Revista Mexicana de Fisica 21 (1972) 87-113 87
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We use the classical construction of the group ring to present a
pair of hamonic transform functions as the coordinates of a
ring element in two different bases: one, a function F(g)on the
group manifold G, the other 5(;’) on the set @ of unitary irre-
ducible representations (UIRs) of the group. The transfor-
mation kemel is given by the UIR matrix elements (MEs) of the
group ﬂ](g). We develop this mathematical formalism in order
to present in a concise fashion several results in relativistic
kinematics, Toller’s partial wave expansion and some field
theories on the Poincaré group. In particular, we prove for the
orthogonal groups three theorems which have direct analogues
in Toller’s work: 1) functions on spaces of cosets lead to a
reduction in the expansion basis, 2) harmonic transformation

with respect to a group and one of its subgroups yield a re-

" The greater part of this work was done at the Dept. of Physics and Astronomy,
Tel=Aviv University, Ramat Aviv, Israel.
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lation between the partial-wave coefficients, familiar from the
relation between a Toller pole and its Regge daughter poles,
and 3) the (Sciarrino=Toller) factorization of the residues of

the former implies a corresponding factorization of the latrer,

1. INTRODUCTION

Harmonic Analysis refers to the expansion of an arbitrary runction
F(g), “well-behaved” in some sense, in terms of a complete and orthogonal
set of basis functions lgj(g) . The carrier space geq on which the function
F is defined gives meaning to the completeness and orthogonality of the
basis { )7 } with respect to a definite scalar product. It is usually some
subset of the R” space (R, real field).

When on this space (3 we can associate to every ordered pair of points
(g, &,) a third point g in (} such that the space has the properties of an
n-parameter locally compact Lie group (}, we can choose the set of basis
functions l()i(g) to be the unitary irreducible representation (UIR) matrix
elements (MEs) of the group. These constitute, due to the Peter=Weyl

theorem!

, with an extension given by Rgczka?a complete and orthogonal set
of functions under the Haar and Plancherel measures. The “partial-wave
coefficients” & (7) of the expansion can then be considered as a function on
a dual space jeé of UIRs, harmonic transform to F (g) on Q 5

tarmonic Analysis on a group manifold refers then, to expansions in
which the eigenfunctions are the matrix elements of the regular represen-
tations of a group. From the work of Naimark?® we k-~w that for locally
compact topological groups, “enough” eigenfunctions - si. Fit in general
this problem involves rather delicate considerations of topology and functionzl
analysis. For our purposes, however, we shall present, in Section 2, the
algebraic aspects of Harmonic Analysis in the language of the group ring *.

We shall consider a ring element F and its coordinates in two bases
which we shall call the “group” and the “representation” bases. [n the
first one, the basis vectors are labelled by the elements of the group. The
coordinates of the ring element constitute then a function F(g) on the group.
The second basis is more difficult to visualize,butit turns out that the basis
vectors are characterized by the labels of the Unitary Irreducible Represen-
tations (UIRs) of the group and by “row” and “column” indices as the UIR
matrices themselves. The coordinates of the ring element F constitute thus
a matrix function J(j) on the space of UIRs of the group.

]
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The kernel for the transformation between these two sets of coordi-

nates are the UIR matrices.

In Section 3 we introduce among other concepts, kets, the convolution
(ordinary) and “coupling” products between elements of the ring, scalar
product and the norm. We treat concretely SO, , the n-dimensional orthogo-
nal groups in Section 4. There we prove in a straightforward manner some
of the interesting results given by Toller and Sciarrino®*® for the 0, , group:
(a) A reduction in the set of expansion basis for functions on the space of
left cosets SO,_, SO, or the two-sided cosets SO, _\SO, /SO"_I(corresponding
to the result that only M =0 Toller poles contribute in processes involving
spinless particles). (b) One partial wave in an §0, expansion is equivalent
to a family of daughter partial waves in a SO, _, expansion (corresponding to
the Regge daughter poles of a Toller pole). (c) Factorization of the partial
wave coefficients in the former implies their factorization in the latter(corre=
sponding to the same result for the residues of the Toller and Regge poles) .
Since this work was performed, the corresponding theorems have been proved
for 5O, by C.P. Boyer and F. Ardalan’.

A group of particular relevance in Physics is the Poincaré group, a
spacial case of the 15O, and 15O ., , 8TOUps treated in Section 5. Some of
the spaces of cosets are of interest since they can be used as carrier
space s8 919 for wave functions in order to describe objects with extra degrees
of freedom as well as with a mass and spin distribution.

Applications of the present work include several later papers. The
kernel reduction technique was used to determine complete sets of functions
on homogeneous spaces''. The use of the UIRMEs as complete and orthogo-
nal sets of functions labelled by the canonical chain of subgroups has served,
when the group manifold is deformed through a transformation generated by
operators built out of the group’s universal enveloping algebra, to determine
the matrix elements of the next higher group with a negative term in the metric,
i.e. the SO, and SU”,1 groupsu. Finally, the group ring construction has
been shown to be useful when applied to the Weyl group, in providing a
mathematical framework for the ring of quantum-mechanical operators”.

2. THE FORMALISM OF HARMONIC ANALYSIS

Let (} be a group, g and element of (}, and G the order of the group.
Construct a G-dimensional linear space, one of whose linearly independent

sets of basis vectors can be chosen to be the group elements g themselves.
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The vectors of this space:
A=SA(gg, g€} (1)
&

constitute the elements of the ring K. The symbol S, geq , means Zg , g€

for finite groups andfdg, where dpg is the Haar measfre, for continuous groups.
The function on the group manifold, A(g) will be called™ the Group-Spectral
Function (GSF) of the ring element A.

The addition of two elements of the ring is associative and commuta-
tive, its neutral element 0 has 0 (g) = 0 for its GSF. The product law of
two ring elements is induced from the product law in q,; it is commutative if
( is abelian. Associativity holds and the multiplicative neutral element ]
has a GSF lig) = Sq(g) , where Sq(g) is the group-Dirac distribution, such
that for any test function f,

Sfg) (g)=f(e), ge
ggSQg fle), g€

where e is the group neutral element. It is the Kronecker-8 function, S(g, e),
when the group is finite and can in general be expressed as a Dirac -S-distri-
bution in the parameters of the group if this is continuous.

Itis a fundamental theorem* that the ring R can be decomposed
uniquely into minimal two-sided ideals 4 generated by their primitive idem-

potents ¢’ . For finite groups, we can thus write:

R=8'¢ 84,58, 1= 5 .

i=1

(For continuous compact groups the sum is infinite and for non-
compact ones the index j takes a continuum of values as well). Finally,
we can decompose each two-sided ideal 7}/ uniquely into its minimal left
ideals &; generated by their primitive idempotents e;’ 1.6,

J' . . ' r d(’)
O=d vl =% 3 &

i
d(j)’ iTamay ™
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And thus, for every ring element A we can write, using the properties of

idempotents:

where
Aim. = e"’; Ae:,,
maps (by right multiplication) J_ into &m. :

One can now show that it is always possible to choose a basis for

these left-ideal mappings, eﬂ’m ¢ such that

i koo _ o7
Cm' Cant Comn! Sj,k Sm',,, (2)
and thus write the ring element as
; d(j) .
A= 3 G () ep- (3)
j=1 mm' =1

The function ﬁmm, (j) will be called the Representation-Spectral
Eunction (RSF)' of the ring element A.

Clearly, to 0 corresponds 0 ol o0 T, X i) = 8m ' Since A
can be written both as (1) and as (3), the next step is to relate the GSF and
the RSF, considering the RSF of the basis vectors of the decomposition (1)
as has been done in detail in Reference 4. The transformation (for finite

group:} from the RSF to the GSF is:

mim

A@=399 5 Q.00 , @ (4)
i G omm'

where d(j) is the dimension of the UIR labelled by j and G is as before, the

number of elements in the group.
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The transformation kernel E:’m, (g) is a function both on the group
space (} and on the representation space #. It is the RSF of the group

element g. The group property yields
SO (e) 8. e =B (e 8,)
:’ mrx(gl) um'(gz = Sm! 8,8,

which is, of course, the multiplication law for the representation matrices.

As the GSF of the left-ideal mapping unit vector e]
1) we can write the relatlon between the function

gt tUms out* to be

proportional to Q e
A(g) and the matrlx funcnon CL(]') by:

A = STr(AG) B e™h), jed (5)

AG) = S A B'(e), g€ (5b)
g

In (5a) Tr means trace and the symbol S stands for 3 .d(j)/G,je &
when the group is finite and, we can convince ourselves for d(])/V,jEé
where V is the volume of the gioup when (} is continuous and compacr If
the group is non-compact, bott d(j) and V are infinite and new problems
appear: the existence of the trace in (5a) and the square integrability of the
GSF and the RSF. The cases which have been studied in detail, namely
02 . in ref. (5) and O 1 in refs. (5) and (15), suggest that for square-inte-

rable functions G (Sa) can still be written, the generalized sum over 2
becoming the integral with the appropriate Plancherel measure !¢ , over the
continuum of representations belonging to the principal series, if it exists,
a sum over the discrete seri:s.

For this weighted generalized sum it is useful to introduce the repre-
sentation-Dirac distribution 8 g (7, ], ) with the property

SIG8gG,i) =1G,),jed
71

for any test function f.
For finite groups this means 5&(]’,]’0) = 5]. i G/d(j) while for con-
*o
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tinuous groups, the group volume V replaces G. The orthogonality and
completeness relations of the UIR matrix elements can be obtained from (5).

Putting A = g, (5a) gives:

STe(9'g) 8(e,) = 88,8, i€ R, (6a)
I

while for A = e (5b) gives

|

SO ()00 (@)= B B 5300"), 8€G . (6D)
g

which is a method of calculating the Plancherel measure.'® Using (5) and
(6) for a pair of ring elements A, B with RSFs ( and B we obtain using the
unitarity of the kernel

*

Din(g']) = [@im(g)] |

]m,n

(A,B)=S = G ()B,, () =SA (2B, jed, geG,
g
)

which is a mapping of xR into the field of complex numbers with the
properties of the inner product.

For A = B (7) gives the familiar Parseval equation and allows us to
define a Hilbert-Schmidt norm for the ring as:

HAHQESE1(1,,,,,(1')\2:5|A(g)i2,f€é,géq, (8)
] mn g

In order to clarify the connection between the left-ideal indices m,n
of the RSF and the chains of subgroups of (}, consider a maximal proper
subgroup ¥ (3. Under right multiplication by the subset b€ K some of the
left-ideals &Im are no longer mapped into each othcr and Y becomes a set of
two- sided ideals which can be in tum brokenup uniquely into left-ideals and
so the index m can be substituted by the pair (jl), m, which label the two-
sided and left ideals under the subgroup. When this is done repea tedly,
jollowing a chain of subgroups of q (as the well-known canonical chain in
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the: permutation group § O &y A DS or similar ones for the unitary,
orthogonal and symplectic groups), the left-ideal index m becomes a string
of two-sided ideal indices (fl ’jz’ cev eyl 1) which are the irreducible repre:
sentation labels for each of the subgroups ot the chain. These are the
Yamanouchi symbols for the permutation groups '8 and the indices of the
Gel'fand-Tsetlin kets for the unitary'®, orthogonal® and symplectic?! groups.
Finally, we want to remark that a pair of transforms analogous to (5)
between a scalar function on the UIR space & and another on the manifold of
classes of (} can be set up,?? but does not seem to have found a physical

application.

3. CONVOLUTION AND COUPLING

Consider the transformation of the ring elements under left multi-
Plication by a fixed group element bel}:

A 2=k

It is easy to see from Eqs. (1) and (5b) that this induces on the GSF
and RSF the following transformations:

b
Alg) ~A'(g) =A™ "p) (9a)
b ¢ 7
) ~ A= 0w Gy, (9b)
where the group product law is followed, i.e.

h b
Al SA' () LA@ = A5 ) = A5 )

while

" =1
A)b b, A'(g) = A([h,5)] ¢).
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v A e
In particular, the ring element 0-0. whose GSF is 9:” (g ') and

_ ™o 0"o
RSF is 5'0," Bmon Sé(jo'f) has the nom Sé(jo,jo) and the familiar transfor-

mation properties of the ket |jn n > i.e.
b . s iy
|igmy > = U jgn,> = jjn> D (B -

Transformations of the ring elements under right multiplication (i.e.

A 4 A»"") need not be considered separately since the involution induced
on the ring by the correspondence A(g) — A(g'l) makes them equivalent.

Consider now two ring e¢lements A, 3 with their GSFs A(g), B(g),and
RSFs O(j ), B(j). Then, to the product C = A3 corresponds, through (3) and
(1) the RSF

Caun* )= 2 a,,G)B,, ) (10a)
(which is just the product of matrices), and the GSF

C(g)=gaw)a(b"g)sma(g),beq, (10b)

The convoluticn over the group is associative butnot commutative urless the
group is abelian. This result is familiar from Fourier analysis®'?* where
to the product of two functions 3(p)H(p) correspoads the convolution
(F°H)x). For this kind of transforms, to the product F (x) H (x) corresponds
the convolution of the inverse transforms J © H(p). This, however, is a
peculiar property of the T, -harmonic transform. In general, to the product:

Clg) = A(g)B(g) (11a)

of two GSFs corresponds what will be called the coupling of two ring elements,
C = AcB. The corresponding RSF is
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C, 0i}= 8§ 3 % Gty e GYB L (") x

h .
’ ,]Hmfmlf"f”"

¥ .5 dmn (g) Ditmr (g°l) ﬁ:,-'rmn (g'l)j.f" Eé,gEQ (11b)
g

where we have used (5) and exchanged the sums overj',;" and over g .
This product is associative and commutative, it has a unit A(g)=1 and an
inverse when A(g) = 0. Furthermore, from (8) and (11a),

2 2 2
|acB| <Al |I8]

Such a product, symmetric in its factors, can be extended to any
number of them.
The harmonic transform of A(g) = AV (g) AP (g) .. .A(”)(g) is:

]”
G.Yy...Q r(')( )-ﬁfé,
l- mlm; mlml’ Ii mnm” l” mm mlml m”m' #

(1) (n) i 7
Ot V=3 = 0 |
7

where we have defined

12)

j i i ; ; .
:(g)lgm‘m;fg 1)10:m:(g ‘),gELé
11 n n

(13)
This integral?® % is the one encountered when calculating Clebsch-
Gordan coefficients. In fact, when using the formalism for the group 50,
the Clebsch-Gordan series yields, for the simplest n = 2 case:

7 b5 *
)—-_f.*((]]]mmm)((j]] mmm)
mm mlm; mzm; * 1 2

Notice that when the group (} is continuous and non-compact, the
product of two distributions may encounter difficulties.
Recurrence relations can be set up and we can express the n-factor
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coupling coefficient to the (n-1)-factor coefficient involving any of the n-1
j-indices in any order. In (13) however, the coupling order is irrelevant and
all factors are taken on the same footing.

This is important, in the use of the Poincaré group for n-body rela-
tivistic kinematics. The motivation for (13)here is completely straightforward
and requires no auxiliary construction as in Ref. 26.

A coupling coefficient (g g, - .- , 8,) dual to (13) can be set up through
summing (and integrating) over row=, column— (and representation) indices
in a product of 0’s as in (13).

Classical Fourier analysis leads us to expect that if a function

satisfies a partial differential equation?

its transform will satisfy an alge-
braic equation and will thus turn it into a distribution with support on a
lower-dimensional manifold. This is indeed the case, and rather compli-
cated-looking differential equations can be formulated as simple conditions
on the transform function®.

Finally, it must be remarked, many of the properties® of the n-di-
mensional Fourier transform, as behaviour under a general linear transfor-
mation x—Mx of the group space are peculiar to T, , where the group and re-
presentation-space have the same metric.

4. KERNEL REDUCTION, DAUGHTER PARTIAL WAVES AND
FACTORIZATION.

Consider the T, -harmonic transform (ordinary n-dimensional Fourier
. . 5
transform) of a radial function?’:

3p) = SFE() P ™ =), xeT,, . (14a)

\/
r x 3 2 2 v
Hence 3 (p) will be a function of s=(p“) only, and we can perform (n-1) inte-
grations over the surface of an n-dimensional sphere and reduce it to the
form:
n-2

S3(s)=2ms™ * pr(r) r"/-zjn_z(_'_’ﬂ'rs) dr . (14b)

This example illustrates two points: First, the function F (x) has the
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‘same value for all the points on the surface of a sphere in group space and
thus the integrations over the sphere can be “factored out” and the kernel in
Eq. (14a) reduced to the kemel in Eq. (14b) which is in general (though not
here) more tractable. Second, when looking at the transform inverse to (14a)
which gives F(x), we may regard F(x)as an even function on aline (diame-
ter) and decide to obtain the T'-transform (14) or a Tl-transform, Sg(q) . The
term “daughter Regge poles” has been used in this context to denote a
family of poles of the 0,  -transform of a function whose 0 _transform ex-
hibits a single pole. The position and residue of this (“Toller-Lorentz”)
pole determines the position and residues of the daughter Regge poles.

We can parametrize the SO, group manifold " 12'® by observing that
it is the direct product of the SO, _, submanifold and the surface of the n-di-
mensional unit sphere. Thus take u, €50, and let ’45(9) be a rotation in
the a-b plane; enclosing collective variables in curly brackets, we can write:

u,({6™")) =u_ ({67 <

|

1 a0 ) O 1, B8, u,6) = 1 6),  (15)

n-ln "n-1n
and call it the Euler-angle paramewization®. For so,,

uy(a,3,7) = r2(@) 7,,(B) 127

for SO‘ 3

u(a,B,v;0,6,4)=ua,B,y)r, L)1, (6) 7,(®), etc.
The Haar measure can be split as du = dy _ db where

db, = sin® 2@

n-1,n m-1,m"

.. sin ’9344&93‘ sin6, d0, d6 . (16)

This will be the measure on th: space of 50,_\ SO, cosets. We shall be

specially interesced i {uncrions F () on the space of two-sided cosets:

§o,.\so,/so,_, (17)
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i.e. functions of the angle G,  only. For SO, this is the second Euler

angle; for SO, or S(_)3 it becomes® the one “non-compact” parameter.
? ? - - - .
Let us turn next to a brief description of tl.e transformation kernel

10:"". (u), its UIR indices j and “row and column” indices m,m".

From the work of Gel’fand and Tsetlin® we know that the bases for
irreducible representations of SO, classified by the canonical chain
$0,D050,_ ,D-- .DSO2 can be written as:

T PP n/2]

In-1,17m 1, 2 Iy -1, [(n-1)/2]

where [#n] is the largest integer smaller or equal to n. This ket transforms
as the {ip, 1 dp, gy jp, /2] }= (jp) UIR of SOP . For convenience, de-

note by (j—q) the set {(fq) ,(jq_l) e ,(fz)} and thus (g:) is the “row” or

“column”-label for an SOP representation. The ranges of the UIR indices
are constrained® by:

for® i B B, i

Forodd n, n= 2m +1, j"' 2 0, while for even n= 2m, fn,mq > |jm'| . The
rcw-indices satisfy
JY‘2:’+l,ka’;u’,k3".21”-1,I¢+1 (k=1,2,...,p);
j2p7kai2p-l:kai2p,k+l (kzl’za"wp_l)

and

Faas,p 2 np, 5| -
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Since a rotation 1 () involves only coordinates p-1 and p, it

p-1,p
commutes with all $0,,_, transformations and is diagonal (and independent)
of t'he representation. labels of sO_, L I S()p +1 We may in principle
define the general Wigner d-functions as:

(ip)
at o)
Uy )Up ) )

= L) -+ Gy Dy P 1oy p O G) -GGy ) Gy )y (18)

where the bra and ket have been writtenhorizontally in order to save space.

The expression (18) vanishes if any other bra- and ket-indices are
different. No other identification for the d-functions is necessary, since
the indices refer it to 5O, .

Instead of writing the expression for the D-matrix in terms of
d-functions through the decomposition (15), let us turn to the familiar cases.
For 50, we have §7(0)= d™(0)= exp(-im0). For 50, the familiar d;m-{tQ)
functions (for rotations around the x-axis) appear in

8, 0,0)= 0" Hrdl . (©)d™ )

and a similar expression for S()2 " 3 For 5o, .,

i
.

jm, i'm

ey LO)= 3 @;m.,faﬁy)d;;ffj,fé)dj,,,m,(ﬁ)d’" W),

& = S
and a similar one for ()3 -

To have a function on the space of cosets (17) means to have in the
last case, a funcrion F () independent of the other parameters. We can now
construct the integral (5a) and convince ourselves using (6b) that the inte-
gration can be performed on all the other parameters yielding Kronecker s
to zero for all row- and column-labels and introducing factors which are the
of the (n-1)~dimensional sphere. WThis

volume of $O, _, and the surface §

1 1

means, for 303
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3 ()= (ZW)szsinQdGF(Q)d;O(é)) ,

0
o 0

il = HF1 gl .
F(0)= X %5 3o (1) [d (D]

j=0o 8

for SO‘
00,00

o %
3 (,',0):32713{ sin’edep(e)dggu(e),

00 .2 . *
FO)= 3 1 _3 (G,0[d° ) .

i=o 16774 00,00 000

Observe that only the (7, 0)-partial waves appear since the only SO, -repre-
sentations containing the scalar SO, ~representation are those (jl ’jz) with
j2 =0. For the Lorentz group this means that only Toller’s M =0 poles can
contribute to the elastic scattering amplitude between spinless particles.?
One can see that it is sufficient for one of the particles to be spinless for
this restriction to hold.

Indeed, for SOﬂ the transform pair can be seen to be, from (16),(18),
and a similar procedure,

3 (7)= {7 sin"2040F (6)d’ (8
)= V(SOH_I)S”_IO sin F (&) 0( ) (19a)
. S 4,0) P
F(6)= 3% dild@] . (19b)
i=oV(s0,) ° .

where we have abbreviated 3 (7) for 3 _ _(j, 0,...,0) and d’ (&) for
. (0)(0)

(,])01 N D)
4 (0)a)(o) (&)~ In (19D)

(and d3 (k) = 2& +1) is the dimension of the UIR and
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v(so,)=VI(s0,_))S§, (and V(SOZ): 21)

is the volume of the group, where §, = 217"/2/1‘(71/2) is the surface of the
n-dimensioaal sphere.

“low, given some function F(f£ , we may waat to coasider it as a
function: on the space of cosets (17) and find its wansforr. (19) fcz anv n.
Indeed, this is a special case of the siwuarion we preserted at the be-
ginnirg of this section: a given function F (v) of an $0,_, sub-manifold of
so,
a similarity transformation v= R 'uRr (vGSO,:_l , WESO, _,; RESO, , fixed) .

Considered as a function of the SO':_‘ group manifold, it is the trans-

not necessarily the canonical 50, subgroup, but relateu to it through

form of:
Fiy= § 3% % O -?
= ¥ -1
Gned G e M el ¥, o W
ne2'Vgag m=2""m=2 (I”_ZJ (jn-z)
(20)
while considered is a function of a submanifold of §0O, it is the wansform of:
()
Fy=S = % 5  (GH8O ™. @
Un) G ) Gy oy T
For vESO“'_1 , the transformation kemel in (21) can be written as:
(i)
I\ (v™h)
B i
{1, (7,) ()
= % T B Iy ") B )
o) "G ™ T o o) Wgag ) G

(22)
where B= D(R). Since u€S0

ey the decomposition (15) allows us to write:
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(i) (g o)
0 (u"Y)= 8 0 W), (23)
R o ¢ Ao Gl W)

where the Kronecker-3 in the representation label (j, _,) is a product of
Kronecker=8s in the individual indices, and the use of the symbolic identity
(}” l) = (.1 )(;1 ) is clear.

] Equation (23) is independent of the representation label (5 ) as i.
Dmm: (¢, 0,0)= exp (=im¢p) 3”"" ' = i (P) 3 al is independent of the VIR
label /. Replacing (23) in (22), (21) is now expanded in the mauix elements

(7 oy)

I (u) of 50, ., and can be compared with (20) where v, being a dummy
index and SO;.] ~ $0,_,, can be replaced by u

Equality of (20) and (21) is implied by the following relations between
the $O,_, and SO, RFSs, for any one partial wave (j”)o of the latter:

d((j,.,) (G )= a((i,),)

—— L MY l=

V(SO"_I) (in_--g)m(jn—z)” V(SO") (24)
x$ % B"°, 3 (Geh :
T o ol R e T U )'s Gy )Gy )"

We can draw two conclusions from the general form of Eq. (24).
First, that to any one partial wave (j ), of the RSF in SO, corresponds a
family of daughter partial waves (j__,) of the RSF in SO, given by (23),
i.e. all those (7, .1) contained in (j, )0 This corresponds in Toller’s

treatment™ © that any one Lorentz pole (in the SO l-r&presentatim manifold)
generates a family ot daughter Regge poles (in the SO ,~representation mani-
fold) .

Second, a general form of factorization holds: if the SO, - RSF can be
factored as:

) )
3 G- ’ ® . (25)

(T iy ) < D G
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then (24) implies that the SO, _-RSF can be factorized in a similar fashion

with:

- (i) ;
| n (1)}
p" "=k B __ p"
Gy Gy Uiy Gasy)
(26)
(Goet) (i) < Dad
reVoxz 7Y @Y,
Up-g)  Upp' Gt GG,
where
Y

v(so,_)d((,)

v(so,) d(G,.,)

Il

The physically relevant case® which has so far been studied is the
expansion of the scattering amplitude of an elastic reaction in terms of the
matrix elements of the UIRs of the little group of the momentum transfer.
For equal masses, the general little group of the (spacelike) momentum is
the O which leaves the Xa-direction invariant while for forward scattering
it Decomes 0, ;- In the corresponding 50, problem (defining the space
coordinates as x ,x,,%,,x,) the canomcal 50, subgToup involves coordi-
nates x ,x_, and Xy while the non-canonical SO one would involve coordi-
nates x_, x_and x, (leaving x, mvanant) The rotation R which realizes
the equwaience between 50, and .SO is a rotation by 77/2 in the x, =X,
plane and the correspondmg B-matrlx in Eq. (22) becomes an S0, Wigner
d-matrix d]li (7/2) which is diagonal in the SO indices. The O case
is clearly more difficult since the 0, subgroup and the canomcal O sub-

6, 32

group are not isomorphic and the rotatlon R does not belong to 0, but to
its complexification 3 Furthermore, in the reduction of the O, _ represen-
tation (A, M) into O , representations (/), each of the latter (/ =, Ne=L, 55 )

appears twice® 32

, thus, an extra relation>® between the (residues of the
poles of the) transformation matrices B has to be used in order to prove that
the factorization of (the residues of the poles of) the RSF in the group implies

their factorization in the subgroup.
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5. HARMONIC ANALYSIS ON THE POINCARE GROUP

Let & and X be two groups; xeland let fb(x) be an automorphism of
O, determined by an element b€ . We define the semi-direct product of
and ¥,(; =0 (/) H as a set of all elements g = (x,bh) with the product law
(xz’bz)(xl i xl)z (x, .fbg(xl) ! b2 .bn) :

We are especially interested in the cases where H is the component
of the identity in one of the 50, or SO”_L] groups and O is T,, the n-di-
mensional translation group. The product law takes the form:

(x2,b2 )(xl’b]): (x2+b2x1 ’bzbz) :

The usual method ® %7 of constructing bases for UIRs of the inhomo-
geneous unimodular orthogonal 15O, (and pseudo-orthogonal of the type
ISO”_LI) groups makes use of the subgroup ¢J in order to build a ket | pm >,
where the n-dimensional vector p labels the UIRs of O and m is an auxiliary
label (or collection of labels) which will be affected by transformations in ¥
which leave the vector p invariant. We call the group of these elements the
little group (or stability group) of p .

We define the stratum of p as the set of all p’ which have littie groups
isomorphic to that of p. For IS0, we choose the metric of the vector space

of p= (pl 2y ,p") to be g =1 (all othe: s zero), and there ar= two
strata: for (a) p # 0 and (bj y = 0. Their little groups are 50,,_, and the full
50,, respectively. For ISO,_ = we fix the metric of the J carrier space to be
B Bl =~ gl gn 1,m-1 = 1. (All other zero). There are four
strata: (a) p >0, (b) p <0, (c) 22 =0 but p # 0, and (d) p = 0, whose little

groups are SO, _, ,50,_, ,IS0,_, and the full 5O, _ ‘11 respectively. In each
stratum we can defme a standard vector p, or a pair p (¥ if the stratum has
two disconnected pleces For 150, the standard vector of the first stratum
can be taken to be p =(0,0...,9, M) where M* = p2(M > 0). The cecond is
trivially p = 0. In 150, (n >2)M° 2, the standard vectors ian each
stratum can be taken to be (a) p(t) —(0 O tM),(b)ﬁ =(0,...,0, iM ],0)
(c) p(t) =(0,...,0,1,%1), while for the p—O stratum again, trivially E =0.
(For SO the second stratum has instead two pieces while the third has
four) . By extension, the vectors in each of these strata will be called time-
like, spacelike, lightlike and null.

The conswmuction of the bases for the UIRs now proceeds using the
identity (x, 1)(0, b)=(0, bY(h™? x, 1) in order to define the UIR labels and
transformation properties of the kets under a general group element (x, £) as:
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(x,b)| (M]), pm >
= exp(ix'bp)z,ﬂ,, (Rw(p,b))](mn,pm'> (27)

where we have assumed that the kets with the same p transform irreducibly
under the elements of its little group, thus labelled by the UIR index (]).
The (generalized) Wigner rotation ® Ry (p,b) is an element of the little group
of the standard vector p of the stratum of p and can be written as:

=1
Ry(p, )= Ly, bL, (28)

where L, is an element of ¥ with the property Lpﬁ = p for each stratum. The

freedom left in the definition of Lp allows us to ask for the condition® ¥

Ry (P, h)=h (29)

when b belongs to the little group of p . Itis sufficient for (29) to hold that
Ly = Iz

Given a function F (g) on the manifold of the group q, we want to
construct its harmonic transform. The Haar measure in Q can be seen to be
the product of the Haar measures on 7 and X : dp = dx db.

In order to obtain the transformation kermnel we must find the matrix
element of the general group element (x, b) between the kets |(M,]) , pym>
and for this we make use of (27) and the fact that in : <p ip' = Sn(p-p' ¥

Consider first the 150, groups. Denote by p the (n~1)-dimensional
vector (pl s Byseens ;) and thus:

d"p=dm’(2p) 'd" 'p=du’dgp,
so that we can write:
S p-p') =8 -M") 8,(p, p") (30)

where
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. n-1 F
8y (2, 2")=2p,8 (p-p') (31a)

is the Dirac distribution on the (n-1)-dimensional sphere p2 =M2.
No confusion will arise if we use the same symbols for the 150, _,
groups: p will have the same meaning as above, but we choose: '

1

d”p: sz(zpo)-ldn'tp s d”p de’
so that we can write (30),

n-1
Oq(2:0")=288 (p=-p") (31b)

being the Dirac distribution on the (n - 1) dimensional hyperboloid > = M>.

The UIR matrix elements can thus be written, using (28), as:

MJ 4 % '
.[Qp,m.’Pm(x,b)z exp(ix hp) 0 (L 1hL,) 85", bp) , (32)

where (31a) (resp. (31b)) is meant for 150, (resp. IS0, , . ). For so, the
form of the UIR label (J) and the row- and column-labels m,m' have been
detailed in the last section.

For the SO”_Ll proups, let it suffice to say that the index Loy 48
replaced by a (complex) irdex A which does not obey any of the branching
relations, thus Ju-1 1 only has a lower limit and the representation is infi-
nite dimensional. For details see Refs. (40) and (41).

It is immediate to check that (32) fulfills:

" M] MJ I“]
IdQP 2” n@pm,pnmu(xz.,bz) ‘Igp”mu,p’”"(xl’b]) = Eprn,p'm'(x_,‘{'}-’

m

x, ’bzbl) ;

y

(33)
the product law of 150, (resp. 1so,_, ), de is the surface element of the

sphere (resp. hyperboloid), and the product law of the UIR matrices of the
little group of the stratum of p has been used. This holds for any stratum.
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The harmonic transform pair (5) can now be written between a GSF
A(x, b) and a RSF G(M,]) of IS0, (resp. 'SO;;-1,1) as

M
Gm, =3 EA(x,b).@ ](x,b),xES,bEJi : (34a)
- 2 M.’ -1
Alx,by=(m™" [au* S T (G, ) B ((x, 5 )], JegM), (34b)
J

where the integration range of M% is from 0 to + oo (resp. from = oo to + =)
and the generalized sum over the little group UIR space refers to that of the
corresponding stratum with the kernel (32) and the trace is taken over the
row- and column-labels p, m as in (33). Notice that in the integration the
strata M = 0 have zero measure so that, unless the RSF A has a Dirac &
distribution with support at that point, it may be disregarded. We shall re-
turn to this point below. We can check that (34b) is the transform inverse
to (34a), replacing (34a) into (34b), exchanging the integrations over group
and representation space we obtain an identity if a relation (6a) holds for G-
This can be checked directly using (32) and (6a) itself for the little group of
every stratum. MJ

As remarked in Section 3, the GSF A(x, b) = Jgp’m' - ((x,5Y")
henceforth denoted by | (M])p'm ', pm > has I

a ,n:,q”(M'j’)=SQ(M']',M])SQ(q',p)SQ(q,P')Sr O m'

q n mnm

for its RSF and the transformation properties of the ket '(M])pm >
The overlap function:

<M JOpim! pym ;e M) B, m'pm | (M J) (M, ],);M])p"m' pm >,

can be expanded using (12) or directly through (32) and (34a) in terms of the
overlap function in 4 5” (Xp; -p), and an integral in H. A similar treatment
has been presented by Roffmann in Ref. (26) for the Poincaré group, so we
shall not repeat it here*?.

It has been Lurgat’s idea? that, since a description of the state of an

object can be given by the (active) transformation g which takes a reference
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frame R to a frame R = gR, fixed on the object, a field theory of these ob-
jects should involve not merely wave functions F, (x) on Minkowski space,
x, but functions F(g) on the Poincaré group manifold g=(x, A). If the wave
F(g) is to represent stable objects of definite mass and spin, momentum and
helicity it must satisfy the differential equations (on group space)
P*’P Flgl=M o 5 (g) and W“’W F(g)==-M ] (J + 1) F(g) where W is the Pauli-
Lubanski vector ¥, P F(g)— P F(g) and S (P)F(g)=mF(g) where S(P) is
the relativistic spin operator

The new feature of this point of view is that we are allowed to con-
struct more general objects with both a mass and spin distribution.

The complementary approach is to make a statement on the functional
dependence of the GSF on (} much ir the same way as we did in Section 4.
As a simplifying analogy in a lower-dimensional space, consider the three-
dimensional Euclidean space, where g=(x, r(d, 8,4)) EISO3 transforms a
reference frame R, to a frame R fixed on the object. In 3-space we can have
three kinds of ob]ccu (a) Pointlike, i.e. invariant under rotations r(¢, & ).
The wave function F(g) will thus be a function on the space T3 and reduces
to an F(x). (b) Axially-symmetric, i.e. invariant under rotations l,[} around
the body axis. The wave function F (g) will thus be a function on the space
of cosets 1503’/502 and thus, the function reduces to an F(x, ¢, ). (c) Com-
pletely assymetric, whereupon its description needs the full F(X,p, 8,).
We will not consider objects with discrete symmetry groups nor infinitely-ex-
tended objects, 1.e. F(g) as a function on coset spaces of the type ’1’3\15'03
= §o, . We can thus count the different cases as the homogeneous spaces !
of the group: 21" <1.r | set spaces of 150, by the (continuous) subgroups of
S0, and the 1dent1ry, namely 150, /SO i 'I , 150, /SO and IS0, itself.

A smular treatment has been made for the Pomcare group, both from

the geometrical®® and the group-theoretic® *

point of view. There are clearly
more cases since, for instance, the axis-like objects may have a time-, space-
or light-like axis. It turns out that there are eleven possible distinct homo-
geneous spaces. Among them, using Finkelstein’s*! notation, we can have a
function on the whole Poincaré space [6], F(x, A), a function on the Minkowski
space [0], F(x). Four other cases are interesting: those corresponding to
the cosets by the subgroups S0, » 50, , and 150, , cases [3],[3'] and [30]
respectively; and [4], by the mlpotent subgroup N in the Iwasawa decompo-
sition. This last case, motivated by the geometry of electromagnetism, has
been investigated by J. Nilsson and A. Kihlberg® 45

We write out (34a) with the kernel (32) for the element g =(x, A) of the
Poincaré group:
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Bp'm' pm(Mj)=fd‘xd6AF(x,!\F(x,A)exp(ix'Ap) x

19{,,.,,, (L;,‘ AL,) 8a(0", Ap) -
(35)

The SO, | group element A can be written® as A= RH, where, for
each stratum, R belongs to the little group of the standard vector p of the
stratum of &, and Hj =Ly, where Lkﬁ = k is such that (29) holds. The Haar
measure over SO, , can then be written*® as d°A = d°R ko -

Furthermore, in (35) the d-distribution reduces the set of A= RH, as
the subset L, R'L;l (R' belongs to the little group of p). The argument of
D is now R’ and Eq. (35) simplifies to

. - R
fm',pm(M])"_—fd‘xd!R F(x,L,/R Lpl)exp(zx'p )0 (R,

(36)

%

where we have used the invariance of the Haar measure.

The RSF indices and variables may have support on several strata,
and all of them are needed in order to reconstruct F (x, A) through (34b), but
for each stratum Eq. (36) holds with the corresponding decomposition of A .

One can point to the unconventional feature of having to interpret two
“momentum” labels, p’ and p. This is inevitable in (this basis of) the
Poincaré partial-wave expansion, since the labels are imposed by those of
the transformation kemel.

When the GSF is a function on one of the 7-parameter homogeneous
spaces [3],[3"] or [30] : F(x,A)= F(x, AR), the kernel (32) does not appear
to reduce simply, as was the case for the orthogonal groups in the last
section. We would like to point out, however, that for the particular column
p=§ (timelike), since L~ = I, the integration of the right-hand side of Eq.
(36) over the (compact) divisor group can be performed, yielding

3?' m', om (M])= 8m',ogm,o SéD(I,U)fd“x exp(ix '?’) F(x, Hp r)g
(37)
where éD is the representation space of the divisor group.
The treatment of the 8~dimensional homogencous space [ 4] requires®

the Iwasawa decomposition of SO so that the above forrmalism does not

- - 3'1 d
yield a simple kernel reduction. Furthermore, the humogeneous spaces with

non-compact divisors present more fundamental difficvlies'! due to the fact
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chat wave functions are then not square-integrable on the Poincaré group
manifold.
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RESUMEN

Usamos la construccion clasica del anillo de un grupo para presen-
tar un par de funciones, transformadas armonicas la una de la otra, como las
coordenadas de un elemento del anillo en dos bases diferentes: una, una
funcion F(g) sobre la variedad del grupo Q, la oma & () sobre el conjunto
@ de representaciones unitarias irreducibles (RUIs)del grupo. El Kermel de
transformacién esta dado por los elementos de matriz de las RUIs 07 (g).

Desarrollamos este formalismo matematico con objeto de presentar
en forma concisa varios resultados de cinematica relativista, desarrollo en
ondas parciales de Toller y algunas teorias de campo sobre el grupo de
Poincaré. En particular, probamos para los grupos ortogonales tres teore-
mas que tienen analogos directos en el trabajo de Toller: 1) funciones so-
bre espacios de coclases se desarrollan en términos de una base reducida,
2) las transformadas armonicas respecto a un grupo y a uno de sus subgru-
pos dan una relacion entre sus coeficientes de ondas parciales, conocidas
de las relaciones entre los polos de Toller y Regge v, 3) la factorizacion
(de Sciarrino y Toller) de los residuos del primero implica una factorizacién

correspondiente de los residuos del segundo.





