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ABSTRACT: A unifying review ol the differenr one .•e1ecuon rnodels foc band

computations is made using projecrion operators. The idea is

ro let the projec{Qc se1ecr the appropriate behaviour at rhe cell

boundaties. 'U/ethen find the cocresponding equation foc [he

projecrion component. The APW and KK R methods are dealt

with E¡esr, using a geometric projector. Expanding [he exact
effective potential in a penurbation series, [he nearly.frce

electron model is casily derived. FinalIy, [he pseudoporential
equation is obtained rheough a similarity transfonnation oC [he

original Hamiltonian, following the eecent woek of Waebee and
S'ol!.

•
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l. I:-.'TRODUCTlO:--'

I\("rrondo

Band meory has shown itself to be <lOdfective ffi('anS oí explainin,g
[he ekctronic s[ructure of solids, and has yielded a qualitati\'c l'xplaniltion
oí many oí [he properties ¡nherent in salid state systl'ffiS. lt has not beco
unti! r('n'nti)', with [he advcnt oí computers, that this qualirati\'{' picrure
has becn lransforrned into a quantitativc scheme. Due [O [he host oí
complications in solids, many approximations have ro be assumcd before one
can compute numbers. Almos! al1 available computational methods choose a
s<:lf-consisH'nt procedure [O compute the clcclronic wav{' {uncrions, which
might c\'entually ¡nelude sorne relativistic corrccrions. In arumie and mo-
lecular physics, the lIartrec-Fock rncthod has been the most popular [001,
due [O irs many w('ll.known virtues. For a solid, how('v('r. tiH: exchange po-
renrial, having a non.local characrer, couples rhe l'quarions in such a way
rhar one is compclled ro replace it by a certain average, rhus obtaining a
local ('xchan~e por{'ntial which still Correcrs thl' local Coulombie rerm in
parr for rhe faer rhar ao electron does nor inreracr wi[h irself. Ahhou£h se\'er.
al \'ariarions t have beco proposed as [O how ro rake rhis average, rhe)' can
be all uaced back [O Slarer's work2. lIe suggesred rhe use of wcighrcdaver.
age of (..aeh of the exchanf!;e rerms, whieh are differenr for rhe differenr orbi.
raLs, prescrving srili rhe fan mar each elecrron carrics a Fermi hole along
wirh ir, hole which would be rhe same for each eleerron io rhis case. LowdinJ

pro\'ed rhar Slarer' s wa)' of averaging would yidd che besr local approximauon
fur rhc ('xchange rerm, minimizing the rool mean square dcviarions. A further
simplificarion is made by taking the local cxchange conrribllrion from a free
elecuon gas of the samc densicy as the local dcnsicy of thc dccuon in tht"
solid, which turos our to be proportional to the rhird root power of me elcetron
dcnsiry. A heuristic argumcnt to explain chis, dlle to Slater, is saying [hat
che F<:rmi hole has a radius proportional to the in verse third root pow('r of
rhe elcctronic d('nsity. The repulsive energy associared with ir should rhen
be proportional to the inverse of this radius. The pot{'llcial cOllstrucrcd in
chis way localizcs [he intcrclectronic repulsion, so [har ir has a shofref range
of ilHeraetion rhan che corresponding Hartrce.Fock (erms, incorporating an
average ....creening ('fíect for tht' cicctrons in the Ilamiitonian.

Llch ('Iecuon is thus supposed lO red an avera,ge p('riodic potenti,l!
built up as a superposition of the one-eit:ctron porentials c('nlrl"d at each ion.
:\ear the nuci('us. ir approaches rhe isolaced arom po[elHial. so it i ...•...•ph{'ri-
cally symllleuic, while in the inrcrionic region, c!n ...•e to th(' \,),'i,gIlt'f-5eltz c(.ll
bnulldarie ..... it vari('s kss rapidly anJ eventually .smoorhly join ....rhe flt'i,ghhour-
ing cdl •.•avna,ged contribution. The (,ff('C[s of nei,ghhollrlfl~ arolll ....po[cntials
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are usually included by using Lowdin' s a-expansion" in spherical harrnonics
around the origin of the central ion, resigning oneself to using only the spheri-
cally syrnrnetric contribution. Irnplicit in the potential periodicity is Bloch's
theorern, which forces the electron orbitals to be Bloch waves. Sin ce plan e
waves thernselves are Bloch functions, we rnight think of expanding the one-
electron wave function in a series of these, surnrning over me inverse latdce
vectors in order tu account for the proper lauice symmerry in the crystal. 'Juc
due co che large potemial depth near the nuclei, chis expansion proves In
pracrice to be rather ine£fident, since we wouId expecr a more acomic-like
behaviour of che orbitals in this region. Slater in 19375 inteoduced the
concept of an Augmented Plane Wave in order co correct foe this fault. The
basis functions should be plane waves near che cell boundaries, but they
should be ~31ochwaves foemed feorn linear combinations of a radial function
times a spheeical haemonic in che innee regioos. 1'0 formula te his method,
he defined a "rnuffin-tin" potential, which divides each unit cell inco a set
of non-overlapping spheres centred on each acom, and the interscicial outee
reglon. The pocential is spherically symrnetric in the "muffin-tin" spheees,
and equal to an average constant in che rest of rhe ccll, the innee pote mi al
taking this constanc value at the surface of each of me inscribed spheres.
Kohn and Rostoker6 picked up rhe same eype of potential, bU[ formulated the
problem in rerms of Green funccions in whar is now known as me KKRmethod'.

A diHerent approach was used previously. Bloch surns weee found
from atomic orbitals centeed on each nucleus wich the disadvancage that these
contain overlap integeals of atomic orbitals cencred on diHerent nuclei, ince-
geals which cannot be neglected8, but only foe very special cases. One
can instcad stan with only the core atomlc orbital s, which do not overIap ap-
preciably, and take the eest of the functlons as plane waves which are forced
co be orthogonal to mese core functions; this is the cssencc or the UPIX'
mechod9•

In 1959 Phillips and Kleinman 10 suggested a new computational pro.
cedure, che "pseudopotential" merhod, in which they obcained an cffective
potential for the plane wave expansions scaning {rom the OP\l1 equations.
A gcneralized pseudopocential was latee developed by Austin, Hcine and
Sham 11.

Uneil very recently 12 aH rnechods used to compute energy bands have
utilized a linear expansion oí the wave functions as a starting point. By in-
voking the Rayleigh-Ritz variacional principie, a secular equation is attained.
This secular equacion mighc noc be of che ordinary type, since there might be
an implicit dependence upon che energy in the expansion coefficiencs
chemselves. 1'his is indeed the case in che AP\l' and KKR mechods. Evcn
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(he original pseudopotcntial formulations suffer from this "linear diseasc" I

because DE their starting equations.
Wc present here an effective Hamiltonian formalism which produces

an exaet model potential - exact within the prescribed independent particle
rnadel - based 00 (he use oí projection operators.

The model Hamiltonian which reproduces !he APW and the KKR pro-
cedures is derived in section 2, by incorporating a boundary condition opee-
ator to (he effective Hamiltonian. In section 3, the nearly free electron model
is trivially obtained by expanding the model Hamiltonian in a power series.
The OPW methad as well as (he problem oí narrow bauds, as those appearing
in transidon metals, are brief1y touched. Section 4 conüüns a general review
oí pseudopotentials using similariry transformations 13.

2. TIIE MUFFIN T1N POTENTlAL

As explained in the Introduccion, the muffin-tin pote.ntial is defined
dividing each unit cell into two parts by means of a sphere centered on each
atom (we are assuming a single acom per unit cell for the sake of simplicity).
The spherically syrnmetric potencial in the interior of the spheres is that
produced by its corresponding atom plus a correction due to me presence of
the other atoms in the crystal, computed sclf consistent1y. In the inter-
stitial region between the cell boundaries and the sphere, the potencial takes
a constant value determined from the continuity of the potential at the sphere
boundary.

We now adopt tt,forse and Korringa' s7 viewpoint, and think of an incident
set of planc waves scattercd by the "muffin-tin" sphere, to fprm a stationary
Rloch wave. In order to separa te the two regions dcfined by the sphere in
each unit cell, we introduce a projection operacortú which selects out the
proper incident wave, namely the one with the correct boundary conditions at
<he cel! boundaries. Thence, with <he help of !he complement P = l -19 we
can separate the electronic wave equation into a pair of coupled Equations.
Multiplying the one-electron equation 11'1'= 2'1' <o <he left by 19 and P suc-
cessiveIy and using che face ehae (f) and re> are oTehogonal, one gees ewo
coupled equations for 19'1'and P'I' :

(2.1)
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and substiruting lnto (2.1a), we can write an equation Cor tD'V:

U . - ~ . ,.pon Intruuucmg

an effecrive Hamiltonian for the component «)'1' is defined:

223

(2.3)

(2.4)

(2.5)

Due ro the cell division imposed by the "muffin.tin" potential ioto
ioner sphcres and outer regions in a unit cell. {he natural realization for the
projection operator in this case would be that which vanishes in che inner
spheres, and uniry in the outer region. Resolving this ioto plane waves 15,16

one has:

() (r) =

for O~; ~ R

(2.6)

wh.ere R is the radius of the muHin.tin sphere and Q(> is the exterior volume
within the unit cell. This projection operator picks up the lourer part' of the
wave function. The j sum is over the reciprocal lattice \'ecrors, so thar the
projccted function will indeed havc the expeeted behaviour.

If the pIane waves are normalizcd to unity in the whole cell volume n,
they will form an ovt'rcomp/rtr. st't in the outcr region f2p' Definir.g

j'; .. = <k.!lólk.>
'! I 1

as the o\'crlap integral. une has in fact:

¿N.lk.>=
j JJ ]

(2.7 )

(2.8)
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Th(, kinccic energy operaear will givc cisc (o unwanted singularities
on tht: sphere boundaries. Slacer, in his original fonnulations.,handled mis
problem by writing che kinetic energy [cnn asJ\lI/J,~'Vl/Jj ¿".. ("(egrating by
pares, ir can b(, shown thar chis rerm reduces to che familiar JL/J;V2VJ¡ dT in
casto (here is no contribution lrom me surfan.', Since Slater chose functions
wich a disconünuous sIope, che surfacc integral does oot vanish in (his case,
In lh(. KKR medIad, rhece is also a non.,'anishing surface ¡o(t'gral, chis time
in rcrms of (he Gu.'en function and ¡es normal derivative6•

Studying a similar eype of potencial used in nuckar reaecioos rheory 17,

Bloch lS. look"d ae the problcm d¡ffecendr. Ile showed (har (he Ilamilcooian
operacor i!'i noc 1I,'nnician for chis case: Indeed, if!/JI (r) and !/J2(r) are any
C\\'o radial funccions,

where

d(rtP,)

dr

•
d(rtP,)

dr
r tP,]

R
(2.9)

1/, = - 1 d'
r + V( r)

r d,2
(2.10)

IS che radial pan of the lIamihonian for a "'muffin-cin" innee sphere of radius
R. The right hand side oC Eqn. (2.9) ".¡11, in general, nOl vanish.

Insu'ad (lf imposing boundaey condicions ac che poincs , = R, we can
hennicize che lIamihonian 18b by adding a surface cenn which comp,'nsaces ex-
pression (2.9) when incegraced. This is done wich che help of che boundary
condition operacor 15:

B = S(r-R)(fL+V~)
o"

(2.11)

where ¡..t and vare arbicral)" conscancs, and ajan is eh" normal dNi\'arive at
the surface r = R,

The projection operator (Q. commutes w¡th 11 exc"pt at th,' boundary
surface , = R, so that me couplin~ ferm between the t\\"o equations (2.1). for
ID'I' and fC'l.I', 00 {he ri~ht hand side. reduces to BfV'I' and nt.l'l' respc,'cti\'ely.
the {'quaüons (2. I) beint-: thus cransfonned inw 15



225

(2.12a)

(2.12b)

Thc effective Hamihonian for [he projected function P'P in me
"pheres is:

(2.13)

The homogcneous equation corresponding ro (2.12b) is used to obtain che
quotient ¡L/v:

(E: -J'lHJ'l-B) fiJ'II = O (2.14)

Thc lefr hand side represents [he sum of a continuous funcr.ion in {he Íntcr-
val (O, R) and a Dirae singularity fOf T = R, so ir defines 15 [he inner e¡gen-
functions X).:

for r < R, with (he appropriatc boundary cundidon:

OX
V -" I = - ¡LX" I

Otl , "'"R r = R

(2.15)

(2.16)

chus fixing j1./v. The v is detcrmined froro the normalizarían condiciono
On rhe other hand, (he plane waves, solutions [() [he homogeneous

equation associated [O (2.12a), arc used to expand me reduced Greco functioo
in equation (2.13) as:

wherc

1 Ik X k I(E:-~II~-Bf = ¡ , ,
; E _k',

(2.16)

(2.17)
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and [he 1 k. > are normalized to uniey in the who/~ cell volume n.
Th~ trial wavc functioo is no\\' chasco to be a linear combinarion of

plan e waves outside the sphcre. The coefficients are de.rermined simpl~' _
froro rhe continuiry equauon. This in mm, follows usmg rhe effectlve
flamiltonian (2.13), Since we are expanding in plane waves, each coef .•.
ficient in the expansion is actual1y a Fourier component. This is done in
,he Appendix.

In (he original formularion, Slater selected rhe ¡once solucions X Ato
be regular at rhe origin and joined thero smoorhly with che /-th componenr of
(he plane wave using the well-known expansion in _~3essel functions, equation
(A.5). In (bis \Vay we form (he APW's, cach of which contains adiscominuity
of the slope at (he sphere boundary.

Once (he multipliers j.L and vare found, (he coupled homogeneous
equations for (he coefficients yield a secular equation ro obtain (he energy2:

(2.18)

with H and r well defined quantities ob(ained in the Appendix, equa(ions
(A.10) and (A.11). The indeccs i and j ennumeratc (he Fourier components.

~otice the dependenc{' on the energy E in the matrix clements r. This means
that the "secular equation" for E must be solved iterativcly.

The way we deal with me KKR mechod is briefly mentioned in the
Appendix as wel!. The clase rclationship between these (\\'0 methods.- AP\l'
and KKR - has becn extensively discussed eIsewhere 16,19, analyzing the
convergence properties of both 16.

3. OTIlER MODEL POTENTIALS

Although computations made with OPW and pseudopo(ential methods,
on one hand, and APW and KKR on the other, have been quite successful for
man)' crystals

20
• there are cases in which these methods do not yield good

results. Such is the case (or solids containing transition metal atoms. The
APW and pseudop()[ential formulations do not give a proper aCCount for narrow
valcnce bands, mainly because these aris{' from 3d atomic orbitals 5d. The
lauer extend enough to produc{. a non"'1lcgligible overlap wirh me neighbouring
atorns' s orbitals. hut they are, ne\'ertheless, bound enough to be considered
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as "core" orbitals. The APW and KKR methods, 00 the other hand, using
"muffin-tin" potcntials, present a similar difficulty: as Ziman, has pointed
out21, the overlapping of deeply bound atomic orbitals lowers the potential
barriers, and these bound atomic orbitals merge over me "muffin-tin" zero.
In other words, me centrifugal potential in the radial equation becomes domi-
nant near the origin and produces the appearance of virtual levels in the free
bando This makes the narrow band calculations strongly dependent on the
"muffin-tin" radius, an adjustable parameter wit.1 no real physical signifi-
cancc. In arder to surmount this difficulty a successful attempt to extend
the pseudopotential formulation was made using empirical argumcuts22• The
conduction bands have a free-electron behaviour, while the d bands are de-
scribed better from the tight-bioding viewpoint, so one can hybridiz~ the two
scts and obtain very good results with a few semicmpirical parameters.
Hubbard 12, staning from the KKR formulation, showed that the resonances
can be interpreted as a hybridization of ncarly-free-electron and cight-binding
behaviours. Hubbard adapted Kapur-Peierls' 23 method as used in nuclear
theor}' [O obtain his results. This procedure consists of expanding the Greeo
function in eigen-functions of the Hamiltonian with boundary conditions differ-
ent from the ones prescribed by the problem - one assumes instead that there
is no incident wavc. Hubbard, however, assumed a "muffin-tin" potential, as
10 Kapur-Peierls' original formulation.

a) Exact Formularion
An exact model potential can be obtained without starting from a

"muffin-tin" potential, by choosing an appropriate projection operator (ñ in
Eqn. (2.3). As one expects aplane wave type of behaviour near the cell
boundaries, (ñ may be eh osen as:

(3.1)

where I k + q> is aplane wave oarmalized {Q unity ayer a unit cell, and the
sum is taken over reciprocal vectors q. Should this sum be taken over alI
reciprocal vectors, the wave function would reduce to a linear combination
of plan e waves

(3.2)

and the energ}' bands would come out as solurions of the corresponding inf¡nite
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secular equurion. lIo\\'en~r, rhe restrinjon (() a limitcd number of [crms can

be correctcd by using rhe wholc effective Hamilconian (2.5), so thar rhe band
('ncrgies aH: gi\"cn by Eqn. (2.3):

~ {(2 (k) - i k + q 1') 8q, < (k+ q' Ivl k+ q>
q q

- < k + q' I VT (2) V 1 k + q > } cq ~ O

(3.3)
where e = <k + q ¡'JI>. The wavc function itself is exprcssed, wirh rheq
aid 01 (2.2). as:

(3.4)

and rhe model potential foc rhe pIane wavcs is V + VT(C) V, being non-local
and energy dcpcndcflL

The choice uf (he potcntial Vis perhaps rhe crucial poinr ill an ('llcrgy
band ca1cularion. W'¡rh rhe projcetion opnator (3.1), one is no longer re-

strictcd to rhe use of a "rnuffin-rin" potential. The potcntial V can (hu~ b<.:
eh osen staning from rhe fr<:c atom lIarrrec-Fock po(c(1tial, taking all average

('xchangc term, wirh rhe conrribution from ncighbouring atoms superimposcd

lO ir. 'rhe main a(h.anrage of using an average potential insteaJ of rht' non-
local Hartree-Fock is rhar computations are highly simplifieJ bCCLluse the
same potcnrial is us(.d for every orbital.

The problem of how to take [he aver,lge in rhe cxchanFe ternl ha ...•bccn
extcnsively discussed. Slarcr2 proposed an cxchangc J-lorelltial(in a.u.)

y,
V, ~ - 3 [3(' (f)/RT'] (3.5)

wh<:rc p(r) is rh,' ekuron density, ",hile Kohn and Shalll1• using a variationaI
ansarz, ...•uggestcd ro use 2/3 of this value. Goscinski and rhe aurhor¿<4
showed [har Slarcr's way of avcra.ging would overesrimarc exchange ('Hects,
while Kohn and Sham's undcresrÍrnares them, ar I('asr in aromic s)'s(ems. The
criterion uscd was to compute thc devia[ion £rom the virial rheorem which rhe
caicula[cd orbitals would suffer in boch cases. In che same paper, wc sug-
ges{cd mulriplying [he exchangc potcntial (3.5) by a coefficient, in such a way
rhar rhe ,.irial [heorem ".ould be automatically satisfied by the atomÍc orbir.als
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used to Cllnstruct the initial potential. hoping that the resulr<ltlt crys£al orbit-
ah would ,lIso fulfill il.

Slatcr has proposed25 a similar variarion of rhe coefficictlr a to im.

prove the porcntial. lIe uses dIe functional l'xpansion of Ihe encrgy il1 t('rms
oC [he den.'iity26 and approxim<ltes rhe exchange lerm by a potencial oC rhe

{mm (3.5). Hc rhen choos('s a such thar the rotal el1ergy coincides with rhe
I!arrree-Fock valuc for rhe individual atom. \\'h(,11 Orle uses [hese densiry ex-

pansions [O compute (he l'ncrgies. insrcad of (he variarional procedure whidl

is usual in the Harrrcc~Fock me(hod. rhe \.irial Iheofl:m is automatically ful-

filled.27. This is the by no\\' well krlown X llH"tllOd. and its virtucs ha ve• a
b(:('11 eXlcnsivcly discussed clsewhefc::5.

In this \Va)", we improve rhe Hanfcc-Fock potential. simplifying it at
dIe same time, by using an ;]\'l:rage l'xchange pOll,ntiai wirh rhe appropri,ul'
c()l'f(icil'llt. \\le should noricl', howevef. that as long as a self.C'onsi.srctlr
pcol'cdufC is used, \Virh single dercrminanral wa ....e funniolls. no correiarion
wharsoc ....er \ViiI be includcd in rhe W<lVC functions.

Coming back ro the wa ....c funcrion. Eqn. DA) can be lookcd upon .\S

a wave funcrion comp0'ied oC ao inciden( W<1\"C plu ...•,\ ...•c,l(tcorl'd porrion, "/'

being [he r('duccd Grcell fUlletioll Eqn. (2.4). Heduced means (,ssclltiall~' rllt,

corurioution from the ortho,gona! complcment w the incoming W<1ye. in this
nHlt l' x t.

Th(' operator T can be l'xpanded in terms of the cig<'nfllflcrions uf
PI/P. Ir

El' >, (5,(, .•)

P 1/, > 1/ >
, "',

Ix, ><l, I
1: - E,

0.(,1»

(\.7)

,wd the I.\st [crms in E<¡n. U"~) hecome

O.H)

IIt'nn', knowing rhc ...•Ll[(' ...••J., (,11<' i ....ahle ro c()mputt' rhe hand ...•2(k) h~' .11\
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¡rerarion procedure on the "secular" equarion (3.3).

The maio fcature of this effective potenrial is its explicit resonanc<,

formo An extension of the OPW' merhod ro inelude d.orbicals as resonances
was discussed in a paper by [he aurhor28• The argument goes roughly as
£0110w5: (he eigenvalues of the deep core state can be taken as the appropri-

ate metal bands as we go froro the free atoros tú the metal, provided we form
Bloch waves froro rhese atomic orbitals. The valence states, however, are
appreciably changed in metals. In particular, foc transition metals, those d.
orbitals induce a resonance eHect which produces narrow valence bands in
rhe metal 21.

The core s(are hence can be approximated by the usual secular equation I

for OPW s. while the d.states should preserve the resonance form, leaving an
eoergy dependent model Hamiltonian. The corresponding secular equation
reads as follows:

1
2 r , ~¿ (2(k)-Ik+ql)o,-W,_ qq c=O

q qq qq 2(k)-Ii
B

q

which has to be sol ved iterativeIy28. The cq's are the coefficients In the
expansion in OP\t,"s, and the matrix elements of W and r are:

= <k+q'l(v+¿(Ek+ q-Ea)la><ai)lk+q> (3.10)
a

and

(3.11)

a denoting the Bloch functions constructed from the core states, and f3 the
one from the d-orbitals. For further details, we refer the reader to Re£. (28),
and a paper by Barrison '¥J.

b) Nearly Free Electron Model

Eqn. (3.3) can be expanded in perturbatian series. We take the kinetic
energy term as the unperturbed Hamiltonian, and use Lowdin's 14 expansions
of T in Rayleigh"'Schrodinger oc Brillouin.Wigner series respectively:

(3.12a)
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where
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(o)
and E is the diagonal operator of the unperturbed energies in the Ó-sub.
spaee, and

T = To + J;; v-r;, + J;; v-r;, VTo + . . . . (3.13;:)

with

(3.13b)

The seeond order to R-S being:

2
L {(é\k)-ik+qi )0, +<k+q'IV+VR Vlk+q>}c =0 (3.14)q qq o q

so the nearly-free-eleetron model follow5 immcdiarely.

e) Partial Wave Repre sen ration

The momentum spaee was used throughour, bUI this is no limiration.
We can ¡nstead use a "muffin-tin" potential for V, and redefine rhe projeetion
operaror lÓas

(3.15)

in the inner spheres, with l...= i (KR) ~lm (r), and K2 = e, the sum over the
lauiee harmonics appropriate tol the crystal, in arder ro ohtain a partialwave
represenrarion mutatis mutandis"

•Seo also P t. '.12)
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4. TlIE PSEUDOPOTENTlAL

Berrondo

The philosophy behind (he pseudopotenrial rheoel' is quite differenr.
There we seek an equarion which has rhe same eigenvalues as rhe original
one, bur whose eigenfuncrions are as "smoorh" as possible. Smoorh in rhe
sen se of having [{'moved rhe rapid atomic.like oscillations ncae (he ioos.
The corresponding pseudopotential should rhen be a150 a smoother funcrion
than rhe usual average porcntia1. It describes a weak ¡nreraerion bctw{'cn

rhe elcctrons and rhe ¡aoie lauice. If chis smoothness condition is fuICilled,
rhe psrudofunetions can be constructcd as a linear combination of a few plane
wa\'cs. The way ro choose (his pseudopotenrial is nor un¡que indeedll. h
actually is somewhat arbitrar)', and extensive discllssions abollt which one tú
use can he found in the literature 11, lJ.

The process of going from the original eigenfunctions to the psrudo
functions can be visualized by means of a similarity transformation 13. 1'0
this end, let us divide the function space inro two subspaces, the "core"
subspace and the "valence" subspace, defined by the complementary pro-
jection operators e and U respectively.

C+ti=

C' = C, ti' ti

(4.1 )

( 4.2)

A basis in the e -subspace is given by the core states [a> formed as Bloch
functions from the free atom or ion lower states:

C = L I a>< al (4.3)
a

J a> being an eigeofuoctioo of the Jlamiltonian II,--correspoodiog to the core
sta tes

/1 I a> = Ea la> (4.4)

Now, to defioe rhe psrudowave fuoctions, we split the same space
into two different complementary subspaces with the aid of the two onhogonal
projectors «i and fV.

The (Ú and rtl.subspaces are chosen ro be isomorphou~ to the C- and
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0- on('s respecrin:ly. In oth{.c words, [here is a onc-w"'Onc correspondenct:

b('[wcen th(' core sraccs and du: basis (uncrions in the lñ-subspacl'. :\s a

(ooen'te cxampk. we can bear in mind the expression foc t9 and rv as in Eqn.
(31) sinc(;' W(' want the ps~tJdf)func[ions ro be as ..••mooth as possible. The

basis fOf the [l-subspace in [his example contains th(' lo\\'cst planc' wu\'es
(properly syrnmeuy-adapted):

Ó = L Ik + q ><k + q I
q

(3.1)

where the summation 15 taken 0\'('( a limited number of lauic(' ,,('ctoes _

namel)' the number of core stat<:s. This, of cours(.', is not the ool}' possibl('

choice, bUI will give rise 10 rhe well known OPW pseudopotential, as is sho\\n
bdow.

Thcn' is ob\"iously a uoicar)' uansformarion U which [Ukes us (rom une

basis into the orher, i, e., which maps Ó onto C. The explicit expression for
this transformation has been found by the author in quite a diffef('nt context31•

",re first notice tltat the projcctor C commutes with the lIamiltonian JI but «i
does not. It is then shown JI that U is the operator which diagonalizes ID, ancl
can be written as-:

u = exp {!> are sin 2 [tó,C]} (4.5)

The transfonnation U above is unitary and it maps \ñ in e and fd in lJ.
¡Hter \\'aeber and StoU13

, we no\\' define a non-singular rransfonnation W in
the following way: we want W lo map ~ into itself, and simultaneouo;ly" to m.ap
¡é) inro lJ. In this way, the "uPP('r" pst'udofunctions have the same cnergy as

(he valence states, as it should. In this samc paper, they hav{' shown that an
explicit form for W is simply

D('fining the op{'raror S

w=\)+Ctó

(C_«,»2, the inverse of W can be writtcn

(4.6)

as:

(4.7)

This i~ only one possible fotm fot U. Since U dia~onalizes (Q, andils ei~envalues ate
infinitely de,::eneta[(", U i s not uniquely de[ennined.
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Thar (his ¡"\'cese cxists follows immediatcly
The equation fOf (he ps("udofuncrions

larir)" transformation on (he originall1:

Herrondo

frum [h(, existcncc uf U 1J.

is obtain(,d by making a simi.

(4.8)

The "el effect oC [his transformado" is to add .1 rt:pulsivc potential [o 11 which
lean .....•a fiel w('ak potcntial. namely (he pseudopo«:nüal.

If we are onl)' intcrcstcd in [he \'alence .states, we can concentrare OH

du' J8-subspace fOf (he pSf"udofunctions, in which case. we can rewri« ..' Egn.
(-1.8) as 13:

for

¡al<t>= Iq,>

(4.9)

(4.10)

recalling that (Q!eiJ > '= O in (his casco
Lct us now look al (he particular choice (3.l). If we multiply [he

abo\'(' equation by W (O lhe lefe, and use (4.6) and (4.3), we obtain the usual
OP\\' pseudopotenlial equalion:

{ T+ l' + ¿ (E' - Ea) Ia ><al} Iq, > = E' Iq, >
a

(4.11 )

Since ¡a Iq, > = I q, >, ,he funclions

...•Iwuld be formed fmm a fe\\' planc wavcs.
I(p > are che ps~udofunctions. and

1'h e corr(.' sponding pscuJopo(entiaJ

v+ ¿(E'-l'a)la><a I
a

(.i.l2)

is a w('ak potenlial, since ir has rhe (.-Hcct of orrho,Ronalizing with reSpt"ct (o
rh(' (:ore states, responsihle fm rhe oscillarions of rhe wan: functions nt'ar
rhe ions. In (ace. I~> coulJ be considered as tht, "plane wave" component
of rhe actual eigcnfuncrions:

(4.13)



when expanded in OP\\" s.
\Ve should note ae (his poiot thar the transformed Hamiiwnian W~IIIW

is no! Hermitian, since W is flor unitary. Or looking ae Eqn. (4.11), wc can

sa)' equiyalently thar rhe lIamiironian fOf 14> > is energy depcndent. Desrice
chis Cacr, rhe eigen\"alues E are real, and ac[Ually coincide with dlC "al(Once

eigen\'alues oC 11. The eigenfunctions I<p >, how('\'('[, are no! orthogonaI.
This causes no problcm, sinee wc can always define a dual basis 15.32, or-
thogonal to rhe original 00<", Fur funher decaib, W(' r('£Cr thl:' [{'ader to (ht:

.. 1 k 13origIna wor' .

5. SUmtA RY

1'0 condude, we wauld like to remark (har [he eff('ctive lIamiltonian
constructed using projection operators has (he ad\'antagc oC yielding a unifi(.'d
vrcwpolnr. Thc projeetion operator sclects [he behaviour far away from the
ioos, i. e., in me interstitial regions near the cell boundaries. The flexi.
bility to choose i[s explicit 'form allows us to interpret the problem ei[her as
a scauering problem or £rom me penurbation poin[ of view; [Q work in [he
coordinate space, in the momen[um space, or in the panial wave represcn-
tation. The introduetiún of a boundary condition operawf makes it possible
[O encompass [he "muffin.tin" po[ential formulations under [he same schcme.

The similarity transformation to reduce [he pseudopoten[ials is aIso
wriuen in [crms of projecwrs. In a way, it links (he tight.binding method
defined by the core functions projec[or and the free.-electron picture descril)(.'d
in terms of plane wa\'es. The uni[ary operator i[seif canno[ be used, because
we wan[ [he lowest pSt'udofunetions w be expressed in tcrms of a fe\\' plane
wa\'es as weH, since wc concen[rate onl)' on [he valenct.' sta tes, leaving asid(.
[he lowest energies which correspond [o [he core s[a[es.
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APPE~DIX

Bcrrondo

\X'e stan \Vid} a trÍal \\"a\'{' funcrion IV. which ís expandcd in plane
W;lVCS outside rhe sphcr<.':

(,1.1 )

Tite planc waves in rhe expansioll are defillcd as X. = iD I k. > wirh (fj as in
J J

(2.6), while rhe coefficicnts A are ro be dercrmincd. '1'0 chis cnd. wc wri[('

rhe conrilllliry equation corrí'sponding [o rhe cffeui\'c Ilamiltonian (2.1.,),
analogous ro (2.1()):

(A .2)

This defines rhe j.th Fouriu componenr fUf the wavc fnnction olJtsid~ rhe
sphere ¡IS

<k¡IBllv>

k2_ 2,

So, using rhe cxpanSlO1l (A.I), Ofle ,gel s:

( ,1.3)

= 2: ,\ I X¡ >
¡ el. i)

Taking SLucr's choice, wirh XI. bcing [egular at rhe origin and
JOlllln,g da'm sllloorhly \Virh rhe plalle wa\"(:~ ou(side rhe spherc, \Ve can make
a parcial wave analysis llsing rhe dccornposirion:

[] I 11' A 1 Ani' ik' r ~ üT¿i il(k,) 'illm(k) ¿'mi ,)
1m

( .1.5)
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and [he boulldary conditiofl (2.1ó):

/' = _~;(c,II~
V H,(P,II)

(A .6)
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wherc R,(r) is til(' I-th normalizcd r.ldial {',ut of the solu[ion of Eqns. (2.15'
lo c. ,

(A .7)

[he ('lIcrgy E bcillg choscn to be the same as lhe charactcris[ic ctlergySa in

(2.12), l!cnee. the integral in (A.4) llsing cxpan~ions (A.1) an •..1 (A.5) re-
duces ro:

L (477)'11''m _
n

(1\ .8)

wherc V =-= 1 - (n In) aod lhe ' s[<lltd.s for [he dnivarive with [('sl)(.:cr ro r.e
Subsriruting ir illto (A,.1) one ¡s !ed ro a secular eyuation:

where

r~
, J

and :-a

i 11' , [R;«(",II) j¡'(k,tI)]
~'TT 2. (2' + 1) 1) (eos 8i¡ ) j, (k¡li) j, (k/I) - J _

n I R, (C. 11) j, (k/I)

(A .10)
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N..
, 1
s, 1

i¡(\k.-k.¡R), 1

Ik - k I, 1

Berrondo

(A.II)

In rhe KKR method, 00 rhe orher hand, one starts wirh che trial W3\'(:,

expansions in rhe ill/~ríor of rhe sphercs6

instead of Eqn. (A.l). Thus the integral In rhe continuity Eqn. (A.2) is no\\'
gi\'cn by rhe expression:

. 2 O'wlth K = c.

R¡(2, R)] ~¡m(ki)

(A.12)
The boundary condition equivalent to (A.6) is no\\'

(A .(3)

The in[cgral (A.12) leads directly [O rhe secular equation derivcd by Ham
and Sega1l6b in an entirely analogous wa)' to rhar oE rhe APW method secn
ab(wc.
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RESUME:'-J

En este arcÍculo se hace una rc\'isrón unificada de los modelos mono-
el<,'ctrónicos usados en cálculos de bandas, en términos de operadores de pro-
yección. La idea esencial es seleccionar el (,.'omponamiento apropiado en
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las fronteras de la celda-unidad por medio de proyectores. y acto seguido de-
ducir la ecuación correspondiente para la componente proyectada de la fun-
ción de onda. Se tratan primero los métodos APW y KKR usando un proyec-
tor geométrico. A continuación se deriva el modelo de electrón casi libre
expandiendo el potencial efectivo en una serie perturbaciva. Por último, se
enCuentra la ecuación correspondiente a pseudopotcnciales usando una (cans-
{ormac ión de semejanza del operador JIamiltoniano original, siguiendo el tra-
bajo reciente de Waeber y Stoll.




