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ABSTRACT: The aim of random .•matrix theory is to pro vide a coherent ac.

counl of the suti sticaI properti es oC compl ex quantum system s;

its most important applications have been to nuclear physics.

The present paper attempts lo review lhe work lhal has been

carried out in recent yearsin lhis fieId, after providing a brief

description of the basic ideas deríved from earlier work. At.•

lention í s paid to the compad son wilh experimenlal dala.

1. INTRODUCTlON

In the last tWQdecades much progeess has been made in the undee ..
standing of the detailed characteristics of low-Iying scates in nuclei 1. But
the situation is diffeeent when dealing with highly excited states Iying, say,
8 to 10 ~leV above lhe geound state in medium oc heavy nuclei. No nuclear
model exists that is capable of describing adequately (hese states, and even

•v.'orL:supporled by the Instituto Nacional de Energía Nuclear and {he
Consejo Nacional de Ciencia y Tecnología, México.
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if (hefe were ane, (he number of levels in (his region of excitarían is such
mar any description would be uninrcresring. As in (he analogous situarían
in statisdcal mechanics. physically significant results are obrained from
averaging in sorne way over roany levels rachee (han froro (he study of the
positions Of decay widths, 5ay, of individual lcvcls. In arder to ¡nreepcce
me experimental results one mus[ [hen provide theoretical rnodels for such
average properties of quantum.mechanical systems having a large numbcr of
cocegy levels in a given region.

Fae nuclear physics, such average properties fall roughly ioto tWQ

classes:

a) global propcn-ies, examined over a large cocegy region; [he
level density (the number of levels per unit energy interval)or
che strength function (the sum of the decay widchs of a1l leveIs
lying in a unir energy in cerval) are exampIes;

b) local properties, examined over a narrow range 10 which [he
global properries are constan{; of this type are the fluctuation
disuibutions, for instance the distribution of nearest-oeigltbour
spacings (me distances betwecn adjacent levels), o£ Ihat oí me
level widms.

For che global properties, simple models were proposed already many
years ago. Thus the level density for a considerable energy range can be fit
by a model which considers [he nucleons lo be particles of a Fermi gas 2; this
yields a density function

A somewhat more detailed rnodclJ. gives a dcnsity of the form

p(F.) = e exp (2a/E -ti )
(E-lIJ';'

(l.l)

( 1.2)

where the constant a and lJ. depend 00 the s~cjfic nucleus considered. Simi.-
lady, the opeiea! model - in wbich me many-body problem is ~duced lo a
single-panicle one - is able to account loe the energy variauen ol the Strength
function 4.

As regards the spectrum fluctuations, me first account of lhe distri-
bUlion of nearest-neighbour spacings is due lO Wignefs. He fealiz.ed, in me
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first place, that there should be no eoreeIadon between Ievels of diHerent
spin or parity; secondIy. he introduced the coneept of leve l repulsion, that
is to say, the idea that there is a correlation among levels of the same spin
and parity such that the smaller the spacing the les s frequently it occurs,
and the probability for levels to coincide is O. On this basis he proposed
what is now caBed the "Wigncr surmise": if we write s for the spacings and
D for meir average, then the spacing distribution function should be

P (O- x)= ::'X exp (-rrx2/4) where x = ./D_
W" 4

(1.3)

This distribution is consistent with the experimental data 6.23 obtained from
me scanering of very slow ncutrons from heavy nuclei, where the orbital
angular momenttJm of the incoming particles is almost always O, so that only
levels oí the same spin and parity are excited.

It has been shown7 mat when sufficient level distributions of me type
(1.3) for diHerent spins and parides are superimposed, then the correlations
between me le veIs of me same spin and parity are obscured and the total
spacing distribution approaches the limidng Poisson distribution

/J (O-x)=p ,

-x
• (1.4)

Conceming the deeay widths r in a given channel (tor instance,
neutron emission), Porter and Thomasa suggested that the structtJre of the
states might be sufficiently complex to make the central-limit theorem of
statistics applicable; this then means that the reduced amplitudes ')'(except
for irrclevant faetors, r =y2), for which the contribudons from dIe component
coofigurations SUffi, will have a Gaussian distribution; hence

pW) = exp [- r /2r]
2/r ~,{2rrr

(1. 5)

where r is the mean width; this distribution is io reasonable agreement with
- 6expenrnent .
Thus different rnodels are used to cxplaio diffcrent fearnres of the

energy speetrum. The basic ideas of randorn-matrix theory, whose aim it is
to satisfy the ensuing need for a unified approach to the statistical properties
of spectra, were introduced in 19599; this theory is to sorne exteDt modelled
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on sc;]ri stical mechanics. wh,'re one is also inccrested in che ovemll proper-
[ies of a sy""r .....n time an'rages of dynamical quantities in chis casco Now in
st<ltisticai mech .•llIc ••.•such ri n,,' averages are never calcular{.J explicidy:
¡n secad one introduce's ao I":IS n¡blt: of systems and replaces che lime aver-

age .••by averages ovn m" ense"mble; mal chis is justified ir is che <,im uf crgodic

th('ory ro pron', In ti similar fashion, ¡n secad oE treating the statistica! properties
of [he eigensrat('s and l,'\'els of a gi\'cn (and. in [he nuclear case. nO[ well

known) lfamilronian. <ln ('nM'm!)le of lIamiltonians is inrcoduced and ensemblc'
averages are sludied. The er,!!odiciry of such ensembles (i. t', chat che ('n-
scrnble a\'era~('s arto equa': [() ....p(.crrum a\'erages) has so far ro he assum('<1.

In order ro ha\'(.' obi{,ets of known marhemarica! srruC[ure, rhe lIamil-
ronian operators fOrmlí!1' tlH_ ensemble are replaccd by thcir macrix represen-
tarions; rh(, C<Hltinllll'll ;)¡Hl of rhcir specrra is igoorcd, and rhe dimeosion of

the matrices i."'; allowed [o H:nd [Q infioity. Moreoycr, each such lIamihoniao

malrix is lah,o [O f(-PI\.:,'.~fl( ooly srares of fixed angular momefl[um and parir}';

as menlioned above, a miXlure of differenr angular momenra and partcies rends

w a disuiburion of indep{'ndenr srares ({or which rhe nearest-nei~hbour

spacing.'i, for inslance, simply have a Poisson disuiburion) and rhus pr('Sl'(US
no panicular inrerese

An eXlensive discussion, wgerher wirh reprinrs af rhe more l'ssenrial
papers publisf1('d on the subjecI befare 1964, can be found in rhe book by

Porter
lO
; rh(, mada'malical properties known up w 1966 are extensi\'e1y dis-

cussed in ,\I<'hla's bookll. The purpose af the present paper IS ({) reVlto\\'
sorne results obcainl'd since Ihen.

In S('ctÍon 2 \\"{' shall review sorne new resuhs for the best koown l'O.
semhle of random matrices proposed, the Gaussian orthogonaI ensemble; irs
properti<.'s are by no\\" rather well known, and as we shaIl see in secrion 2, it

predicIs Il)Cal properties ralher weIl bUI fails, for instance, for Ihe levl,l densi-
r\". Thí ...•, tog{'rhn wilh Ihe (ael that the physical conceprions on which thl'

Gau.'isian nrrhogonal ensemble resrs are nor ver)' firmll' based, has led in the
la.st rC'\': )'<:<1r.•.; (o a sear<:h {or more sarisfactory ensembles, H{'viewiog rhesl'
.\1¡.( fIlf't:'i is tile purposl' of section 3.

2 TIIE GAlJSSIA:>I ORTIIOGO"AL E:>ISE.\IIlLE

2.1 [)~:fiajtioll

\\'e considl r the submarrix in me matrix representation uf rhe }famihonian
whidl cürr(' .•.•p(\nds :0 a given \'alue of J and 1T; we take thi.'i submarrix lo be
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real and symmetric (this can always be achieved if 11 is invariant under time-.
reversalll). The ensemble wiU then consist of N x N matrices whose elements
are real random numbers. The Gaussian orthogonal ensemble (GOE) is then
defincd by making the following twO assumptions 12 which establish the joint

Jistribution of these random numbers:

(i) Orlhogonal itlvarianc~. This distribution - and hence a11 the
statistical properties of the ensemble - should remain invariant when the
sarnc orthogonal transformadon is carried out on a11 matrices belonging to il.'
This corresponds to treating a11 possible bases in llilbert space as equiva-
lent.. Wigner's argument 13 for this assumption was that there does not appear
to exi5t a coordinate system in Hilbert space which plays a preferred role -
ex:ept lhat in which the physical Hamilwnian is diagonal; every transformarion
of the base will, of course, diagonalize sorne of the matrices in rhe ensemble,
bur certainly not aH of thcm.

~ii) statistical ind~p~nd~nc~. Wirh no other justification rhan simpliei-
ty one requires thar the matrix elements be distributed independently.

ments
Assumprion
lIij ,

(i) implics thar the joint distribution oí rhe matrix ele-

(2.1)

is a funetion 12 onl}' of the invariants of 11,
Assumption (ii) then leads ro

2 N
i.e.Trll,Trll , ... ,Trll

P (11) ~ exp [ - '12 Tr 11
2] = n exp [ - 1I¡2¡12a'] Il

I i > 1

exp [- 1I.'.la2],I

(2.2)

where we have chosen the ongin of the energy scale such (hat the ensemble
average of Tr 11 is zero; assumption (ii) rhen implies thar the ensemble aver-
age of each diagonal matrix elemenr is also zero. In the la sr form in (2.2) we
have eliminatcd the variables 11." i <¡, since they are equal w rhe H.,' their

J! I J '
standard deviation is then 1//2 times thar of rhe diagonál elements.

If in (2.2) we changc [he variables from the JI .. to the eigenvalues E.
and ~N(N-l) variablcs12, wc obmin rhe dis[ribu(i~n of rhe eigenvalues, !

known in rhis conrext as me Wisharr distribution:
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Fig. 1 Plots oE the level density for the GOE. The histogcams arise ftom
Monte-Cario calculations and [he fuIlline is Wigner's semicircle
law PO( vT:'""r2• e= E/(ul2Ñ). Figs. la and lb were talcen (mm
reL 12 and Fig. le fmm reE. 28.



Rmrdom Matrix Theory. • . 147

In this equation the level repulsion is already evident, since P (E) = O when

any tWOeigenvalues coincide.

2.2 Global and local properties: lheoretical results

The level density predicled by me GOE 11 follows lhe so-<:alle<!"senu-
circle law", shown in Fig. 1 for the limit N - OQ ; the units in me abseissa

are e!(a/2N).
With what sort oí data should sueh a predietion be compared? Before

answering this question, it is important to note that a finite matrix 1"'l11 "",. h~ve
a density funetion mar deereases to O at the upper energy limit and to this
extent is unphysical: experimentally, the level density inereases until the
continuum is reaehed. Thus in any comparison we must disregard che de-
creasing part of the density function predicted by a stochastic ensemble.

1£, then, we compare the leh haH oi me semicircle law with experi-
mental data, as frequendy proposed, we irnmediately face disagreement: the
curvature of me semicirc1e is negative, while the experimencal data (as may
be seen from semi-empirical relationships like (1.2» curve upwards.

Ic mar seem paradoxical that a very simple scheme like che inde.
pendenc.particle rnodel can yield a fair approximation to the level-density
variations, while the GOE wil1 nOL .But the GOE does not incorporate any
of the specific features of nuclear interacdons, not even mose described by
the single.particle rnodel; it is thus not surprising that ic should fail for the
level density; me surprise is rather chat it should describe many local proper-
des quite wel1, as we shal1 see.

One mighl argue lhal lhe GOE should lherefore no< be compare<!directly
Coexperiment; its matrices should be taken as representing che residual inter-
actions when che valen ce nuc1eons are restricted to rnoving within one sheIl.
And since we cannot analyse me experimental level density into the contri-
butions of che individual shells, the cornparison should be made with appropri-
ate shel1-model calculations. Such a comparison has been made by Ratcliff14

and also failed.
Therefore a global property like lhe level density is nOI correctly pre-

dicled by me GOE.
Of the local properties, the nearest'11eighbour spacings for the GOE

ha ve beeo srudied by ~tehta and Gaudin 15, who were able to obtaio the exact
analytical distribution function. Although it has a very ~omplicated algebraic
structure, its graph turns out to be almost indistingui shable from Wigner' s
sunnise (1.3), as may be seen in lig. 2. The w statistic, developed by one of
the authors as a measure ol the level repulsion in oearest-neighbour spacing
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disrributions 16, is exactly 1 for the \Vigner surmisc and 0.9525 for .\1ehta and
Gaudin's exact resulto

10

O

P,o£ (O¡x)

p. (O¡x)

x 3
Fig.2 Nearest neighbour spacing distriburion PenE predicted by GOE (solid

Ene) compared with Wigner' s surnlise (dashed tine). (Taken from Rcf.
11).

Results have a150 been obtained for the k th-neighbour spacmgs

(k)
(k)_ si Ei+k+ l-E¡x. - __ ~ _
I D f)

(2.4)

whcrc [) is the mean spacing sio). 'rhe distribution function p (k; x) dx is

,hcn ,he prababili,y ,ha, a spacing x~k) lies be,ween x and x + dx. Far p (1; x),
Kahn 17 obtaincd a clllsed cxpression in 1963. More rccendy, "-1chta and

Des Cloizeaux 18 have obtained rhe general expression for p (k; x) in H.'cms

of spheroida1 functions, but numerical values are available onl)' foc k ~ 3.

Fig. 3 shows the spacing distributions for k ~ 10, obtained from Monte Cario
calculations by Bohigas and Flores tl, wilo diagona1ized 344 matrices of di-

mension 61. The figure also shows lhe theoretical dislributÍons (solid linc.s)
foc k ~ 3. Ir wilI be seen rhar the disrriburions P(k; x) are asymmercic w¡th
rcspect to thc.ir cenrroid for small k, but become more and more symmcrrie as
k inereases. The dotted lines in the figure are normal distributlons WI{h

centre k + 1 and standard deviation a (k) equal to the w¡dth of me corre.spondinr
.\fonte Cario result. Clearly with incrcasing k the Gaussian approximatlOn
becomes bettcr and bcttee.
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Fig.3 Spacing disuibutions foc (he Gaussian orth<,gonal ensemble. (Taken
Irom Rel. 19).
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A further theoretical result DE ¡nteres! concerns che joinc probabiliey
distribution oE (wo adjacent nearest-neighbour spacings. This function was
found by Mehra n1 ir predicts a linear corcelarion coefficienr21 between (he
two spacings oC - 0.27.

A local property oC a differenr kind, since it deals with [he sratistical
properties ol eigcnvectors, is (he disrciburion DE the amplitudes of transitions
leading ro a reacrion channel (foe insrance, rhe emission ol oculroos); (hese
amplitudes are proportional to me overlap DE me eigenvecror and (he channel
state; iI we rake che channel srate (o be paralleI to one oE [he basis vectors
of me matrices, then che disrciburion DE me amplitudes (and [he derived disui-
bution of (he widths, which are the squares of the amplitudes) is obtained
from that of a single component of the eigen\'ectors 12. For the GOE, this
disrribution is that of a component of a unit vector distributed at random with
equal probabilities assigned to equal areas on the N dimensionalhypers¡ilere's
surface on which the unit vectors end; this is a consequence of postulare (i)
in section 2.1. Explicit calculation gives, in the limit of N-CXl, a Gaussian12;
this gives for the widths the distribution proposed by Porter and Thomas8.

2.3 Comparison with experimental data

Before considering how the GOE compares with experiment, sorne
general comments seem in order. The greater pan of the experimental data
comes from neutron resonance studies with heavy even-Cven nuclei; the ex-
periments are difficult to carry out, since it is important ro observe as far as
possible a complere series of Ievels of the same .;;pin and paritl'. Narrow
rcsonances, below a limit set by the experimental arrangemenr, will not be
seen, nor is ir always easl' ro exclude levels beloogiog ro anorher series. The
resulting crude data musr be corrected {or rhese rwo cffecrs; rhis implies
lengrhl' aod complex calcuJations, rhe effect of which 00 rhe comparisoo wirh
theorl' lS by no means eas>, ro assess23.

In fig. 4 we prescor the disrriburion {or nearest.ncighbour spacings
raken from an exrensive experimenral series2J. Thc correcrions for rhe rwo
effects oE missing and extraneous levels wouId affect sorne 6% DE rhe leveIs
in rhe worsr case. The resulrs are compatible wirh the Wigner surmise (1.3);
the authors o( the experimental paper used as a criterion rhe Ó statisric de-
veloped for chis purpose by Dyson and .\lchra22• rather than the usual X2 test,
but the visual comparison also makes the agreement clear. .\foreover, the
correlarion coefficient between adjacent spaciogs, given for several nuclei 10

Table 1, is in quite good agreemellr wirh rhe theoretical value -0.27.
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Fig. <\
Histogcam foe neacest-neighbour spacings foe lf:6Er, compared with
1/ignec's surmise. (Taken froro Rcf. 23),

TABLE I

Correlation cocfficient foc adjacent spacings. (Taken £rom Ref. 13, p. 210)

16hEr 168 Er 182W I8.W 152Srn 172Yb

N 109 50 4\ 30 70 55

E 4200 4700 2607 2621 3665 3900
m••

cov (sr S¡+ ,) -0.22 -0.29 -0.37 -0.28 -0.26 -0.24

iO.08 tO.14 tO.15 iO.18 tO.11 iO.13

N = number of l~vels
E
mu

= upper l¡mil of cnergy ¡nterval (in eV) containing me N lcveb
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Fig. 5 Prediccion o( (he GOE for u(k), compared wirh experimental data.
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(Talcen (rom Re(. 23).
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Fig.7 Nearest nei.'1:hbour spacing distriburion for levels oear aD analogue
state in 49y• (Taken from Ref. 24).
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For the highcr-order spacings (he Jala are scarce. In Hg. 5 we show
che theoretical valucs of che standard deviations of rhe k th -1lcighbour spacing
Jistributions, ohrained frum Monte CarIo ca1culations 19 when k > 3. and com-
pare (hese with sorne experimental results. 'rhe fit is reasonable.

Fig.6 shO\lr"S lhe distrihution of lhe neutron emis~ion widths23 foc

Itl6Er, and foc comparison (he PorrN-Thomas distribution; lh€.: mean of rhe
theorcrical curve i5 caken from lhe experimental puines. Ag.ain expcriment
and theory agree quite reasonably.

The dara we have discussed, togcther with muse previuus results,
come from neutron scaucring experiments. Recendy, howcver, Bilpuchetal/'
ha\'c beco able to extraer statistical ¡nformation froro an analysis of the reso-
nances seen around an isobarie analogue starc in -GV. \l/e present their re.
sults foc (he nearest-neighbour spacings and the procon-scauering widths in
figs.7 and 8, respectivel)'. The data of fig. 7 have beeo corrected for me
variation of the level density, which changes in this regioo by a factor of 2;
it is ooly after (his eorrectioo that (he fit becomes goo<L (1'he Wigner law
(1.3) supposes that the level density is constan!.) In fig. 8 no such curt<-ction
has beco applied. yet (he fit is surprisingly good: the au(hors explain this
as due to me fact that (he variation in the level deosity is compensated for
by a similar but opposite variation in the strength function (i. e. (he local
average of the reacrion wid(hs divided by (he average local spacing, or, equiva.
leotly, rhe total reaction width per unit energy interval)

The experimenral results discussed hefe art' typical of many other
nuclear data; one may therefore conclude that che local stat~stical propenies
are well accounted for by the GOE, whereas the le\'cl density it predicts is in
clear disagreement with nuclear data.

2.4 Ergodic prop{'rties

As \Vas mentioned in [he introduction. the aim of random matTlX theor}'
15 to explain rhe statistical properties of a nucleus as averages o\'er an t.'o-
semhle of Hamiltonians. For (his idea to work the ensemble must have two

propcrtlcs:

(i) The \'as( majority oí members in {he ensemble must have the sarne
statistical properties, which will then be lhe ensemble averages: this we shall
call the intrmal ~Tg()dic proP~Tty. lt is clear thar this is only a cOflsistency
requirement; without ir rhe ensemble averages are oot meaningful.

(ii) The ensemble averages oí the st3tisrical properties must repre-
sent adequately [hose of the physical system under consideration, - the given
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nucleus, in chis case. We wilI call chis the t"xt~ma/ ~rgoáicity of me ensemble;
i{s physical meaning is obvious, but in practice i{ is far more difficule to es-
{ablish than internal ergodicity, since {he lack of sufficiently srringent con-
dicions on nuclear models usually means that i{ can on Iy be shown to be
valid piecemeal, by comparison with experimental resuhs.

Sorne results for internal ergodicity have been obtained. OIson and
Uppuluri 25 have succeeded in showing for an ensemble which is somcwha(
more general {han the GOE. tha{ almost alI matrices in it. except a set of
Zero measure, have a level density which folIows {he semicircle law of fig. l.
(The corresponding external ergodic propeny does not hoId, as we ha ve seco
from the experimen tal evidencc.)

Ano{her resule is due to Brody and Mello26, who prove that for an en-
semble satisfying the onhogonal-invariance condition of section 2.1, almost
alI matrices, again except for a set of Zero measure, yield {he Porter-Thomas
distribution for the widths. In this case the experimental data do not conflict
with the validity of external ergodicity.

The problem of the internal crgodicity of the spacing distributions
has not been sol ved; experimentalIy there is no reason to doubt the external
propeny, as we have seen. Sorne theoreticians suspect that the local proper-
ties of a large class of ensemblcs may be independent of me kind of ensemble
(see e.g. Dyson27, French and Wong28): if this should tuen out ro be true,
then the good agreement between the Wigner surmise and experimental resuhs
might be of considerable general interest, though it would lose much of its
usefulness in nuclear spectroscopy.

3.RECENTDEVELOPMENTS

Ir will be clear from the discussion of section 2 that the GOE does
not constitute a satisfactory sotution to the problem of building a suitable
ensemble for [he representation of nuclear propenies. In order to provide a
background for the description of more recent attempts ro overCome sorne of
the limitations of the GOE, it is perhaps worth while setting out explicitly
the requirements that an ideal ensemble should satisfy:

•
Their ensemble consi Sts of aH real symmetric matrices whose elements are jnde.
pendendy distributed wjth zero mean, the same vaciance foc aH off~diagonal
elements and al1 moments of the distribution f¡n¡re.
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The ensemble average s should reproduce (he general behaviour
local and the global statis(ical properties as observed experi-

(i) The definirion of [he ensemble should be based 00 [he princi-
pies underlying (he dynamics oí [he systems to be described; in OUT case
chis meaos that [he dynamics oí [he nuclear force should provide [he
framework, oc ae lcase many-body quantum theoey should do so. In [he case
DE classical statistical mechanics, in analogy to which random-marrix theoey
is built up, chis has proved possible: Newtonian mechanics yields, vía
Liouville's rheorem, a measure ovC[ (he possible cnsembles; used together
wirh [he lIamiltonian function of [he sysrem, [his allows one to define a
suitable ensemble.

(i i)

of both me
mcntally.

(¡ii) Any paramcters in [he definirian of [he ensemble should be
linked to (non-statistical) propcrties of the nuclei which can be obtained
from other sources. This will then allow of adapting the general model ro a
specific nucleus, jUSt as in statistical mechanics the mass of the individual
molecules, meir number, and so on, are fixed from other considera(ions and
(hen de(ennine (he statis(ical properties deduced from the ensemble theory.

(iv) In(ernal ergodicity for the ensemble should be satisfied. This,
as mentioned above, merely implies (he intemal consistency of the mathe-
ma tical mode 1.

(v) It would be convcnient if the ensemble were mathematically
tractable, so that its properties coulJ be deduced in a rigorous fashion, for
comparison with experiment.

Unfortunately we are vcry far from the ideal situation; in fact non e of
mese five requirements can at present be satisfied. Ir is 1I0t yet possible to
derive a suitable measure for matrix ensembles from our still inadequa(e
knowledge oE nuclear forces; we cannot even delimit the general class of en-
sembles within which one might search for une that has the necessary proper-
tieso This helps to understand why aH the recen( attempts to create more
suitable ensembles have simply tried ro remedy une particular aspec( mat
was feh tu be unsatisfactory, in the hope (ha( the omer properties of the new
ensemble would not be significantly worscncd. Morcover, many proper(ies
of mese proposed ensembles have beeo obtained froro Monte CarIo slUdies,
since mey do n,j( sa(isfy requirement (v).

In what follows we give a brief description of three d¡Herent directions
in which such attempts have becn made in recent years. In me first of these,
additional fcatures are introduced in the definition of [he ensemble, in order
to improve the level density. The second direction defines an ensemble in
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such a way that the experimental level density may be directly incorporated
in ir. The third tcndency auacks the problem of satisfying requirement (i)
by taking into account sorne, at lcast, of the known features of nuclear {orces.

3.1 Positive de((nite ensemble s

In the SIAM Review, Wigner2') pointed out thar nowhere in the GOE is
(he condidon imposed mat the energy spectrum mus[ havc a lower bound,and
he suggested that rernedying this might also improve the level"¿ensity pre.
dictions. lIe proposed an ensemble of positive definite matrices of the form

11 (3.1)

\\,'here the A's are generated according to me GOE, so thar the H's still
satisf)" the orthogonal-invariance rcquircmenr O) of scction 2.1. Thc re-
sulting level densit)", howcvcr, has me form.D

I ~2pUi) '" _ .¡2N - F.
F.

(3.2)

which diverges ar rhe origin and .so cannot reprcscnt the nuclear situarion.
A second proposal for a posirive definite ensemble, also due to

\1;rigner31, consists of syrnmetric matrices of the form

(3.3)

whcre the A' s are complex matrices, not in general symmetric, \\hose elements
ha\"e real and imaginar)" parts distributed independently according to Gaussian
distributions with the same variance. The densit}' for chis ensemble is pre-
dictcd [o be32

(3.4)

This is shown as [he continuous curve of Hg. 9, together with the resuIts of
a Monte Cario calculation3o• The level dcnsity is now finite at me lower
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bound, bue its curvarure is still Dor consistcnr wirh experiment for [he nuclear
casco Sorne local propertíes of chis ensemble have beco ~nvestigated numeri-
callyJJ; in spite of [he unsatisfactory resuh foc [he level densiry, [he neares[_
neighbouf spacings correspond rachee well to [he Wigner surmise and so agree
wilh experiment.

So fae, [hen, (he goal of getting a corrcer nuclear level density has
nor beco achieved wirh (hese [wo attempts; 00 the other hand, oue canDor

excJude [he DOssibility thar [he second ensemble will prove useful foc cenain
orher quantum systems.

¡I(,

lO

O.,

O
4 6

Fig.9 Level density histogram foc a ser of 800 matrices wirh N ~ 30, generared
according ro (he disHibution (3.3), compared (Q [he theoretical resuh(3.4).
(Token from Rel. 30).

3.2 Brownian-motion cnsembles

These cnsembles were developed by Dyson27 in order to alIow the
specification of th,=, level density in an (almos!) arbitrar\' fashion. He noticed.i.i
that the joinr distribution of the eigenvalues for the GO~~may be written as
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p(I!,E , ... ,EN,)=Cexp(-IV)l' .
whcre

) "1 I ~ -/,'. '1 t '..,'(E,' ,/2CT," )\f(l! ... .,EN =- - ,o "¡
1 ' i .:.j J I
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(3.5)

(3.6)

Bur if W(' inrerprer rhe E
i
as rhe coordinates along a line of :~ infinirc WITCS

wirh equal elecrric chargcs, rhe firsr rerm of (3.6) becomes rhe porenrial
energy bcrween rhem; rhe second rerm, a harmonic-osci l1aror force, can be
raken as neccssary ro confinc rhe wires ro a f¡nirc region. If now (3.5) is ro
be rhe probabilir)' disrriburion of [he posirions, we are supposing rhe ex-
isrence of an ensemble of such sysrerns, as in classical sratistical mechanics.
for which rhe equilibrium posirion is given by rhe minimum of rhe funcrion W.

Such an ensemble could be consrcucrcd in many ways. Dyson chooses
ro consider rha[ rhe wires constantly inrerchange cnl"rgy wirh a srochastic
rnedium rhrough fricrionai forces. so mar rhe E¡ noW fluctuare. In order ro
ger (3.5) as rhe srarionary soludon of rhe equarions for rhe resulting Rro\\nian
morion, rhe wires musr feel an exrernal f¡eld

¡:(E.)=- oIV =, oE,¡ "¡f-¡ E¡ - E¡
(3.7)

in addidon ro rhe srochasric forces.
So far we merely ha\'e a physical analogue for the GOE .. Sur ir can

clearly be generalizcd; rhis was donl" by Dyson in a more recenr paper
27

,

wherc he keeps rhe rwo-dirnl"nsional Coulomb rerm which produces rhe re-
pulsion, bur uses a more general form of rhe confiniog porencial

(3.8)

Itere r (,\.) is rhe density of the charged wires along rhe line. Dyson now
shows that in rhe stationary stace chis densiry distribucion is obtained,
what('ver rhe inirial conditions. Sincc r Ud may be any continuous finit<.,
funcrion, wc can cieariy conscrucr in chis way an ensemble to yield any given
ncnsicy function. Of course GOE can casil)' be sccn ro be a parricular ca ..•e,
where rhe density is rhe semi-circle la\\'.
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Dyson a150 obtains exact analytic expressions fIJe (he local corre-
latiDo functions, which give [he probability lor finding n eigenvalut.'s round
(he positions El' E2, ••• , EN' regardless ol [he positions oí (he remaining
N -11 eigenvalues. For the particular type ol ensemble where complex
Hermitian matrices are used ¡nseead oí real symmetric ones, mese expressioos
are valid foc [he stationary state to which (he Brownian-motion ensemble s
lend, and fOI N lalge enough do nol depend on T (11.); Dyson makes il plausible
thar foc me ensemble s of real syrnmetric matrices his expression will a150

tend to a l¡mit independent ol r (A,). This conjecture is ol considerable ¡m.
portance: since (he local properties ol the eigenvalue distributions depend
only 00 mese correladon functions, ir implies that these local properties are
independenl of a global property such as ,he leve! density (lhough lhey do
depend, oí course, on the type oí ensemble, and íor example are dilíerent íor
the real symmetric and complex Hermitian cases). Thus in particular me
spacing distributions oí the ensembles oí interest in nuclear physics would
be lhose aIready known from !he study of lhe GOE.

The Brownian-motion ensembles, at the very least, offer a convenient
phenomenological way ol building ensembles with a given level densiey.
Moreover, Dyson's conjecrure conceming the independence oí local and global
properties, ií coníirmed, would be a remarkable result in more than one sense.
However, the "charged-wire model" merely functions as an analogy meant to

stimulate che imagination, and nowhere in it is there a way ol incorporating
any ol the characteristic íeatures of the nuclear many-body problem. AIso,
one would like ro have a modeI which instead oí adapting itself to any given
level density, the unreasonable ones as welI as the experimentally found
ones, would allow one to d~duc~ a level density which approaches the ex-
perimental one from fairIy generally accepted physical principIes.

3.3 The two-body random ensemble

Such arguments lead one to consider a completely d¡fferent type ol
ensemble of random matrices, namely those which explicitIy take ioto account
certain known features of the nuclear forces. Such ensembles were inttoduced
independently by French and Wong34 and by Bohigas and FloresJ5• The
feature to be taken into account i5 the two-body character of the force, within
the general framework of the shelI model. One pay s a price for this more
"physical" approach: the orrhogonaI-invariance condition of SeCtiOrI2.1, v.nich
aH ensembles discussed so far satisfy, must be abandoned.

The background for the idea of a random-matrix ensemble with sheII-
model characteristics ma}' be found in calculations such as those oí RatcIiff14
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or Zuker36; they srudied the level distributions obcained froro large reallstic
shell-model matrices and found chac che level density has'a roughly Gau~¡~ian
shape _ very differenc froro t.he GOE' s semi-circle law and of me right cun'a-
ture at the lower end (as rneotioned, ooly chis par( is expecced co have any

physica1 relevance).
Sorne physicaI insight into che behaviour of random-matrix ensembles

based 00 the shell model comes froro anaIycic studies carried ouCby A. Gervois,
using the perturbation cheory of scatistical mechanics and taking the two~
body rnatrix elements of the inceractions as independent random numbers.
She considers che limit where che size of me shell goes to infioity, and finds
[wo speciaI cases of greac interese: (i) if the nurnber of particles in che shell
also goes tO infiniey in such a way that the fraction of the shell filled remains
fioite, then the level density is Gaussian in shape, and (ii) if the number of
panic1es remains finite, che level density tends to the semi-circle formo The
second result might have been expected: if the number of possible states
open to a Hoiee number of particles grows sufficiently large, then the re-
strictions imposed by the specific shell model features and even by me Pauli
principIe lose meir force, so chae che correlations beeween che marrix elements
become unimportane and we approach a limie very like che GOE. The £irse
case, however, gives strong support to the idea of a macrix ensemble within
the shell-model framework as a possible alternative to GOE.

This ensemble is constructed as follows:

Lel us consider p partic1es rnoving in a sel of subshells labelled by
ehe usual single-particle quantum numbers ii (the angular momentum) and mi
(ils z projeclion). In lhis (finile-dirnensional) shell-rnodel space, lhe
Hamiltonian of a ewo-particle interactlon is completely defined by its matrix
elemencs wieh respect to two-particIe scates, which we write as

<. 'Jltlvl""JM>'1', ' '1"
Bere V is che interacciono J and M, (he total two.particle angular momentum
and ies projeccion, are che same in bra and kec, reflecting the invariance of
the Hamiltonian under dIe rotation group. Once che brackets (3.9) are known
for aH possible values of the quantum numbers, any matrix element of the
Hamiltonian for p > 2 can be calculated by standard shell-model techniques.

The two.body random ensemble is created by taking che matrix elements
(3.9) as independent random numbcrs; the distribution from which they are
sampled is usually taken {Q be Gaussian, but there is sorne evidence3-4 chat
its choice is not critical. The elements oí me p-particle rnatrix will chen be
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n.ndom numbers in eheie turro- bur the shell model's selecrion rules will often
impose a considerable number of zeros in the marcix, and amont: rhr remaining
elemems there will be strong corn ..lations. ln {act, the numbt:r of indercnoent
variables is often surprisifl:1iy srndll; thus {oc dll' (j = 3, T = 1) matrix in the
(dS)12 shell the dimensionality is 6706, so thar (here afe sorne 2x 107 mal •• v
elements, of which onIr 67 ace independent28•

An ensemble of such matrices cannot) caf couc,;c, ohe}' [he. orrhogvli.:.J-
invariance condition of secrion 2.1: foc instance, al! matrices il"} the en~~JT)ble
have the same zetas.

No exact analytical results afe available foc any of me pI\J~ertle~ of
su eh an ensemble. Faiel}' extensive Monte Cario calculation~ ha\'c, however,
be en rnade. For the level density the results approach a Gaussian distri-
bution quite closely when p increases, as lS shown in fig. 10 for a panicular
case 35.

10

0.5

o

Fig. 10 lIistogram f~)( the leve! density for the two.body random ensembJe
.compared wlth a Gaussian distrihurion. (Taken fonn Reí. 35). •
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Such a variacion of the level density, obcaincd from a single sh~u:
has been interpreced by French and his collaborators as a.partial densi~,2S. 38;
they show chac che total variadon, of the form (1.2), say, can arise as the sum
of such cerms whose parameters are derived from the shell model. lbis intt:ryre-
tation clearly implies a general model made up of finice-sized and non-ioter-
acting shclls. Two considerations are chen relevant. In the first place, this
model is esscntially phenomenological in ics combination of shell model
features and random-macrix theory, and in facc the Gaussian partial densities
can be oeri ved from quice different cheoretical formulations. flowever adequace
such an approach may be for nuclear physics, che question of whcthcr a satis~
faccory random-matrix cheory can be built remains open. A scconc1 point
arises {rom the ncglect of che interactions between shclls. This is known to
be physically unsatisfaccory. These inceractions may have sorne influencc
on the ¡cvel density; more importantly, the superposition of statistically inde~
pende m level distribucions destroys, as wc have mencionco before (see dis-
cussion with eq, (l A)), the level repulsion which experimencal1y is observed;
thus improving the model for the level densities spoils ic for che spacing
distributions. (This theoretical result 7 is essential1y valio for the GOE;
~tonte Cado calrulations for me superposition of panial densities from the
two-body random ensemble are in progress,)

A more promising way of looking at me level densities might chen be
to take into account the remaining imeractions becwecn separate shells by
consioering them as component pans of a "supcrshell", the size of which
could grow very large. No calculations on such a model have yet been made.

As for the level spacings, the picture presen[ed by [he two~body
random ensemble is not much happIer, No analytical results are known here.
Bohigas and Flores 1') carried out ~fon[e Cario calcuhuions for che spacings
and found chat, while [he nearest-neighbour spacings have a distribution very
similar to [hat for the GOE, che higher-order spacings fluctuate more; the
curve of che standard deviations of their distributions as a functioll of the
spacing order k slopcs more steeply than for .the GOE. In [l1es(;' calculations,

aonly a fcw spacings w(;'re taken from each of che matrices in the (neccssarily
finite) ser diagonalised, palalleling what is done bo[h analytically and numeri-
calIy for the GOE. But th .. validicy of this procedure presupposes in[ernal
ergodicity of che ensemble; or racher, that for [he size of matrices used, the
<'ns(.'mble i s c10sc enough to int('rnal ergodicity so that thl.' random dcnsity
fluctuations between matrices may be safely ignored.

French and U'ong28 questioned [his point, They observed thac the
density function of {he individual macrices in the ensemble for quite large
dimensionalities (""' 300) fluctuaces rather severely both in the position of the



164 Brody et al

ccnrroid and in (he width; moreover, me results vary considerably with me
dimensionality. One canDor, of eouese, conclude thar (he .ensemble lacks
internal ergodicity; bu[ at lcase [he approach to ergodicity is too slow, so
thar results such as [hose of'Bohigas and Flores19 may not be meaningfuI.
French and Wong intcoduce a correcrion procedure, where many spacings are
caken from each matrix and corrected foc [he average dcosí ty oC [har matcix;
with [his mechad [he widths of [he disrributions coincide with those of che
GOE, ro within statistical error l¡mies .•

Since [he results predicted by the GOE are quite clase to (he experi-
mental daca foc (he leve! spacings, [he French-Wong metbad seems very well
justified. Ir is an unhappy fact that at the same time it raises the question
of the internal ergodicity of the ensemble, which we still lack the theoretical
tools to tackle.

4. CONCLUSIONS

In conclusion it may be said that while a great deal of work has been
done in the last few years and our understanding of the detai1s of random-
matrix theory and its applications in nuclear physics is now much more Com-
plete, several fundamental problems remain outstanding.

For the Icvel-spacing distributions, the much more extensive experi-
mental data now available show a quite detailed agreement with the predictions
of the GOE; in particular, the higher-order level spacings, that had not previ-
ously recei ved much attention. The study oE several new attempts at crc-
aring ensembles suirable Eor nuclear physics gives sorne support to Dyson's
conjecrure 27 thar local properties are to a large exrent independent oE the
choice oE ensemble; ir could be this which explains the success oE the GOE
for the level spacings, since this ensemble clearIy has very Iittle derailed
physical foundation.

If we accept [he validity oE rhis conjecture, we must go ro che global
properties ro decide among different ensembles. Bere none ot the recenr
Eormulations oE new ensernbles have yielded results in agreement with experi-
ment, and in faet there is s[ill sorne discussion on jusr whar kind oC comparison

Fr('neh and \rong a1so give resul[s for another proeedure, which is equivalen[ [o an
ensemble of two-body randoro matrices nonnalised so [hat [he squares of al1 matri-
ces haveconstanttrace. This procedure yields the same results when the spacing
distributions are computed according to the "classicaI" mechod used by Bohigas and
Flores.
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should be made. However, a phenomenological approach, in which random-
matrix theory provides one element, offers a way out of the difficulry.

The problem is, at root, [hat none of [he recen[ anempts a[ speci~
fying new ensembles comes close to satisfying [he five requirements out.lincd
a[ [he beginning of section 3. We are thus as far as ever from having a con-
sis[en[ theoretical construction able to explain a wide-ranging body of experi-

mentai results.
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RESUMEN

El objeto de la teoría de matrices estocásticas es lograr una explica-
ción coherente de las propiedades estadísticas de sistemas cuánticos com-
plejos; su aplicación más importante hasta ahora ha sido en la física nu.
eleac. En este trabajo se presenta una revisión de lo que se ha logrado en
este campo en los últimos años. También Se discuten brevemente las ideas
básicas de trabajos anteriores. Se hace énfasis en la comparación
de los resultados teóricos Con da[Os experimentales.




