3}[0 b4 nucleones.

lLas teorias de Brueckner-Hartree-Fock y de Bethe-Brandow-Petschek
(que retienen la idea de energias reales de una sola particula, de orbitales v
del potencial comin hermitiano), se deducen de la ecuacion diagramatica de
Dyson que dehe satistacer la funcién de Green de una particula. Como con-
secuencia, las suposiciones que se deben hacer para llegar a las disrtintas

variantes de la teoria de Brueckner, se expresan en forma compacta y clara.





