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DESCRIPTION OF ONE-ELECTRON THEORIES OF SOLIDS

IN TERMS OF PROJECTION OPERATORS*

Manuel Berrondo
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ABSTRACT:

(Recibido: septiembre 5, 1972)

A unifying review of the different one-eléctron models for band
computations is made using projection operators. The idea is
to let the projector select the appropriate behaviour at the cell
boundaries. We then find the corresponding equation for the
projection component. The APW and KKR methods are dealt
with first, using a geometric projector. Expanding the exact
effective potential in a perturbation series, the nearly-free
electron model is easily derived, Finally, the pseudopotential
equation is obtained through a similarity transformation of the

original Hamiltonian, following the recent work of Waeber and
Stoll.
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1. INTRODUCTION

Band theory has shown itself to be an effective means of explaining
the electronic structure of solids, and has yielded a qualitative explanation
of many of the properties inherent in solid state systems. It has not been
until recently, with the advent of computers, that this qualitative picture
has been transformed into a quantitative scheme. Due to the host of
complications in solids, many approximations have to be assumed before one
can compute numbers. Almost all available computational methods choose a
self-consistent procedure to compute the electronic wave functions, which
might eventually include some relativistic corrections. In atomic and mo-
lecular physics, the Hartree-Fock method has been the most popular tool,
due to its many well-known virtues. Fora solid, however, the exchange po-
tential, having a non-local character, couples the equations in such a way
that one is compelled to replace it by a certain average, thus obtaining a
local exchange potential which still corrects the local Coulombic term in
part for the fact that an electron does not interact with itself. Although sever-
al variations' have been proposed as to how to take this average, they can
be all traced back to Slater’s work?. He suggested the use of weighted aver-
age of each of the exchange terms, which are different for the different orbi-
tals, preserving still the fact that each electron carries a Fermi hole along
with it, hole which would be the same for each electron in this case. Lowdin®
proved that Slater’s way of averaging would yield the best local approximation
for the exchange term, minimizing the root mean square deviations. A further
simplification is made by taking the local exchange contribution from a free
electron gas of the same density as the local density of the electron in the
solid, which turns out to be proportional to the third root power of the electron
density. A heuristic argument to explain this, due to Slater, is saying that
the Fermi hole has a radius proportional to the inverse third root power of
the electronic density. The repulsive energy associated with it should then
be proportional to the inverse of this radius. The potential constructed in
this way localizes the interelectronic repulsion, so that it has a shorter range
of interaction than the corresponding Hartree-Fock terms, incorporating an
average screening cffect for the electrons in the Hamiltonian.

Each electron is thus supposed to feel an average periodic potential
built up as a superposition of the one-electron potentials centred at cach ion.
Near the nucleus, it approaches the isolated atom potential, so it is spheri-
cally symmetric, while in the interionic region, close to the Wigner-Seitz cell
boundaries, it varies less rapidly and eventually smoothly joins the neighbour-

ing cells averaged contribution. The effects of neighbouring atoms potentials
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are usually included by using Lowdin’s a-expansion* in spherical harmonics
around the origin of the central ion, resigning oneself to using only the spheri-
cally symmetric contribution. Implicit in the potential periodicity is Bloch’s
theorem, which forces the electron orbitals to be Bloch waves. Since plane
waves themselves are Bloch functions, we might think of expanding the one-
electron wave function in a series of these, summing over the inverse lattice
vectors in order to account for the proper lattice symmetry in the crystal. But
due to the large potential depth near the nuclei, this expansion proves n
practice to be rather inefficient, since we would expect a more atomic-like
behaviour of the orbitals in this region. Slater in 1937° introduced the
concept of an Augmented Plane Wave in order to correct for this fault. The
basis functions should be plane waves near the cell boundaries, but they
should be Bloch waves formed from linear combinations of a radial function
times a spherical harmonic in the inner regions. To formulate his method,
he defined a “muffin-tin” potential, which divides each unit cell into a set
of non-overlapping spheres centred on each atom, and the interstitial outer
region. The potential is spherically symmetric in the “muffin-tin” spheres,
and equal to an average constant in the rest of the cell, the inner potential
taking this constant value at the surface of each of the inscribed spheres,
Kohn and Rostoker® picked up the same type of potential, but formulated the
problem in terms of Green functions in what is now known as the KKR method’.

A different approach was used previously. Bloch sums were found
from atomic orbitals centred on each nucleus with the disadvantage that these
contain overlap integrals of atomic orbitals centred on different nuclei, inte-
grals which cannot be neglected®, but only for very special cases. One
can instead start with only the core atomic orbitals, which do not overlap ap-
preciably, and take the rest of the functions as plane waves which are forced
to be orthogonal to these core functions; this is the essence ot the OPW
method?.

In 1959 Phillips and Kleinman suggested a new computational pro-
cedure, the “pseudopotential” method, in which they obtained an effective
potential for the plane wave expansions starting from the OPW equations.

A generalized pseudopotential was later developed by Austin, Heine and
Sham .

Until very recently '?

all methods used to compute energy bands have
utilized a linear expansion of the wave functions as a starting point. By in-
voking the Rayleigh-Ritz variational principle, a secular equation is attained.
This secular equation might not be of the ordinary type, since there might be
an implicit dependence upon the energy in the expansion coefficients
themselves. This is indeed the case in the APW and KKR methods. Even
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the original pseudopotential formulations suffer from this “linear disease”,
because of their starting equations.

We present here an effective Hamiltonian formalism which produces
an exact model potential — exact within the prescribed independent particle
model — based on the use of projection operators.

The model Hamiltonian which reproduces the APW and the KKR pro-
cedures is derived in section 2, by incorporating a boundary condition oper-
ator to the effective Hamiltonian. In section 3, the nearly free electron model
is trivially obtained by expanding the model Hamiltonian in a power series.
The OPW method as well as the problem of narrow bands, as those appearing
in transition metals, are briefly touched. Section 4 contains a general review

of pseudopotentials using similarity transformations .

2. THE MUFFIN TIN POTENTIAL

As explained in the Introduction, the muffin-tin potential is defined
dividing each unit cell into two parts by means of a sphere centered on each
atom (we are assuming a single atom per unit cell for the sake of simplicity).
The spherically symmetric potential in the interior of the spheres is that
produced by its corresponding atom plus a correction due to the presence of
the other atoms in the crystal, computed self consistently. In the inter-
stitial region between the cell boundaries and the sphere, the potential takes
a constant value determined from the continuity of the potential at the sphere
boundary.

We now adopt Morse and Korringa’s’ viewpoint, and think of an incident
set of plane waves scattered by the “muffin-tin” sphere, to form a stationary
Bloch wave. In order to separate the two regions defined by the sphere in
each unit cell, we introduce a projection operator@ which selects out the
proper incident wave, namely the one with the correct boundary conditions at
the cell boundaries. Thence, with the help of the complement P =1 -0 we
can separate the electronic wave equation into a pair of coupled equations.
Multiplying the one-electron equation HY = EW¥ to the left by @ and P suc-
cessively and using the fact that © and I° are orthogonal, one gets two

coupled equations for Q¥ and PVY :

(E-0HO) Q¥ = QHP (PW)
(2.1)
(E-PHP) PY = PHG Q)
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and substituting into (2.1a), we can write an equation for Ow:

[8-©H©-©HP(€-PHP)"PH0] ov =0 (2.3)

Upon introducing ™

T:P(S-PHP)‘IP (2.4)

an effective Hamiltonian for the component Q¥ is defined:

d. =010 +0HTHO (2.5)

Due to the cell division imposed by the “muffin-tin” potential into
inner spheres and outer regions in a unit cell, the natural realization for the
projection operator in this case would be that which vanishes in the inner
spheres, and unity in the outer region. Resolving this into plane waves > 16
one has:

1=3|k><k| inQ,
0 = ' (2.6)
0 for 0 <7 <R

where R is the radius of the muffin-tin sphere and Q,e is the exterior volume
within the unit cell. This projection operator picks up the ‘outer part’ of the
wave function. The 7 sum is over the reciprocal lattice vectors, so that the
projected function will indeed have the expected behaviour.

If the plane waves are normalized to unity in the whole cell volume Q,
they will form an overcomplete set in the outer region QP . Defining

Ny = <k |0k, > PR 4
as the overlap integral, one has in fact:

sz,.]. Ik].> = | k> (2.8)
in
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The kinetic energy operator will give rise to unwanted singularities
on the sphere boundaries. Slater, in his original formulation®® handled this
problem by writing the kinetic energy term as [V L,b:VL,b]. dT . Integrating by
parts, it can be shown that this term reduces to the familiar N;Vip}.w in
case there is no contribution from the surface. Since Slater chose functions
with a discontinuous slope, the surface integral does not vanish in this case,
In the KKR method, there is also a non-vanishing surface integral, this time
in terms of the Green function and its normal derivative®.

Studying a similar type of potential used in nuclear reactions theory 7,
Bloch™* looked at the problem differently. He showed that the Hamiltonian
operator is not Hermitian for this case: Indeed, if l,b] (r) and L,bz(r) are any
two radial functions,

Rz & * L dl( ) do )t
fo Ly H, l’bz‘(Hr‘lbl) ‘#52] rPdr=-% [rgb! r¢12 = Y, ijz]

dr dr
R
(2.9)
where
2
Ho==-5L13 4y (2.10)
Ll

is the radial part of the Hamiltonian for a “muffin-tin” inner sphere of radius
R. The right hand side of Eqn. (2.9) will, in general, not vanish.

Instead of imposing boundary conditions at the points 7 = R, we can
hermitize the Hamiltonian ®® by adding a surface term which compensates ex-
pression (2.9) when integrated. This is done with the help of the boundary
condition operator!S:

B = 5(r-R)(,u,+vsa_) (2.11)

n

where 1 and v are arbitrary constants, and 9/9# is the normal derivative at
the surface r = R,

The projection operator @ commutes with H except at the boundary
surface r = R, so that the coupling term between the two equations (2.1), for
QW and P¥, on the right hand side, reduces to BPW and BOW respectively,
the equations (2.1) being thus transformed into!*
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(€ -0HO -B) Q¥ = BPY (2.12a)
(E-PHP -B) PY = QY (2.12b)

The effective Hamiltonian for the projected function PW¥ in the
spheres is:

H="PHP +B +B(E-QHOQ -B) 'B (2.13)

The homogeneous equation corresponding to (2.12b) is used to obtain the
quotient p/v:

(E-PHP -B)PY =0 (2.14)

The left hand side represents the sum of a continuous function in the inter-
val (0, R) and a Dirac singularity for r = R, so it defines!® the inner eigen-
functions X, :

(E,\-Tayp) Xy =0 (2.15)

for r <R, with the appropriate boundary condition:

ox
ot N

= (2.16)
In

= ",LLX')\_
r=R

r=R

thus fixing Ju,/L»'. The v is determined from the normalization condition.

On the other hand, the plane waves, solutions to the homogeneous
equation associated to (2.12a), are used to expand the reduced Green function
in equation (2.13) as:

k. ><k,
(€-GHO-BY = 3 lui_hi (2.16)
gk

where (& -CHO) [ £;> = 0 (2.17)
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and the |k. > are normalized to unity in the whole cell volume (.

The trial wave function is now chosen to be a linear combination of
plane waves outside the sphere. The coefficients are determined simply
from the continuity equaton. This in turn, follows using the effective
Hamiltonian (2.13). Since we are expanding in plane waves, each coef-
ficient in the expansion is actually a Fourier component. This is done in
the Appendix.

In the original formulation, Slater selected the inner solutions X5 to
be regular at the origin and joined them smoothly with the /-th component of
the plane wave using the well-known expansion in Bessel functions, equation
(A.5). In this way we form the APW’s, each of which contains a discontinuity
of the slope at the sphere boundary.

Once the multipliers 4 and v are found, the coupled homogeneous
equations for the coefficients yield a secular equation to obtain the energy

o
| ] - EYN,+T(E)] = 0 (2.18)

with N and [" well defined quantities obtained in the Appendix, equations
(A.10) and (A.11). The indeces 7 and j ennumerate the Fourier components.
Notice the dependence on the energy € in the matrix elements . This means
that the “secular equation” for € must be solved iteratively.

The way we deal with the KKR method is briefly mentioned in the
Appendix as well. The close relationship between the se two methods ~ APW
and KKR — has been extensively discussed elsewhere !¢ ¥, analyzing the
convergence properties of both 1.

3. OTHER MODEL POTENTIALS

Although computations made with OPW and pseudopotential methods,
on one hand, and APW and KKR on the other, have been quite successful for
many crystals®, there are cases in which these methods do not yield good
results.  Such is the case for solids containing transition metal atoms. The
APW and pseudopotential formulations do not give a proper account for narrow
valence bands, mainly because these arise from 3d atomic orbitals °9. The
latter extend enough to produce a non-negligible overlap with the neighbouring
atoms’s orbitals, but they are, nevertheless, bound enough to be considered
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as “core” orbitals. The APW and KKR methods, on the other hand, using
“muffin-tin” potentials, present a similar difficulty: as Ziman, has pointed
out?!, the overlapping of deeply bound atomic orbitals lowers the potential
barriers, and these bound atomic orbitals merge over the “muffin-tin” zero.
In other words, the centrifugal potential in the radial equation becomes domi-
nant near the origin and produces the appearance of virtual levels in the free
band. This makes the narrow band calculations strongly dependent on the
“muffin-tin” radius, an adjustable parameter wita no real physical signifi-
cance. In order to surmount this difficulty a successful attempt to extend
the pseudopotential formulation was made using empirical arguments®?. The
conduction bands have a free-electron behaviour, while the 4 bands are de-
scribed better from the tight-binding viewpoint, so one can hybridize the two
sets and obtain very good results with a few semiempirical parameters.
Hubbard 2, starting from the KKR formulation, showed that the resonances
can be interpreted as a hybridization of nearly-free-electron and tight-binding
behaviours. Hubbard adapted Kapur-Peierls’® method as used in nuclear
theory to obtain his results.  This procedure consists of expanding the Green
function in eigen-functions of the Hamiltonian with boundary conditions differ-
ent from the ones prescribed by the problem — one assumes instead that there
is no incident wave. Hubbard, however, assumed a “muffin-tin” potential, as
in Kapur-Peierls’ original formulation.
a) Exact Formulation

An exact model potential can be obtained without starting from a
“muffin-tin” potential, by choosing an appropriate projection operator @ in
Eqn. (2.3). As one expects a plane wave type of behaviour near the cell
boundaries, @ may be chosen as:

Q=73 |k+q><k+q (3.1)
q

where |k + g2 is a plane wave normalized to unity over a unit cell, and the
sum is taken over reciprocal vectors g. Should this sum be taken over all

reciprocal vectors, the wave function would reduce to a linear combination
of plane waves

Y= Zcq(k)|k+ q> (3.2)
q

and the energy bands would come out as solutions of the corresponding infinite



228 Berrondo

sccular equation. However, the restriction to a limited number of terms can
be corrected by using the whole effective Hamiltonian (2.5), so that the band
energies are given by Eqn. (2.3):

P 2 ”
E{E®k - k+ql) 8 <kta |v]k+g>
q

-<k+q'|vI(E)V|k+gq>} ey =0

(3:3)
where ¢ =<k + qi Y>. The wave function itself is expressed, with the
aid of (2.2), as:

V=2 lk+tq>+3c (E-PuPy Pv|k+q> (3.4
qg 9 g 9

and the model potential for the plane waves is V+ VT (£) v, being non-local
and energy dependent.

The choice of the potential V is perhaps the crucial point in an energy
band calculation. With the projection operator (3.1), one is no longer re-
stricted to the use of a “muffin-tin” potential. The potential V can thus be
chosen starting from the free atom Hartree-Fock potential, taking an average
exchange term, with the contribution from neighbouring atoms superimposed
to it. The main advantage of using an average potential instead of the non-
local Hartree-Fock is that computations are highly simplified becausc the
same potential is used for every orbital,

The problem of how to take the average in the exchange term has been
extensively discussed. Slater? proposed an cxchange potential(in a,u.)

1

Y
¥, = =3 [Bpleiliy] (3.5)

X

where o(r) is the electron density, while Kohn and Sham?!, using a variational
ansatz, suggested to use 2/3 of this value. Goscinski and the author?*
showed that Slater's way of averaging would overestimate exchange effects,

while Kohn and Sham’s underestimates them, at least in atomic systems. The
criterion used was to compute the deviation from the virial theorem which the
calculated orbitals would suffer in both cases. In the same paper, we sug-

gested multiplying the exchange potential (3.5) by a coefficient, in such a way
that the virial theorem would be automatically satisfied by the atomic orbitals
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used to construct the initial potential, hoping that the resultant crystal orbit-
als would also fulfill it.

Slater has proposed®™ a similar variation of the coefficient @ to im-
prove the potential. He uses the functional expansion of the energy in terms
of the density® and approximates the exchange term by a potential of the
form (3.5). He then chooses a such that the total energy coincides with the
Hartree-Fock value for the individual atom. When one uses these density ex-
pansions to compute the energies, instead of the variational procedure which
is usual in the Hartree-Fock method, the virial theorem is automatically ful-
filled.”. This is the by now well known X_ method, and its virtues have
been extensively discussed elsewhere 5.

[n this way, we improve the Hartree-Fock potential, simplifying it at
the same time, by using an average exchange potential with the appropriate
cocfficient. We should notice, however, that as long as a self-consistent
procedure is used, with single determinantal wave functions, no correiation
whatsoever will be included in the wave functions.

Coming back to the wave function, Eqn. (3.4) can be looked upon as
a wave function composed of an incident wave plus a scattered portion, T
being the reduced Green function Eqn. (2.4). Reduced means essentially the
contribution from the orthogonal complement to the incoming wave, in this
context.

The operator T can be expanded in terms of the eigenfunctions of

Pl . If

PaP|%. > =2 | X > (3.6a)
PR = %2 (3.6b)
\ [ % ><X,
Py =% 2. = l_ (3.7)
5

and the last terms in Eqn. (3.3) become

2L e rq'|v]x o< vkt q> (3.8)

Via g : [
Hence, knowing the states ¥, one is able to compute the bands & (k) by an



230 Berrondo

iteration procedure on the “secular” equation (3.3).

The main feature of this effective potential is its explicit resonance
form. An extension of the OPW method to include d-orbitals as resonances
was discussed in a paper by the author®. The argument goes roughly as
follows: the eigenvalues of the deep core state can be taken as the appropri-
ate metal bands as we go from the free atoms to the metal, provided we form
Bloch waves from these atomic orbitals. The valence states, however, are
appreciably changed in metals. In particular, for transition metals, those d-
orbitals induce a resonance effect which produces narrow valence bands in
the meral 2!,

The core state hence can be approximated by the usual secular equation
for OPW s, while the d-states should preserve the resonance form, leaving an
energy dependent model Hamiltonian. The corresponding secular equation
reads as follows:

T,
3 (E(k)-luqu)sq,q*w, -_99 (c -0 3.9
q

9 9 S(k)-EB 9

which has to be solved iteratively®. The c_’s are the coefficients in the
expansion in OPW’s, and the matrix elements of W and [ are:

Wyrq = <k+q'[(V+§(Ek+ g~ E) a><a)k+q> (3.10)

and

Fqrq =<k+q'|[VP|B><B|Pv|k+q> (3.11)

@ denoting the Bloch functions constructed from the core states, and 8 the
one from the d-orbitals. For further details, we refer the reader to Ref.(28),

and a paper by Harrison? .,

b) Nearly Free Electron Model

Eqn. (3.3) can be expanded in perturbation series. We take the kinetic
energy term as the unperturbed Hamiltonian, and use Lowdin’s ' expansions
of T in Rayleigh-Schrodinger or Brillouin-Wigner series respectively:

T = RD"'ROVR)'PROVROVRO*I‘.... (3.12a)
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where

R, = F’(E(O)- H) 'p (3.12b)

(0) _r
and E  is the diagonal operator of the unperturbed energies in the Q-sub-
space, and

T=T0+15VTB+’IBV'I(')VTD+.... (3.13z)
with
21
T =PE-n) P (3.13b)
The second order to R-§ being:

2
S {(Ek)- | k+q] ) 3qs +<k+q'lV+VR V|k+g>}c =0 (3.14)
% q 0 q

so the nearly-free-electron model follows immediately.
c) Partial Wave Representation

The momentum space was used throughout, but this is no limitation.
We can instead use a “muffin-tin” potential for V, and redefine the projection
operator 0 as

0 = IE‘L><L| (3.15)

: : p i 2

in the inner spheres, with L = II(KR) ulm (r), and &¥* = 8, the sum over the

lattice harmonics appropriate to the crystal, in order to obtain a partialwave
. % . *

representation mutatis mutandis.

*See also P = 12)
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4. THE PSEUDOPOTENTIAL

The philosophy behind the pseudopotential theory is quite different.
There we seck an equation which has the same cigenvalues as the original
one, but whose eigenfunctions are as “smooth” as possible. Smooth in the
sense of having removed the rapid atomic-like oscillations near the ions.
The corresponding pseudopotential should then be also a smoother function
than the usual average potential. It describes a weak interaction between
the electrons and the ionic lattice. If this smoothness condition is fulfilled,
the pseudofunctions can be constructed as a linear combination of a few plane
waves. The way to choose this pseudopotential is not unique indeed!'. It
actually is somewhat arbitrary, and extensive discussions about which one to
use can be found in the literature ' ¥,

The process of going from the original eigenfunctions to the pseudo
functions can be visualized by means of a similarity transformation. To
this end, let us divide the function space into two subspaces, the “core”
subspace and the “valence” subspace, defined by the complementary pro-
jection operators C and U respectively.

C'i"U:l (4.1)

C=C, VU=V (4.2)

A basis in the C -subspace is given by the core states | a> formed as Bloch
functions from the free atom or ion lower states:

C=3%|abda| (4.3)

a> being an eigenfunction of the Hamiltonian H; corresponding to the core
states

H|a>=E_|a> (4.4)

Now, to define the pseudowave functions, we split the same space

into two different complementary subspaces with the aid of the two orthogonal
projectors @ and PP,

The @ and p-subspaces are chosen to be isomorphousr to the C- and
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)= ones respectively. In other words, there is a one-to-one correspondence
between the core states and the basis functions in the @-subspacc. As a
concrete example, we can bear in mind the expression for Q@ and P as in Eqn.
(31) since we want the pseudofunctions to be as smooth as possible. The
basis for the @-subspace in this example contains the lowest plane waves
(properly symmetry-adapted):

0 =3k+qg><k+q] (3.1)
q

where the summation is taken over a limited number of lattice vectors —
namely the number of core states. This, of course, is not the only possible
choice, but will give rise to the well known OPW pseudopotential, as is shown
below.

There is obviously a unitary transformation U which takes us from one
basis into the other, i.e., which maps @ onto C. The explicit expression for
this transformation has been found by the author in quite a different context?.
We first notice that the projector C commutes with the Hamiltonian H but @
does not. It is then shown? that U is the operator which diagonalizes @, and
can be written as”:

U = exp {% arc sin 2 [Q,C] } (4.5)

The transformation U above is unitary and it maps Q@ in Cand P in V.
After Waeber and Stoll™?, we now define a non-singular transformation W in
the following way: we want W to map Q into itself, and simultaneously, to map
P into U. In this way, the “upper” pseudofunctions have the same energy as
the valence states, as it should. In this same paper, they have shown that an
explicit form for W is simply

w="U+C0O (4.6)

2
Defining the operator § = (o =0) , the inverse of W can be written as:

w'l=1+CRP(-5)" (4.7)

. . .
This is only one possible form for U. Since U diagonalizes ©, andits eigenvalues are
infinitely degenerate, U is not uniquely determined.
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. ; : : 13
That this inverse exists follows immediately from the existence of U ™.
The equation for the pseudofunctions is obtained by making a simi-

larity transformation on the original H:

wlaw|p> = €|p> (4.8)

The net effect of this transformation is to add a repulsive potential to H which
leaves a net weak potential, namely the pseudopotential.

If we are only interested in the valence states, we can concentrate on
the p-subspace for the pseudofuncrions, in which case, we can rewrite Eqgn.
(4.8) as'3:

w'HU|p> = €|p> (4.9)
for

Plg>=]|¢ > (4.10)

recalling that Q| > = 0 in this case.

Letus now look at the particular choice (3.1). If we multiply the
above equation by W to the left, and use (4.6) and (4.3), we obtain the usual
OPW pseudopotential equation:

{T+v+2(E€-E)|a><al}|¢p>=Elp> (4.11)

Since P|¢ > = |# >, the functions |¢ > are the pseudofunctions, and
should be formed from a few plane waves. The corresponding pseudopotential

V+3(E-E ) |a><al (4.12)
a

is a weak potential, since it has the effect of orthogonalizing with respect to
the core states, responsible for the oscillations of the wave functions near
the ions. In fact, i‘(b » could be considered as the “plane wave” component
of the acrual eigenfuncrions:

> =1¢p>+Sa|a> (4.13)
a
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when expanded in OPW’s. l

We should note at this point that the transformed Hamiltonian W HW
is not Hermitian, since W is not unitary. Or looking at Eqn. (4.11), we can
say equivalently that the Hamiltonian for ’qb > is energy dependent. Despite
this fact, the eigenvalues £ are real, and actually coincide with the valence
eigenvalues of H. The eigenfunctions |c;b >, however, are not orthogonal.
This causes no problem, since we can always define a dual basis™ ¥ or-
thogonal to the original one. For further details, we refer the reader to the

original work o

5. SUMMARY

To conclude, we would like to remark that the effective Hamiltonian
constructed using projection operators has the advantage of yielding a unified
viewpoint. The projection operator selects the behaviour far away from the
ions, i.e., in the interstitial regions near the cell boundaries. The flexi-
bility to choose its explicit form allows us to interpret the problem either as
a scattering problem or from the perturbation point of view; to work in the
coordinate space, in the momentum space, or in the partial wave represen-
tation. The introduction of a boundary condition operator makes it possible
to encompass the “muffin-tin” potential formulations under the same scheme.

The similarity transformation to reduce the pseudopotentials is also
written in terms of projectors. In a way, it links the tight-binding method
defined by the core functions projector and the free-electron picture described
in terms of plane waves. The unitary operator itself cannot be used, because
we want the lowest pseudofunctions to be expressed in terms of a few plane
waves as well, since we concentrate only on the valence states, leaving aside
the lowest energies which correspond to the core states.



236 Berrondo

APPENDIX

We start with a trial wave function W, which is expanded in plane
waves outside the sphere:

Wh)=§Aﬁ@(ﬂ in Q, (A1)
The plane waves in the expansion are defined as X. = @ Ik. > with @ as in

(2.6), while the coefficients A are to be determined. To this end, we write
the continuity equation corresponding to the effective Hamiltonian (2.13),
analogous to (2.16):

;> <k B >
Wiey| #3x3R E" 77 o (A.2)

SR -k}

This defines the ¢-th Fourier component for the wave function outside the
sphere as

<k, |B|w>
. o (A.3)
2
,@!.-8
So, using the expansion (A.1), one gets:
<k |B|w> ;
Bt . lk==3a]% 5 (A.4)
7

Taking Slater’s choice, with X} being regular at the origin and
joining them smoothly with the plane wave outside the sphere, we can make
a partial wave analysis using the decomposition:

A

exp [k - r] = 471%;1'!/". (kr) u:;m(,g) ig,lm(;) (A.
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and the boundary condition (2.16):

B E - (A.G)

Rl A 6 RO & ol S N S T by = (A7)
2 i /

the energy & being chosen to be the same as the characteristic energy®? in
2Y g gy

(2.12). Hence, the integral in (A.4) using expansions (A.1) and (A.5) re-
duces to:

R, (E,
<k |8(r-R) | - ! A w | > =

R(E ) ©On

R,(S R)

237

=EA S (Rt kR | = L R R | Yy, ) Yy (R)

i S R,(€, R)
Q

(A.8)

! . & &
where v =1 - (QP/Q) and the stands for the derivative with respect to r.
Substituting it into (A.4) one is led to a secular equation:

I(k?—E‘),-Vz.}.nLT‘ij(S)i:o (A.9)

where

RIERY jfte;R)

r,=" 47TR Z(Z!-ﬁ-l)[’{tos@ )11(»% R) j, (k. R)[

A RyER) (£ R)

(A.10)

and 72
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_ 4R’ fl(|kf'kj\R)

.= O, (A.1T)
1 1
7 /) Q ‘k;-kjl

In the KKR method, on the other hand, one starts with the trial wave

7 y ; 5 5
expansions in the interior of the spheres

W(r) = %”clmilﬁl(r) Y, () for <R

instead of Egn. (A.1). Thus the integral in the continuity Eqn. (A.2) is now
given by the expression:

i

2 :
' i (kR) «
<k |BlW>=4TR 5 ;kR)|-R,(E R+ R, (E R k.
1Bl G in tml1 (&; 1 (S, R) <R (S R) [ Yy, (k)
5 (A.12)
with k* = €. The boundary condition equivalent to (A.G) is now
ol
7 (kR)
Bet (A.13)
v j(kR)

The integral (A.12) leads directly to the secular equation derived by Ham

and Segall6b in an entirely analogous way to that of the APW method seen
above.
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RESUMEN

En este articulo se hace una revision unificada de los modelos mono-

electronicos usados en célculos de bandas, en términos de operadores de pro-
veccion. La idea esencial es seleccionar el comportamiento apropiado en
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las fronteras de la celda-unidad por medio de proyectores, y acto seguido de-
ducir la ecuacién correspondiente para la componente proyectada de la fun-
cion de onda. Se tratan primero los métodos APW y KKR usando un proyec-
tor geomeétrico. A continuacién se deriva el modelo de electron casi libre
expandiendo el potencial efectivo en una serie perturbativa. Por altimo, se
encuentra la ecuacion correspondiente a pseudopotenciales usando una trans-
formacion de semejanza del operador Hamiltoniano original, siguiendo el tra-
bajo reciente de Waeber y Stoll.





