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ABSTRACT :
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(Recibido: agesto 29, 1972)

We survey some of the properties and representations of the
Weyl group, the three-paramecter Lie group generared by the
(Weyl) algebra realized in Quantum Mechanics by the coordi-
nate, momentum and unity operators. We consider one-di-
mensional coset spaces as homogeneous spaces under thz
group and, taking plane-wave and harmonic oscillator eigen-
function bases, we construct all the unitary irreducible repre-
sentation matrices of the group. We add some previously
published material on the Weyl group as a dcformation of a
semisimple group, on non-Schrodinger realizations, on some
of its enveloping algebras and place it in the context of the

general nilpotent groups,

1. INTRODUCTIOM

Consider the Weyl algebra W whose elements @, P and H satisfy the

commutation relations
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[Q,P]=:H, [Q,H)=0, [P,H]=0. (1.1)

This is the Weyl algebra familiar from Quantum Mechanics®, where Q
and P are identified with the position and momentum operators and H, being
the center of the algebra, is replaced by a multiple AT of the identity oper-
ator. The number A is taken to be #, Planck’s constant divided by 27mr.

The Weyl group W is the three-parameter nilpotent Lie group gener-
ated by W. It is the purpose of this article to survey some of its properties
and present in a unified fashion some related approaches? 3 4,

The Weyl group does not appear as a group of geometrical invariance
in any known physical system. Its algebra, however, lies at the very root of
Quantum Mechanics: the Weyl universal enveloping algebra f) represents the
set of all quantum-mechanical observables (spin disregarded), that is to say,
the generators and homogeneous space of the group of all canonical transfor-
mations.® In line with some recent work by Moshinsky et al.®, it appears to
be of considerable interest to extend the study of physically relevant Lie
algebras (symmetry and dynamical) to finite transformations in the generated
Liegroups. Furthermore, as we have shown in a former publication’,
harmonic analysis on the Weyl group, which reduces essentially to Fourier
analysis, whose powerful results can be immediately used, provides a well-
grounded scheme for the formalism of Quantum Mechanics. It is there fore
odd that the Weyl group, being to the family of nilpotent groups® (Appendix A)
what the three-rotation group is to the family of semisimple groups, is rela-
tivelv little studied by physicists.

In Section 2 we develop some of the results on the Weyl group manifold,
homogeneous spaces and representations given in Reference 7, which deal
with the chains of groups WO W, and WDWP where W, and WP' are the one-di-
mensional subgroups of W generated by Q and P respectively. The unitary
irreducible representations (UIRs) of W are completely classified by their
eigenvalue A with respect to H.

Out of the enveloping algebra W) of W) we can choose the operator

d>=.;_(P"’+02) . (1.2)

Diagonalization of (1.2) (instead of Q or P) leads to the Harmonic
Oscillator wave functions to be used as representation basis. This is de-
veloped in Section 3, the method being akin to W. Miller’s treatment? of an
enlarged four-parametergroup which has (1.2) for one of its generators.
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Section 4 is devoied to place the developed material in a wider context:
the Weyl algebra and group as contractions” ? of the three-parameter semi-
simple algebra and groups, the non-Schrodinger realizations Y of W which
generate multiplier representations of W and some covering algebras.!!

In three appendices, we give some properties of the general nilpotent
algebras and groups®, a realization of an n-dimensional version of the Weyl
algebra and group, and a generating function for associated Laguerre poly-

nomials.

2. THE WEYL GROUP IN THE CHAIN WDWQ

2.1 Construction of the Group

Consider the matrix representation of the Weyl algebra Win (1.1}
given by

1 0 =i =1 ¥
Q=—>Q = i 0 0 (2.1a)
B 0 0
0 1 1]
P<et—=p = 1 0 0 (2.1b)
wll 0 0 ,
[ 0 o0 07
H-e—j = 0 2 2 (2.1c)
0 -2 =2

We parametrize the generated Lie group W when we construct the gener-
al group element g(x,y, z) as

g(xv)’»z)= expi [AQ+)1P+ZH]

1 x iy x+iy

- -x+tiy l+2iz—%(x2+y2) Ziz—l(xz-%-yz)
2

x =iy —2iz+%(x2+y2) 1-2iz+ Lix?+y
2

M o(2.2)
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(sce footnote 12), the exponentiation of xQ +yP + zH is casy since ali its

powers higher than two are identically zero.

The group multiplication law follows!?

s E
g(xl"1’21)3("2’3'2’:2)—g(x1+x2’y1+y2’zl+zz+§ Ly, %= %3, 1)

(2.3}
The group identity is e = g(0, 0, 0) and the inverse {gr(x,y,;»:)'1 =g(=x, ~y, -2).
All parameters range over the whole real lip -~ manifold of W is
therefore non-compact and simply conne
ated by H, is the subgroup of eleme

2.2 Generators as Differern”

Consider th-
through the acr’

and action from the left

2. (2.4b)

In terms of the coordinates (2.2), the transformation Jacobians of
(2.4) can be found from (2.3) to be, at the origin

Aege /|, =0 "ol =1
g =

. g =ie
hence the right and left invariant Haar measure for W is
di(g) = dx dy dz. (2.5)

The expressions for the generators of W as differential operators in
the parameters (2.2) can also be found from (2.4) when we consider transfor-
. i ) N r 4 ' . ;
mations by group elements dg" = g(8x’ 8y’ 8z') in the neighborhood of the
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identity ' Through action from the right,

(R
x5, %) ...E.._...).]'(x-!-gx ,}'*Sy',z+5z'+% [ydx'- x8%'])

- + \j l, J a-_l_'a +8'a+© )
(1+8 Y .2_ az + &y ¢ 2xaz z_a (og))f(xy,z

{1+ (5 QR+ & PR+ 82 BRI+ 687" f(x,y, 2, (2.6)

and similarly for action from the left. We thus obtain

R (241, 2) gtoj(@.1,0 (2.7a)
=il v s g @ =il 2w,
R o 1.9 9 ,1. 9
pR = . 1y, Pl =2 +1 ; (2.7b
J (T 2 <3z) d d)‘ 2 * az) )
R L .9 "
HR = wll =-3 2 | {3.3¢)

As a check, it can be verified that the generators of rigth transfor-
mations follow the commutation relations (1.1) and so do those of left transfor-

mations. Furthermore, one set commutes with the other.

2.3 Invariant Spaces of Functions and Functions on Homogeneous Spaces

We can construct subspaces of functions on W which will transform
among themselves under the actions (2.4) of the group: those functions
flg(x,y,z)) whose z-dependence is given by

}\ i
1 tole v, D= Foleg) o %, he s ), (2.8a)

which can be seen to preserve their form under (2.3) =(2.4) and which are
clearly eigenfunctions of H in (2.7¢):
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5
2 Pay=—HF tey= A ). (2.8b)

Furthcmmore, as any function (within a wide class for which the
Fourier exists) can be expanded as

fleley, D= [ dF x, y)e (2.9)

we can say mat we have expanded the space of functions on W as a direct
integral of subspaces invariant under the action of W labelled by an index A,
their eigenvalue with respect to the generator H .

In each of these subspaces we can write the generators (2.7) as

Q® - —x'ai+§ ;\y,PR:-;ai-‘_u,HR=u,
x

y 2
oF =iai+;_xy,PL= iai-%)\x,HL=—}U, (2.10a)
x Y

acting on the functions Fl(x, y) in (2.8a). This function is effectively a

funcricn on the homogeneous space W/WH = W,\W. The commutation relations

(1.1) hold for (2.10a) and (2.10b). Again, one set commutes with the other.
Consider now the decomposition of an arbitrary element in W as

glx,y,z)=g(0,y,0) g(x,ﬂ,m),m:z-;_xy, (2.11)

where g(0,y,0) €W, the one-parameter subgroup generated by P. The set

ng(x, 0, w), for fixed x and w, is a left coset of W by Wp and g(x,0, w) its
representative. The space of cosets Wp\W is the set of all representatives

g(x,0,w). As the Jacobian J(x,y, 2)/9(x,y,w)=1, the Haar measure (2.5)
can be written as

di(g) = duply) de(x, w) = dy dxdew, (2.12)

1. e. as the product of the measure djiy, on Wp and the measure dc on the
space of left cosets W\W. The decomposition (2.11) is also unique and
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hence we have decomposed the group manifold of W as a direct product of the
manifolds of Wy, and W\W.

A function on the space of cosets is a function of the parameter x
and w in (2.11). If such a function is further taken to lie in one of the H -
eigenspaces labelled by A, it must be of the form

1P ita g, 20= P ) 25, (2.13)

The transformation of <}5k(x), function on W\ W in the eigenspace A under the
right mapping (2.4a) is thus described by

“(R)
qf‘r)“(x)g—-»(bl(x* x") exp [i)\(z'-y 'I—;_I')' ] (2.14)

= U(g" " (x),

(See footnote 15). Equation (2.14) is a multiplier representation of W on a
space of functions of one variable. Proceeding as in subscction 2.2, we can
find'* the generators of the transformation (2.14) as

Q=-i 2 P=-)x H=AI, (2.15)

which, again, fulfill (1.1).

2.4 A Hilbert Space and a Basis

Out of the space of functions ¢1(1') on which W acts through the
multiplier representation (2.14) we can build a Hilbert space ¥ by intro-
ducing the scalar product

(b, )= dx b () ) (2.16)

2
and considering the subset [ (~o0,00) of Lebesgue square- integrable funciions™®
of x.

If we now choose a complete, orthonormal basis {!pj}, neN, where N
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is some index set, for ¥ we can define the representation matrices of W
through the mapping (2.14) as

A o X A i
DS r(g') =, Ulg ")) (2.17)

and be assured that they follow the group multiplication law. Under the
scalar product (2.16), the opcrators (2.15) are hermitean, for real A . The
corresponding representation matrices (2.2) will be unitary.

A basis consisting of eigenfunctions of (1.2), esssentially the harmonic
oscillator wave-functions, will be deccribed in the next section. Here we
will choose an eigenbasis of @ i.e.,

A A
Q'Xq ——qu (2.18a)
which, represented by the operator (2.15) is

Xt\?(x)"—’ (271)77 &'1% | g€(mso,00) (2.18b)

: ; A : oo ;
which, though outside ' (they are in €, but are not squarc-integrable. See
footnote 16), are orthonormal in the sense

AU ’
(Xq, Xq!):S(q-q ) (2.19a)
and complete under the Plancherel measure dg i.e.,
o M F b i j
] dgx (x) X (=)= 8x=2"), (2.19b)

when placed inside an integral over x, as is known from the theory of Fourier
transforms.

An eigenbasis of P, i.e.,

il h

Pxp :p')(p (2.20a)
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can be built, for the representation (2.15) as
- b
Xy (x) = IN] “8(p+Ax), pE(=20,0) (2.20b)

A ' . . ;
which is also outside ¥ (in 0 the space of continuous linear functionals,
see footnote 16), also orthonormal in the sense (2.1%a), i.e.,

~A =~ N .
(XP ; Xp' Y=58(p-p") (2.21a)
and complete

oo i oo A
T ap X)) K () = Bx=x) (2.21b)

As no subspace of either (2.18) or (2.20) is left invariant under the
mapping (2.14), the representations thus obtained will be unitary, irreducible
representations.

2.5 The Unitary Irreducible Representation Matrices

The matrix representations thus obtained have rows and columns label-
led by continuous indices, that is, they act as integral kernels. From (2.14),
(2.16), (2.17) and (2.18) we find

Dgy(e(ey, M) =30y - [g"-Demi Mz +Llg+a 10, ()

which can be checked!” directly to follow the group composition law (2.3)
under multiplication

s A A
Jdq' D 1(g) D)t nig) =D n(gg,) (2.23a)
and be unitary,
A = N | £
B *l8 )1 =D ¥ 1) (2.23b)
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As functions on the W manifold, they are eigenfunctions of the com-

muting operators in (2.7)

0 D r(g)—q D . (&) (2.24a)
b % N %

Q Do (@) ==qD (g (2.24b)
K D :(g)—-H D 8 = '(g), (2.24¢)

indeed, in Reference 7 they were constructed in this way. The D’s (2.22)

are thus classified by the chain W2 WQ
Further, as UIRs, they are orthogonal on W as we can verify, using

(2.5) and integrating over w

A - .
J, () ;! ,(g) D e = 4:IS(P\]—)\2)3(511-qz)S(ql'—qz)-
1 (2.25)

They are, moreover, all representations of W as they form a complete
set of functions on W: they are orthonormal in the sense (2.19b) = (2.21b) on
the space W of UIRs of W, isomorphic to the real line, with the Plancherel

measure

- A
di ()\)=LLd)\ (2.26a)

4712

whose weight function as its inverse in the right-hand side of (2.29), i.e.,

IR0 qujdq'nq glxyy,z)) D L (2(x,y,2,)
W

=8(x, = x ) 3(y, -y, 8(z - z) . (2.26b)

The D functions are thus unitary transformation kernels between



The Weyl Group ... 201

functions on the W manifold, and their harmonic transforms, matrix functions
on the dual W manifold. This is developed in reference 7.
A parallel procedure for the basis (2.20) yields

D;\pr(g(x,y, z))= 8(Ax=[p-p']) exp i(hz*“;_ [+ 13), (@27

with the properties (2.23) of the group UIRs, eigenfunctions of P and PL
with eigenvalues p' and -p, analogous to (2.24), orthogonal (2.25) and
complete (2.206).

They are the double Fourier transforms of the former, i.e.,

=1
D;;:(g) = (277]}\| ) [dq [dg" exp [-ipg/N) D;qr(g) exp Lipg/\] .
(2.28)

Clearly, in the limit A~ 0, the Weyl group UIRs become the UIRs of
the two-dimensional abelian algebra generated by (commuting) P and Q .
This is regarded" 7 as the group-theoretical meaning of the “classical limit”

of Quantum Mechanics.

2.6 The Coordinate Basis

The realization (2.15) of the Weyl group generators as operators in the
Weyl group coset manifold is not the usual one in Quantum Mechanics. There,
the eigenvalue g of Q is regarded as the physical configuration-space coordi-
nate. A function of the coordinates can be built as the functional

M=, M= @my fdx exp [-ige) ¢7 (0, (229)

i.e., as the Fourier transform of the functions considered.
In this space, we have the Schrodinger realization® of the Weyl algebra

Qfﬂ(q):(XZ‘, qu’\):qfx(q) (2.30a)
A %
P/ (q)=(x;‘,Pd> y = = 2 g (2.30b)
da
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A ; : .
As the Fourier transformation f qu?\ is a unitary mapping of X on
itself, we have the functionals /" (g) constituting a Hilbert space with a scalar
product identical to (2.16) with gesx i.e.,

o A s A
1) =1 dgr @ f) o), (2.31)

which, under the action of the group W transforms, from (2.14), as

1 (x, y, ) .
f)(q)g—}iU(g(x,y,:r))f)\(q)= fk(q'f')\y)exP: (A(z+ %xy)*qx]

]

(2.32a)
that is, the D-matrix (2.22) acts as an integral kernel

x ; A,
Ulg(x.y, )/ (9) = [dg'D): +(g) 1" (g") . (2.32b)

The representations in momentum space follow suit.

3. HARMONIC OSCILLATOR WAVE FUNCTIONS AND THE
WEYL GROUP REPRESENTATIONS

3.1 The Harmonic Oscillator Basis

In order to find the Weyl group representations (2.17) we can employ
any basis of functions dense in H“the Hilbert space of square-integrable
functions with scalar product (2.16) which transform under the action of W
through the multiplier (2.14) or (2.32). Two non-denumerable basis were
used in the last section. In this section we shall use the denumerable or-

thogonal basis {¢"(q)} provided by the eigenfunctions of (1.2), i.e., in the
realization (2.30) by the operator

+1g42 . (3.1)

As (3.1) is identical with the quantum oscillator Hamiltonian of
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frequency unity 18 unit mass and A for #,its eigenfunctions are well known
and can be written as

L l/‘ - 2/2}\
n,b:(q) —@ e H (g/V\) ,n=0,1,2,.. (3.2a)

and are the square-integrable solutions of the Schrodinger equation

oy = N + %)l,of: (3.2b)

for A> 0 and # a non-negative integer (see footnote 19).

It is meaningless to consider the case A < 0 in this context as (3.1)
is the same differential equation, but (3.2) is non-square integrable and
presents multivaluation problems. From eqs. (2.22) and (2.27), however, we
see that, irrespective of the basis,

% I A *
D" Mg (x,y, )= D (g(x, =y, =2 = D" (g(=x,-y, ) . -

This seems to be extendable to any basis?®.

3.2 The Representation Matrices

The representation matrix (2.17) can thus be built in the basis (3.2)
as

D} (glxy, =W, UGg(x,y, ) )

_/ ")
=[2™*"mint A 2[ dg exp [~ g /2\) um(q/\/mx (3.4a)

exp [=(gq +)\,_y)2/2)\] H”([f[+?\y] IVN) exp i Mz + }}_x}) + gx] -
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L m n
& A -8
mtn_ ., .

n,E:Q[z Mln.:! Dm”(g(x,y,z))mw'

I
/2

=(m\)" “exp [in(z+ ;_xy)] exp [-(t*+s%) = ;_?\yQ +2sy/A] x
x fm dg exp [= " /N+q2 {1+ s}V h-y+ix)]=

= expA [iz+ ;_(x2+y2)] exp [2#s+ s\/X(y +ix)t+ t\/}\__(-y +ix)] .

(3.4b)

A generating function of the associated Laguerre polynomials is

(see Appendix C)

(m-n) :
exp [ab+ac-c*b] = (m! )'1L'l (*e)a™p ™ .
=0

n,

3 148

(3.5)
Using (3.5) in (3.4b) for a=V/21, b=V2s, c=(\/2)% (= y +ix),

. « . m n .
collecting the coefficients of terms " s”, we obtain

Do (85,5, )= exp [N(ix+ L (2 452 ))]»

Y (m-n)/2) m-n_(m-n)
% (n1/m1) 2(\/2) Tl ybode) P02 +42] 72) _y

which is valid, for the definition of the associated LQﬁuerre polynomial, for
m > n. Similarly, setting a=\/'2$, b=\/zt, c=(N/2)°(y +ix) in (3.4), the
same procedure yields, replacing the dummy indices mesn in the right-hand
side of (3.4b), the equivalent formula 23

D,:”(g(x,y,Z)) =exp [Aiz + i_ {2 +y* N

% (n-m)/ n-m (n-m)
x(m!/n!)"(\/2) 2(y+1'x) L[+ /), (3.6b)

valid for m s 7.
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It is easy to check unitarity of the representation
A 9% *
D (g(=x,-y,~2)=D,_(g(x,y,2) , (3.7)

comparing (3.6a) for the right-hand side member and (3.6b) for the left-hand

side one.
The proof for irreducibility is parallel to that given by W. Miller**,
while the representation property follows from construction and yields sum-

mation formulae for the associated Laguerre polynomials.

4. OTHER REALIZATIONS AND IMBEDDINGS OF THE
WEYL ALGEBRA

4.1 Contractions to the Weyl Algebra

The Weyl algebra 0 is the contraction” of the 20 (3) algebra whose

generators ]1,]2 ' satisfy

[]1’]2 :ijg,‘ []3’]1]25]2’[]2713111-]] EA 5
Upon the replacement

4 5
- 2 - 2 . (7 \
5_511"’5*5127”5“513: (4.2)

Q
eqs. (4.1) read

(Q.,Pl=iH_[0Q, H]==-ieP, [P, H]I=ieQ . (43)

In the limit € = 0 these become the Weyl commutation relations (1.1)

As in that limit the matrix elements of given (finite) representations of 20 (3)
become zero through (4.2), it is suggested by the behaviour of the operators

2 D25 5 " : o oy ) ,
]  ~ € j3 = Wit Pr that we take the limit in such a way that €/(/ + 1) re-
main finite, i.e., { ~ €
diagonal corner of the @/@(3) algebra representation matrices>” and let them

1
z - - - 1
as €= 0. If we now fix our attention on the lower
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extend downwards, we can write down the familiar2’ representation of i) by
infinite-dimensional hermitean matrices

[0 v1 . . T
= Vi o0 V2
=Nzl . & o A

V3 o0

- o (4.4)
0 V1 &
T -v/1 0 V2
N ' I A V3
-V3 0
Jim He = Al

In fact, this result can also be obtained from (3.6) considering elements
glx.y, z) in a neighborhood of the identity.
A closely related contraction is given by

! I
% 5

Q=€) P=-c, A =, (4.5)

which also yield commuration relations of the type (4.3), which in the limit
€~ 0 become those of the Weyl algebra.

The difference between the contractions (4.2) and (4.5), however,
resides in the following: if we start from the familiar A0 (3) basis where T ’
and ], are diagonal, the operator HE remains diagonal. The rows and columns
of the matrix remain discrete and, as was done by J.D. Talman?, the matrices
(3.6) are obtained from the 50O (3) group representation matrices in the
neighborhood of the identity. In the contraction (4.5), on the other hand, the
matrix rows and columns are classified by their cigenvalues under Q_ and the
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2 2
representations as the eigenvalue under 62]2 =H, + S(P + 02) Thus,
from the group repre sentations of SO (3) in the ne1ghb0rh00d of the identity,
one expects to regain the representation (2. %

4.2 Non-Schrodinger Realizations

In finding operators which exhibit the N commurtation relations (1.1)
we can count on the Stone=-von Neumann theorem” to know that we are able
to perform a unitary equivalence transformation from any one-dimensional
homogeneous space realization, to obtain the Schrodinger realization (2.30).

It remains true, however, that the realization

Qf}”(q) = qfl(q), (4.6a)
()
P Mg = [-mai+ cald)] f(4), o real, (4.6b)
q
Hi g = A, (4.60)

satisfies (1.1). It may be that the form (4.6} is forced upon us by the
measure of the homogeneous space in the scalar product (2.31) not being
unity, but some du(g) = w(q) dq in which case we require in (4.0b) that
a(q)= Aw'(q)/2iw(q) (the prime indicates derivation with respect to the
argument) if the operator (4.6b) is to remain hermitean.

In ordinary quantum mechanics, however, where the measure is simply
diL(g)= dg, the addition of any real function a(q) in (4.6b) preserves the
hermiticity of the momentum operator, but changes the representation of the
finite transformations (3.2) of the Weyl group to a multiplier representation'!.
Indeed, whereas (2.32a) for g(0,y,0) is seen simply to translate the homo-
geneous space g in a(q), the realization (4.6b) brings in a multiplier function
ik.2

(a) A
U (g(0,y,0)) f (g)=p(g(0,y,0), q) f?\(qﬂty), (4.7a)

where, as in (2.32a), general group elements g(x,y, z) will not change the
multiplier:
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mlg(x,y,2),q)= uly,q. (4.7b)

The usual multiplier properties obtained from the group multiplication

properties here read
Hly s P ly,, gt Ay)=puly, ty,,q),

w0, g)=1 and u(-y,q)= ;‘L(}’,q—)\)‘)‘l_

These relations ¥ suggest we write

My, q)= [/O(quP\y)/p(q)](7 (4.7¢)

where p(g) is any non-zero differentiable function of ¢.

If we replace (4.7¢) in (4.7a) and consider group elements in the one-
parameter subgroup generated by P in the neighborhood of the identity, we
have

2
(1+i5P+G(8y) [(gy=(1+ Syh{iiﬁb i} +0(83) g
p 99 Jq

whereupon we can identify the multiplier-generating function a(g) in (4.6b)
as

alg)==ix 2 In p(q), (4.8a)
dq

which means that, for real a(g), the multiplier (4.7¢) will be a ratio of imagi-
nary exponentials, i.e., a phase

iy, @)= exp | 1;{ {v(g+M\y) = vi)}], ale)= ag“f’ , (4.8b)
q

which clearly follows the group §>r0perty. A unitary transformation

< ol (
wly, 9P iy, q brings P 4 back to the Schrodinger representation P’ .
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Co : : 29
This is one of the key steps in proving the Stone-von Neumann theorem™ .

4.3 Subalgebras and Covering Algebras

~n<ider the elements of the vector space W given by

Q =aQ +4P +eH

Il

= (4.9)
P

cQ +dP +fH

where a, b, ..., [ are complex numbers subject to the condition ab=cd =1,
i.c., the transformation (4.9) is a complex inhomogeneous symplectic one.
As Q , P and H also exhibit the commutation relations (1.1), the transfor-
mation (4.9) is said to be canonical. It induces a corresponding transfor-
mation in the one-parameter groups generated by Q and P and it constitutes
thus a mapping where the W group manifold is the homogeneous space of a
group of complex inhomogeneous symplectic transformations. This has been
used by C. Itzykson®! in order to find the latter’s irreducible representations.
In particular, for real a, b, c, d and e, f= 0, the representation matrices (2.22)
or (2.27) diagonalized with respect to the subgroups generated by Q and P
(which are hermitean if Q and P are) can be obtained through the integral
transformation kernel

— B A TA
kMg, 7 = KNG 9 = (g %" (4.10a)
where
Q= iy, AX) = 4"
q { ¥q? q q "qr (4.10b)
which have been calculated in Reference 6. and which carry thus a un
representation (since K o :/.Z;f ) = K’ \'g" @) ) of the sy mplectic transtor-

mation (4.9).

A related though distinct transformation 1s

K J'E(PTF:'Q). (411

t



210 Wolf and Garcia

for which

[K.,K,1=H, [Ki,H]=0. (4.12)

We can now define, out of the universal enveloping algebra of the
Weyl algebra, the operator

K =H'(K_K,-%H)=H"d (4.13)

which is properly defined (in the sense of its representations), since H com-
mutes with all other operators. It can be checked directly that

[K,, K )=tK,, [K,H]=0 (4.14)

and

[Ky, @1==iP, [K ,P]=4Q. (4.15)

The operators K , K, and H can now be considered the generators of
a four-parameter algebra®? with the commutation relations (4.12) =(4.14) .
This is the algebra Q(O, 1) considered by W. Miller? which is then realized
as first-order differential operators on one- and two-dimensional homogeneous
spaces.

Further, we can consider the generators®

J. =% H (P - Q, (4.15a)
J,=%H QP +PQ), (4.15b)
J3=‘/;K0:'/2H"®=‘AH'I(P2+Q2), (4.15¢)

and check that they close under commutation as the generators of an

%(2) ~ AlU(1,1) ™ 20 2,1) algebra. If we add the set Kt ,Hor Q, P and
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H. we obtain an algebra which we can call Weyl-symplectic mé’p(:!).
Acting on Q and P through the commutator, they generate the six-parameter
group of canonical inhomogeneous symplectic transformations (4.9).
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APPENDIX A: THE NILPOTENT ALGEBRAS AND GROUPS

The purpose of this Appendix is to define the general nilpotent Lie
algebras and their corresponding Lie groups.

DEFINITION 1. A Lie algebra |l is called nilpotent if we can find a
sequence of sets

h=noh _>...o05N0 =0, (A.1)
such that

[N Mo B == Ly 1) = (A.2)

Since (A.2) implies that [YLk s nk] [ nk it is clear that
ﬂ (k=0,1,...,n) are subalgebras of fl. As sets, they are also ideals of
n under the bracket operation (recall that d is an ideal of nif [N.4] c &)
Equation (A.2) also tells us that for any subset nNeh, [, n]i
properly contained in N’ and hence, if we repeat the commutator a sufficiem

number of times, we get zero, 1.€.,

LR, B, B 0] )l =0

We can characterize a nilpotent Lie group N as that generated by a
nilpotent algebra L. We shall now explore some of its properties. Notice
first that each subalgebra n.k of N(k =0,1,...,n) will generate a subgroup
N, of N as in the sequence (A.1), with N, = e, the trivial group consisting
of the identity.

Recall that*® if H 2 is a normal subgroup of G 3 g, then
ghe™' = Ad b €l and hence b’ g“hgrn Now, if b= exp(h X" )(X" e §
generating H) and g = cxp(g ban B 4 generating &), uh(rc iv and g,
are the coordinates of b and g then, as sets LF H] - H. !Icncc the

“oxv LY
structure constants G -+ in [ X, AN = 4 X have th( property
; y

=0 (A.3)
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where the algebra labels N and Q are used to indicate the set of indices p
such that X" € ¥ and X" ¢ G, and 3= is the complement of ¥ in G-

From the property (A.3) of (A.2) we conclude that N, ., is a normal
subgroup of N, (k=1,2,...,n). The condition (A.3), however, is weaker
than (A.2) since it would also be true if (A.2) were written with nk in the
right-hand side. Nilpotent groups have, thus, a further property.

Consider the decomposition of an element g of N into an element 4
in N, times an element c in N, representative of a coset in the space of
cosets N/N’,a . This space of cosets is generated by !l modulo n.k , that is,
by the sets { X} = {X+2.16€ hk} , elements of _r'l,/}'LJ,e , and the group element
¢ lies on a one-dimensional group generated by some X = { X } mod 'ﬂ.k .
Since YLk is an ideal of I, a bracket operation can be defined for elements

{X}and {Y }in n/nk:

(X} AY ) = {IX+J, Y +K], 1, K €N} =

= L% VI +L: Belll = { [x ¥ }.

If in (A.2) we introduce 'ﬂ,k_l as the divisor algebra,

[n/nk_l, nk/nk_l] c n’k-l/nk-l =0 mod nk .

For the generated Lie groups we have therefore, that the representa-
tives of the elements of the coset spaces N/Nk_-l and Nk/Nk-l commute, as
0 generates the group identity element. This means that Nk'/Nk-l belongs
to the centre of N/Nk-l - As the argument may also be followed backwards
we can give a definition of the Lie group N generated by a nilpotent Lie
algebra I as

»

DEFINITION 2. A Lie group N is called nilpotent if there exists a sequence
of subgroups

xN,:N”DN D .-DNIDNOZC, (A.‘i)

]

where N, _, is normal subgroup of N, and .E\Jk/l\lk_1 is contained in the centre
of N/Ny (k= 1,2,...n).

For simply connected Lie groups N and their Lie algebras 1| the two
definitions are equivalent.
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APPENDIX B: AN n=DIMENSIONAL WEYL GROUP
The group W of (n+ 2)x(n +2) matrices

! S £

+ 5 5
gix,y,z)=|=& I+2:‘z-‘/2[§| 2,’2_'/2|§]

G g 2 ; -]
£ -2iz+/2|§l 1-2iz+/2|.§| .
(B.la)
where £ is a complex vector
. = ;= ;
é'r x] :y}- ? (] 112v ,"), (B 1b)

+ : s 0
£ its transpose conjugate, and z real, has the follownig group composition

law
g(€,,2) g€, 2) =g + £z +z,- %5 ImE £).(B2)

It is an n-dimensional Weyl group in the sense that the generating
matrices defined through (B.1) as

glx,y,z) =expi[3x.Q. +Zy.P. + zH] (B.3)
i 7 PR

have the following commutation relations
[q!.,P]_]:,-sl.iH, (Q, H]=0, [P.,H]=0, (B.4b)

i.e., that of the quantum-mechanical operators of position and momentum in
an n-dimensional space. Clearly,
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APPENDIX C: A GENERATING FUNCTION FOR THE
ASSOCIATED LAGUERRE POLYNOMIALS

One of the known generating functions of the associated Laguerre
polynomials is **

n

(u)v (C.1)

% )
A = S L
n=0 ”

Setu =cd, v=>5b/c; multiplying both sides of (C‘.l) by
c™a™ /m!
and summing over all non-negative m

= (m-n)
exp [abtac-db]l= 3 1 p e Led) a™5%e™ %,  (€2)
m

1
n,m=0 m! n

Equation (C.2) generalizes a related generating function given by

W. Miller?® for ¢ = d, while putting ¢* = d we obtain eq. (3.4). Expression
(C.2) seems to be new.
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RESUMEN

Exploramos algunas de las propiedades y representaciones del grupo
de Weyl, el grupo de Lie de tres pardmetros generado por el dlgebra(de Weyl)
realizada por los operadores cuanticos de posicion, momento y el operador
unidad. Consideramos espacios de coclases de una dimensién como espa-
cios homogéneos bajo la accién del grupo y, tomando bases de ondas planas
y funciones de onda del oscilador arménico, construimos todas las matrices
representaciones unitarias irreducibles del grupo. Agregamos algo de mate-
rial ya publicado sobre realizaciones no Schrodingerianas, sobre las algebras

de cubrimiento, y lo colocamos en el contexto de los grupos nilpotentes gene-
rales.





