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RECENT DEVELOPMENTS IN RANDOM-MATRIX THEORY "
T.A. Brody, J. Flores and P. A. Mello
Instituto de Fisica, Universidad Nacional de M éxico

(Recibido: septiembre 26, 1972)

ABSTRACT:

The aim of random-matrix theory is to provide a coherent ac-
count of the statistical properties of complex quantum systems;
its most important applications have been to nuclear physics.
The present paper attempts to review the work that has been
carried out in recent yearsin this field, after providing a brief
description of the basic ideas derived from earlier work, At-

tention is paid to the comparison with experimental data.

1. INTRODUCTION

In the last two decades much progress has been made in the under-
standing of the detailed characteristics of low-lying states in nucleil. But
the situation is different when dealing with highly excited states lying, say,
8 to 10 MeV above the ground state in medium or heavy nuclei. No nuclear
model exists that is capable of describing adequately these states, and even

-
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if there were one, the number of levels in this region of excitation is such
that any description would be uninteresting. As in the analogous situation
in statistical mechanics, physically significant results are obtained from
averaging in some way over many levels rather than from the study of the
positions or decay widths, say, of individual levels. In order to interpret
the experimental results one must then provide theoretical models for such
average properties of quantum-mechanical systems having a large number of
energy levels in a given region.

For nuclear physics, such average properties fall roughly into two
classes:

a) global properties, examined over a large energy region; the
level density (the number of levels per unit energy interval)or
the strength function (the sum of the decay widths of all levels
lying in a unit energy interval) are examples;

b) local properties, examined over a narrow range in which the
global properties are constant; of this type are the fluctation
disuibutions, for instance the distribution of nearest-neighbour
spacings (the distances between adjacent levels), or that of the
level widths.

For the global properties, simple models were proposed already many
years ago. Thus the level density for a considerable energy range can be fit
by a model which considers the nucleons to be particles of a Fermi gas?; this
yields a density function

G Y
p(E)-—-—-—2 %P (BE?) : (1.1)

A somewhat more detailed model® gives a density of the form

pEY= _ C _ exp(2aVE-D) (1.2)
(E-7)%

where the constant @ and A depend on the specific nucleus considered. Simi-
larly, the optical model - in which the many-body problem is reduced 1o a
single-particle one - is able to account for the energy variaten of the strength
funcrion .

As regards the spectrum fluctuations, the first account of the distri-
bution of nearest-neighbour spacings is due to Wigner®. He realized, in the



Random Matrix Theory ... 143

first place, that there should be no correlation between levels of different
spin or parity; secondly, he introduced the concept of level repulsion, that
is to say, the idea that there is a correlation among levels of the same spin
and parity such that the smaller the spacing the less frequently it occurs,
and the probability for levels to coincide is 0. On this basis he proposed
what is now called the “Wigner surmise”: if we write s for the spacings and
D for their average, then the spacing distribution function should be

pW(O; x)= "'4.1: exp (-—77::2/4) where x = s/D . (1.3)

This distribution is consistent with the experimental data® % obtained from
the scattering of very slow neutrons from heavy nuclei, where the orbital
angular momentum of the incoming particles is almost always 0, so that only
levels of the same spin and parity are excited.

It has been shown’ that when sufficient level distributions of the type
(1.3) for different spins and parities are superimposed, then the correlations
between the levels of the same spin and parity are obscured and the total
spacing distribution approaches the limiting Poisson distribution

- X

p,(0;0=e ", (1.4)

Concerning the decay widths [" in a given channel (for instance,
neutron emission), Porter and Thomas® suggested that the structure of the
states might be sufficiently complex to make the central-limit theorem of
statistics applicable; this then means that the reduced amplitudes ¥ (except
for irrelevant factors, [ :’)"2 ), for which the contributions from the component
configurations sum, will have a Gaussian distribution; hence

p(r‘): 1 exp[—r/zﬁ] .

2vVT fonT

where [ is the mean width; this distribution is in reasonable agreement with
experiment®.

(1.5)

Thus different models are used to explain different features of the
energy spectrum. The basic ideas of random-matrix theory, whose aim it is
to satisfy the ensuing need for a unified approach to the statistical properties
of spectra, were introduced in 19599; this theory is to some extent modelled
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on statistical mechanics, where one is also interested in the overall proper-
ties of a syst~m time averages of dynamical quantities in this case. Now in
statistical mechanics such tige averages are never calculated explicitly:
instead one introduces an cus mble of systems and replaces the time aver-
ages by averages over the ensemble; that this is justified it is the aim of ergodic
theory to prove. In a similar fashion, instead of treating the statistical properties
of the eigenstates and levels of a given (and, in the nuclear case, not well
known) Hamiltonian, an ensemble of Hamiltonian s is introduced and ensemble
averages are studied. The ergodicity of such ensembles (i.e. that the en-
semble averages are equal to spectrum averages) has so far to be assumed.

In order to have obiccts of known mathematical structure, the Hamil-
tonian operators forming the cnsemble are replaced by their matrix represen-
tations; the continuum part of their spectra is ignored, and the dimension of
the matrices is allowed (o tend to infinity. Moreover, each such Hamiltonian
matrix is taken to represent only states of fixed angular momentum and parity;
as mentioned above, a mixture of different angular momenta and parities tends
to a distribution of independent states (for which the nearest-neighbour
spacings, for instance, simply have a Poisson distribution) and thus presents
no particular intere st.

An extensive discussion, together with reprints of the more essential
papers published on the subject before 1964, can be found in the book by
Porter¥; the mathematical properties known up to 1966 are extensively dis-
cussed in Mehta's book "', The purpose of the present paper 1s to review
some results obtained since then.

In section 2 we shall review some new results for the best known en-
semble of random matrices proposed, the Gaussian orthogonal ensemble; its
properties are by now rather well known, and as we shall see in section 2, it
predicts local properties rather well but fails, for instance, for the level densi-
ty. This, together with the fact that the physical conceptions on which the
Gaussian orthogonal ensemble rests are not very firmly based, has led in the
last few years to a search for more satisfactory ensembles. Reviewing these
atiempts is the purpose of section 3.

2. THE GAUSSIAN ORTHOGONAL ENSEMBLE

2.1 Definition

We consider the submatrix in the matrix representation of the Hamiltonian
which corresponds t0 a given value of | and 77 ; we take this submatrix to be
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real and symmetric (this can always be achieved if H is invariant under time-
reversal'l). The ensemble will then consist of NxN matrices whose elements
are real random numbers. The Gaussian orthogonal ensemble (GOE) is then

defined by making the following two assumptions '? which establish the joint

distribution of these random numbers:

(i) Orthogonal invariance. This distribution - and hence all the
statistical properties of the ensemble - should remain invariant when the
same orthogonal transformation is carried.out on all matrices belonging to it.-
This corresponds to treating all possible bases in Hilbert space as equiva-
lent. Wigner’s argument ' for this assumption was that there does not appear
to exist a coordinate system in Hilbert space which plays a preferred role -
except that in which the physical Hamiltonian is diagonal; every transformation
of the base will, of course, diagonalize some of the matrices in the ensemble,
but certainly not all of them.

(ii) Statistical independence. With no other justification than simplici-
ty one requires that the matrix elements be distributed independently.

Assumption (i) implies that the joint distribution of the matrix ele-
ments Hij "

U =P [ B 5 - ) -1

is a function'? only of the invariants of H, i.e. Tr H, Tr 0, .. o, i,
Assumption (ii) then leads to

P(H) « exp [-Y TrH?) =1l exp [—Hi. /20211 exp [ - Hl.zj./oj]
2 i>]

(2.2)
where we have chosen the origin of the energy scale such that the ensemble
average of Tr H is zero; assumption (ii) then implies that the ensemble aver-
age of each diagonal matrix element is also zero. In the last form in (2.2) we
have eliminated the variables H.,, i <j, since they are equal to the Hyjs their
standard deviation is then 1///2 times that of the diagonal elements.

If in (2.2) we change the variables from the H;; to the eigenvalues E;
and %N(N-1) variables!?, we obtain the distribution of the eigenvalues,
known in this context as the Wishart distribution:

P(E)= P (B, By By)= 1| E-E;[exp [-3E[ /207] @23)
1 1 1
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Fig. 1 Plots of the level density for the GOE. The histograms arise from

Monte-Carlo calculations and the full line is Wigner's semicircle

law p« VT=e?, e = E/(ov3N). Figs. la and 1b were taken from
ref. 12 and Fig. lc from ref. 28,
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In this equation the level repulsion is already evident, since P(E)=0 when
any two eigenvalues coincide.

2.2 Global and local properties: theoretical results

The level density predicted by the GOE!! follows the so-called “semi-
circle law”, shown in Fig. 1 for the limit N = oo ; the units in the abscissa
are E/(CF'\/ZN) .

with what sort of data should such a prediction be compared? Before
answering this question, it is important to note that a finite matrix mv<sr have
a density function that decreases to 0 at the upper energy limit and to this
extent is unphysical: experimentally, the level density increases until the
continuum is reached. Thus in any comparison we must disregard the de-
creasing part of the density function predicted by a stochastic ensemble.

If, then, we compare the left half of the semicircle law with experi-
mental data, as frequently proposed, we immediately face disagreement: the
curvature of the semicircle is negative, while the experimental data (as may
be seen from semi-empirical relationships like (1.2)) curve upwards.

It may seem paradoxical that a very simple scheme like the inde-
pendent-particle model can yield a fair approximation to the level-density
variations, while the GOE will not. But the GOE does not incorporate any
of the specific features of nuclear interactions, not even those described by
the single-particle model; it is thus not surprising that it should fail for the
level density; the surprise is rather that it should describe many local proper-
ties quite well, as we shall see.

One might argue that the GOE should therefore not be compared directly
to experiment; its matrices should be taken as representing the residual inter-
actions when the valence nucleons are restricted to moving within one shell.
And since we cannot analyse the experimental level density into the contri-
butions of the individual shells, the comparison should be made with appropri-
ate shell-model calculations. Such a comparison has been made by Ratcliff'*
and also failed.

Therefore a global property like the level density is not correctly pre-
dicted by the GOE.

Of the local properties, the nearest-neighbour spacings for the GOE
have been studied by Mehta and Gaudin 15 who were able to obtain the exact
analytical distribution function. Although it has a very complicated algebraic
structure, its graph turns out to be almost indistinguishable from Wigner's
surmise (1.3), as may be seen in fig. 2. The w statistic, developed by one of
the authors as a measure of the level repulsion in nearest-neighbour spacing
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distributions ', is exactly 1 for the Wigner surmise and 0.9525 for Mehta and

Gaudin’s exact result.
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Fig. 2 Nearest neighbour spacing distribution PCOE predicted by GOE (solid
line) compared with Wigner's surmise (dashed line). (Taken from Ref.
11),

Results have also been obtained for the kth-neighbour spacings

(
S E. -E.
x;‘(k): e TR i (2.4)

D D

where D is the mean spacing 51(0) - The distribution function p(k; x) dx is
then the probability that a spacing xE.k)lieS between x and x+ dx .Forp(1; x),
Kahn ' obtained a closed expression in 1963. More recently, Mehta and

Des Cloizeaux® have obtained the general expression for p(k; x) in terms
of spheroidal functions, but numerical values are available only for £ < 3.
Fig. 3 shows the spacing distributions for £ 10, obtained from Monte Carlo
calculations by Bohigas and Flores B who diagonalized 344 matrices of di-
mension 61. The figure also shows the theoretical distribution s (solid lines)
for £ <3. It will be seen that the distribution s P (k; x) are asymmetric with
respect to their centroid for small £, but become more and more symmetric as
k increases. The dotted lines in the figure are normal distributions with
centre £+ 1 and standard deviation o (k) equal to the width of the corresponding
Monte Carlo result. Clearly with increasing k the Gaussian approximation
becomes better and better.
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A further theoretical result of interest concerns the joint probability
distribution of two adjacent nearest-neighbour spacings. This function was
found by Mehta®, it predicts a linear correlation coefficient?! between the
two spacings of -0.27.

A local property of a different kind, since it deals with the statistical
properties of eigenvectors, is the distribution of the amplitudes of transitions
leading to a reaction channel (for instance, the emission of neutrons); these
amplitudes are proportional to the overlap of the eigenvector and the channel
state; if we take the channel state to be parallel to one of the basis vectors
of the matrices, then the distribution of the amplitudes (and the derived distri-
bution of the widths, which are the squares of the amplitudes) is obtained
from that of a single component of the eigenvectors'>. For the GOE, this
distribution is that of a component of a unit vector distributed at random with
equal probabilities assigned to equal areas on the N dimensional hypersphere’s
surface on which the unit vectors end; this is a consequence of postulate (i)
in section 2.1. Explicit calculation gives, in the limit of N=w , a Gaussian'?
this gives for the widths the distribution proposed by Porter and Thomas?.

2.3 Comparison with experimental data

Before considering how the GOE compares with experiment, some
general comments seem in order. The greater part of the experimental data
comes from neutron resonance studies with heavy even-even nuclei; the ex-
periments are difficult to carry out, since it is important to observe as far as
possible a complete series of levels of the same spin and parity. Narrow
resonances, below a limit set by the experimental arrangement, will not be
seen, nor is it always easy to exclude levels belonging to another series. The
resulting crude data must be corrected for these two effects; this implies
lengthy and complex calculations, the effect of which on the comparison with
theory is by no means easy to assess 23

In fig. 4 we present the distribution for nearest-neighbour spacings
taken from an extensive experimental series?*. The corrections for the two
effects of missing and extraneous levels would affect some 6% of the levels
in the worst case. The results are compatible with the Wigner surmise (1.3):
the authors of the experimental paper used as a criterion the A staristic de-
veloped for this purpose by Dyson and Mehta??, rather than the usual y ? test,
but the visual comparison also makes the agreement clear. Moreover, the
correlation coefficient between adjacent spacings, given for several nuclei in
Table I, is in quite good agreement with the theoretical value -0.27.
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Fig. 4 Histogram for nearest-neighbo
Wigner's surmise. (Taken from

ur spacings for
Ref. 23).

TABLE 1
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Fig. 5 Prediction of the GOE for o (k), compared with experimental data.
(Taken from Ref. 13, p. 204).
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Fig. 6 Plot of the distribution of amplitudes for ¥ Er from 0 to 3 and from
0 to 4.2 keV. The Porter-Thomas curves are shown for compari son.
(Taken from Ref. 23),
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Fig. 7 Nearest neighbour spacing distribution for levels near an analogue
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For the higher-order spacings the data are scarce. In fig. 5 we show
the theoretical values of the standard deviations of the 2™ neighbour spacing
distributions, obtained from Monte Carlo calculations B when £ > 3, and com-
pare these with some experimental results. The fitis reasonable.

Fig. 6 shows the distribution of the neutron emission widths?® for
1961+ and for comparison the Porter-Thomas distribution; the mean of the
theoretical curve is taken from the experimental points. Again experiment
and theory agree quite reasonably.

The data we have discussed, together with most previous results,
come from neutron scattering experiments. Recently, however, Bilpuchetal”
have been able to extract statistical information from an analysis of the reso-
nances seen around an isobaric analogue state in ®V. We present their re-
sults for the nearest-neighbour spacings and the proton-scattering widths in
figs. 7 and 8, respectively. The data of fig. 7 have been corrected for the
variation of the level density, which changes in this region by a factor of 2;
it is only after this correction that the fit becomes good. (The Wigner law
{1.3) supposes that the level density is constant.) In fig. 8 no such correction
has been applied, yer the fit is surprisingly good: the authors explain this
as due to the fact that the variation in the level density is compensated for
by a similar but opposite variation in the strength function (i.e. the local
average of the reaction widths divided by the average local spacing, or, equiva-
lently, the total reaction width per unit energy interval)

The experimental results discussed here are typical of many other
nuclear data; one may therefore conclude that the local statistical properties
are well accounted for by the GOE, whereas the level density it predicts isin
clear disagreement with nuclear data.

2.4 Ergodic properties

As was mentioned in the introduction, the aim of random matrix theory
is to explain the statistical properties of a nucleus as averages over an en-
semble of Hamiltonians. For this idea to work the ensemble must have two
properties:

(i) The vast majority of members in the ensemble must have the same
statistical properties, which will then be the ensemble averages: this we shall
call the internal ergodic property . It is clear that this is only a consistency

requirement; without it the ensemble averages are not meaningful.

(ii) The ensemble averages of the statistical properties must repre-
sent adequately those of the physical system under consideration, - the given
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nucleus, in this case. We will call this the external ergodicity of the ensemble;
its physical meaning is obvious, but in practice it is far more difficult to es-
tablish than intemal ergodicity, since the lack of sufficiently stringent con-
ditions on nuclear models usually means that it can only be shown to be
valid piecemeal, by comparison with experimental results.

Some results for internal ergodicity have been obtained. Olson and
Uppuluri® have succeeded in showing for an ensemble which is somewhat
more general than the GOE* that almost all matrices in it, except a set of
zero measure, have a level density which follows the semicircle law of fig.1
(The corresponding external ergodic property does not hold, as we have seen
from the experimental evidence.)

Another result is due to Brody and Mello®, who prove that for an en-
semble satisfying the orthogonal-invariance condition of section 2.1, almost
all matrices, again except for a set of zero measure, yield the Porter-Thomas
distribution for the widths. In this case the experimental data do not conflict
with the validity of external ergodicity.

The problem of the internal ergodicity of the spacing distributions
has not been solved; experimentally there is no reason to doubt the external
property, as we have seen. Some theoreticians suspect that the local proper-
ties of a large class of ensembles may be independent of the kind of ensemble
(see e.g. Dyson?, French and Wong2): if this should turn out to be true,
then the good agreement between the Wigner surmise and experimental results

might be of considerable general interest, though it would lose much of its
usefulness in nuclear spectroscopy.

3. RECENT DEVELOPMENTS

It will be clear from the discussion of section 2 that the GOE does
not constitute a satisfactory solution to the problem of building a suitable
ensemble for the representation of nuclear properties. In order to provide a
background for the description of more recent attempts to overcome some of
the limitations of the GOE, it is perhaps worth while setting out explicitly
the requirements that an ideal ensemble should satisfy :

*
Their ensemble consists of all real symmetric matrices whose elements are inde-
pendently distribured with zero mean, the same variance for all off-diagonal
elements and all moments of the distribution finite.
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(1) The definition of the ensemble should be based on the princi-
ples underlying the dynamics of the systems to be described; in our case
this means that the dynamics of the nuclear force should provide the
framework, or at least many-body quantum theory should do so. In the case
of classical statistical mechanics, in analogy to which random-matrix theory
is built up, this has proved possible: Newtonian mechanics yields, via
Liouville’s theorem, a measure over the possible ensembles; used together
with the Hamiltonian function of the system, this allows one to define a

suitable ensemble.

(ii)  The ensemble averages should reproduce the general behaviour
of both the local and the global statistical properties as observed experi-
mentally.

(iii) Any parameters in the definition of the ensemble should be
linked to (non-statistical) properties of the nuclei which can be obtained
from other sources. This will then allow of adapting the general model to a
specific nucleus, just as in statistical mechanics the mass of the individual
molecules, their number, and so on, are fixed from other considerations and
then determine the statistical properties deduced from the ensemble theory.

(iv) Internal ergodicity for the ensemble should be satisfied. This,
as mentioned above, merely implies the internal consistency of the mathe-
matical model.

(v) It would be convenient if the ensemble were mathematically
tractable, so that its properties could be deduced in a rigorous fashion, for
comparison with experiment.

Unfortunately we are very far from the ideal situation; in fact none of
these five requirements can at present be satisfied. It is not yet possibleto
derive a suitable measure for matrix ensembles from our still inadequate
knowledge of nuclear forces; we cannot even delimit the general class of en-
sembles within which one might search for one that has the necessary proper-
ties. This helps to understand why all the recent attempts to create more
suitable ensembles have simply tried to remedy one particular aspect that
was felt to be unsatisfactory, in the hope that the other properties of the new
ensemble would not be significantly worsened. Moreover, many propertie s
of these proposed ensembles have been obtained from Monte Carlo studies,
since they do noc satisfy requirement (v).

In what follows we give a brief description of three different directions
in which such attempts have been made in recent years. In the first of these,
additional features are introduced in the definition of the ensemble, in order
to improve the level density. The second direction defines an ensemble in
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such a way that the experimental level density may be directly incorporated
in it. The third tendency attacks the problem of satisfying requirement (i)
by taking into account some, at least, of the known features of nuclear forces.

3.1 Positive definite ensembles

In the SIAM Review, Wigner® pointed out that nowhere in the GOE is
the condition imposed that the energy spectrum must have a lower bound,and
he suggested that remedying this might also improve the level-density pre-
dictions. He proposed an ensemble of positive definite matrices of the form

H=A (3.1)

where the A’s are generated according to the GOE, so that the H’s still
satisfy the orthogonal-invariance requirement (i) of section 2.1. The re-

sulting level density, however, has the form™

p(E)“Jé\/ZN-EQ (3.2)

which diverges at the origin and so cannot represent the nuclear situation.
A second proposal for a positive definite ensemble, also due to
Wigner®!, consists of symmetric matrices of the form

H=ReATA (3.3)

where the A’'s are complex matrices, not in general symmetric, whose elements
have real and imaginary parts distributed independently according to Gaussian
distributions with the same variance. The density for this ensemble is pre-
dicted to be??

2

(3.4)

oEy~1 f3p-1- E
E N 4N?

This is shown as the continuous curve of fig. 9, together with the results of

a Monte Carlo calculation3®. The level density is now finite at the lower
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bound, but its curvature is still not consistent with experiment for the nuclear
case. Some local properties of this ensemble have been investigated numeri-
cally®; in spite of the unsatisfactory result for the level density, the nearest-
neighbour spacings correspond rather well to the Wigner surmise and so agree
with experiment.

So far, then, the goal of getting a correct nuclear level density has
not been achieved with these two attempts; on the other hand, one cannot

exclude the possibility that the second ensemble will prove useful for certain
other quantum systems.

0.5+

Fig. 9  Level density histogram for a set of 800 matrices with N = 30, generated

according to the distribution (3.3), compared to the theoretical result (3. 4),
(Taken from Ref. 30).

3.2 Brownian-motion ensembles

These ensembles were developed by Dyson? in order to allow the
specification of the level density in an (almost) arbitrary fashion. He noticed 3

that the joint distribution of the eigenvalues for the GOE may be written as
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P(EI,EZ,...,EN)ICexp(-W) (3.5)
where
. - 2
WE ... Ey)=- % In E,.—h'j'\*‘%(E,- /202)  (3.6)

But if we interpret the E; as the coordinates along a line of N infinite wires
with equal electric charges, the first term of (3.6) becomes the potential
energy between them; the second term, a harmonic-oscillator force, can be
taken as necessary to confine the wires to a finite region. If now (3.5) is to
be the probability distribution of the positions, we are supposing the ex-
istence of an ensemble of such systems, as in classical statistical mechanics,
for which the equilibrium position is given by the minimum of the function W.

Such an ensemble could be constructed in many ways. Dyson chooses
to consider that the wires constantly interchange energy with a stochastic
medium through frictional forces, so that the E; now fluctuate. In order to
get (3.5) as the stationary solution of the equations for the resulting Brownian
motion, the wires must feel an external field

e L I N SR (3.7)

OE, j#i E;-E, o2

1

in addition to the stochastic forces.

So far we merely have a physical analogue for the GOE. But it can
clearly be generalized; this was done by Dyson in a more recent paper?’,
where he keeps the two-dimensional Coulomb term which produces the re-
pulsion, but uses a more general form of the confining potential

(N g (3.8
[ »

Here r () is the density of the charged wires along the line. Dyson now
shows that in the stationary state this density distribution is obtained,
whatever the initial conditions. Since r (A) may be any continuous finite
function, we can clearly construct in this way an ensemble to yield any given
density function. Of course GOE can easily be seen to be a particular case,
where the density is the semi-circle law.
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Dyson also obtains exact analytic expressions for the local corre-
lation functions, which give the probability for finding n eigenvalues round
the positions E ,E,,...,Ey, regardless of the positions of the remaining
N -n eigenvalues. For the particular type of ensemble where complex
Hermitian matrices are used instead of real symmetric ones, these expressions
are valid for the stationary state to which the Brownian-motion ensembles
tend, and for N large enough do not depend on r (\); Dyson makes it plausible
that for the ensembles of real symmetric martrices his expression will also
tend to a limit independent of r (\). This conjecture is of considerable im-
portance: since the local properties of the eigenvalue distributions depend
only on these correlation functions, it implies that these local properties are
independent of a global property such as the level density (though they do
depend, of course, on the type of ensemble, and for example are different for
the real symmetric and complex Hermitian cases). Thus in particular the
spacing distributions of the ensembles of interest in nuclear physics would
be those already known from the study of the GOE.

The Brownian-motion ensembles, at the very least, offer a convenient
phenomenological way of building ensembles with a given level density.
Moreover, Dyson’s conjecwre concerning the independence of local and global
properties, if confirmed, would be a remarkable result in more than one sense.
However, the “charged-wire model” merely functions as an analogy meant to
stimulate the imagination, and nowhere in it is there a way of incorporating
any of the characteristic features of the nuclear many-body problem. Also,
one would like to have a model which instead of adapting itself to any given
level density, the unreasonable ones as well as the experimentally found
ones, would allow one to deduce a level density which approaches the ex-
perimental one from fairly generally accepted physical principles.

3.3 The two-body random ensemble

Such arguments lead one to consider a completely different type of
ensemble of random matrices, namely those which explicitly take into account
certain known features of the nuclear forces. Such ensembles were introduced
independently by French and Wong3* and by Bohigas and Flores®®. The
feature to be taken into account is the two-body character of the force, within
the general framework of the shell model. One pays a price for this more
“physical” approach: the orthogonal-invariance condition of section 2.1, which
all ensembles discussed so far satisfy, must be abandoned.

The background for the idea of a random-matrix ensemble with shell-
model characteristics may be found in calculations such as those of Ratcliff!*
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or Zuker®®; they studied the level distributions obtained from large realistic
shell-model matrices and found that the level density has'a roughly Gaussian
shape - very different from the GOE’s semi-circle law and of the right curva-
ture at the lower end (as mentioned, only this part is expected to have any
physical relevance).

Some physical insight into the behaviour of random-matrix ensembles
based on the shell model comes from analytic studies carried out by A. Gervois,
using the perturbation theory of statistical mechanics and taking the two-
body matrix elements of the interactions as independent random numbers.
She considers the limit where the size of the shell goes to infinity, and finds
two special cases of great interest: (i) if the number of particles in the shell
also goes to infinity in such a way that the fraction of the shell filled remains
finite, then the level density is Gaussian in shape, and (ii) if the number of
particles remains finite, the level density tends to the semi-circle form. The
second result might have been expected: if the number of possible states
open to a finite number of particles grows sufficiently large, then the re-
strictions imposed by the specific shell model features and even by the Pauli
principle lose their force, so that the correlations between the matrix elements
become unimportant and we approach a limit very like the GOE. The first
case, however, gives strong support to the idea of a matrix ensemble within
the shell-model framework as a possible alternative to GOE.

This ensemble is constructed as follows:

Let us consider p particles moving in a set of subshells labelled by
the usual single-particle quantum numbers j; (the angular momentum) and m;
(its z projection). In this (finite-dimensional) shell-model space, the
Hamiltonian of a two-particle interaction is completely defined by its matrix
elements with respect to two-particle states, which we write as

<j i M| v|ii, jm> (3.9)

Here V is the interaction. [ and M, the total two-particle angular momentum
and its projection, are the same in bra and ket, reflecting the invariance of
the Hamiltonian under the rotation group. Once the brackets (3.9) are known
for all possible values of the quantum numbers, any matrix element of the
Hamiltonian for p > 2 can be calculated by standard shell-model techniques.
The two-body random ensemble is created by taking the mawrix elements
(3.9) as independent random numbers; the distribution from which they are
sampled is usually taken to be Gaussian, but there is some evidence>* that
its choice is not critical. The elements of the p-particle marrix will then be
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random numbers in their turn- burt the shell model’s selection rules will often
impose a considerable number of zeros in the matrix, and among the remaining
elements there will be strong corrclations. 1In fact, the number of independent
variables is often surprisin 2ly small; thus for the (] =3, T=1) matrix in the
(ds)'? shell the dimensionality is 6706, so that there are some 2 x 107 mat, v
elements, of which only 67 are independent? .

An ensemble of such matrices cannot, of course, obey the orthogunal-
invariance condition of section 2.1: for instance, all matrices in the ensemble
have the same zeros.

No exact analytical results are available for any of the properties of
such an ensemble. Fairly extensive Monte Carlo calculations have, however
been made. For the level density the results approach a Gaussian distri-

?

bution quite closely when p increases, as is shown in fig. 10 for a particular
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Fig. 10 Histogram for the level density for the two-body random ensemble,
compared with a Gaussian distribution. (Taken form Ref. 35).
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Such a variation of the level density, obtained from a single she,

has been interpreted by French and his collaborators as a partial density %,
they show that the total variation, of the form (1.2), say, can arise as the sum
of such terms whose parameters are derived from the shell model. This interpre-
tation clearly implies a general model made up of finite-sized and non-inter-
acting shells. Two considerations are then relevant. In the first place, this
model is essentially phenomenological in its combination of shell model
features and random-matrix theory, and in fact the Gaussian partial densities
can be derived from quite different theoretical formulations. However adequate
such an approach may be for nuclear physics, the question of whether a satis-
factory random-matrix theory can be built remains open. A second point
arises from the neglect of the interactions between shells. This is known to
be physically unsatisfactory. These interactions may have some influence
on the level density; more importantly, the superposition of statistically inde-
pendent level distributions destroys, as we have mentioned before (see dis-
cussion with eq. (1.4)), the level repulsion which experimentally is observed;
thus improving the model for the level densities spoils it for the spacing
distributions. (This theoretical result 7 is essentially valid for the GOE ;
Monte Carlo calrulations for the superposition of partial densities from the
two-body random ensemble are in progress.)

A more promising way of looking at the level densities might then be
to take into account the remaining interactions between separate shells by
considering them as component parts of a “supershell”, the size of which
could grow very large. No calculations on such a model have yet been made.

As for the level spacings, the picture presented by the two-body
random ensemble is not much happier. No analytical results are known here.
Bohigas and Flores' carried out Monte Carlo calculations for the spacings
and found that, while the nearest-neighbour spacings have a distribution very
similar to that for the GOE, the higher-order spacings fluctuate more; the
curve of the standard deviations of their distributions as a function of the
spacing order £ slopes more steeply than for.the GOE. In these calculations,

aonly a few spacings were taken from each of the matrices in the (necessarily
finite) set diagonalised, paialleling what is done both analytically and numeri-
cally for the GOE. But th: validity of this procedure presupposes internal
ergodicity of the ensemble; or rather, that for the size of matrices used, the
ensemble is close enough to internal ergodicity so that the random density
fluctuations between matrices may be safely ignored.

French and Wong?® questioned this point. They observed that the
density function of the individual matrices in the ensemble for quite large
dimensionalities (~300) fluctuates rather severely both in the position of the
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centroid and in the width; morcover, the results vary considerably with the
dimensionality. One cannot, of course, conclude that the ensemble lacks
internal ergodicity; but at least the approach to ergodicity is too slow, so
that results such as those of Bohigas and Flores' may not be meaningful.
French and Wong introduce a correction procedure, where many spacings are
taken from each matrix and corrected for the average density of that matrix;
with this method the widths of the distributions coincide with those of the
GOE, to within statistical error limits.*

Since the results predicted by the GOE are quite close to the experi-
mental data for the level spacings, the French-Wong method seems very well
justified. Itis an unhappy fact that at the same time it raises the question
of the internal ergodicity of the ensemble, which we still lack the theoretical
tools to rackle.

4. CONCLUSIONS

In conclusion it may be said that while a great deal of work has been
done in the last few years and our understanding of the details of random-
matrix theory and its applications in nuclear physics is now much more com-
plete, several fundamental problems remain outstanding.

For the level-spacing distributions, the much more extensive experi-
mental data now available show a quite detailed agreement with the predictions
of the GOE; in particular, the higher-order level spacings, that had not previ-
ously received much arttention. The study of several new attempts at cre-
ating ensembles suitable for nuclear physics gives some support to Dyson’s

conjecture 7

that local properties are to a large extent independent of the
choice of ensemble; it could be this which explains the success of the GOE
for the level spacings, since this ensemble clearly has very little detailed
physical foundation.

If we accept the validity of this conjecture, we must go to the global
properties to decide among different ensembles. Here none ot the recent
formulations of new ensembles have yielded results in agreement with experi-
ment, and in fact there is still some discussion on just what kind of comparison

.
French and Wong also give results for another procedure, which is equivalent to an
ensemble of two-body random matrices normalised so that the squares of all matri-
ces have constanttrace, This procedure yields the same results when the spacing
distributions are computed according to the “classical” method used by Bohigas and
Flores.
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should be made. However, a phenoménological approach, in which random-

matrix theory provides one element, offers a way out of the difficulty.

The problem is, at root, that none of the recent attempts at speci-

fying new ensembles comes close to satisfying the five requirements outlined
at the beginning of section 3. We are thus as far as ever from having a con-
sistent theoretical construction able to explain a wide-ranging body of experi-
mental results.
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RESUMEN

El objeto de la teoria de matrices estocasticas es lograr una explica-
ciéon coherente de las propiedades estadisticas de sistemas cuanticos com-
Plejos; su aplicacién mas importante hasta ahora ha sido en la fisica nu-
clear. En este trabajo se presenta una revisién de lo que se ha logrado en
€ste campo en los ultimos afios. También se discuten brevemente las ideas
basicas de trabajos anteriores. Se hace énfasis en la comparacion
de los resultados teéricos con datos experimentales.





