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ABSTRACT: . In this paper we modify the many-particle point transforms
previously developed by N.M. Witriol in such a way that the
transformation varies from the identity transformation -one
isolated body = to the N-bodiesinteracting as the interparticle
separations fall within an arbitrary chosen cutoff distance.
The method is used to provide Hamiltonians for strongly inter-

acting particles that are equivalent to the usual Hamiltonians.

1. INTRODUCTION

The method of point transformation, as developed by F.M. Eger and
£.P. Gross¥®, is basically a classical canonical transformation of the vari-
ables of the system and it then quantizes these transformed variables. They
began to explore the use of this method in many-particle theory, with the
main purpose of obtaining Hamiltonians free of the difficulties encountered in
dealing with strongly interacting particles. Using this method, Eger and
Gross have assumed that for a sufficiently dilute system the equivalent many-
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body Hamiltonians are the sum over all pairs of two-body Hamiltonians. When
this pairwise point transformation method is applied to deduce the main
properties of low temperature quantum liquids, such as the ground state energy
and the low-level excitations of the hard-core Bose liquids, they are found to
agree with the low-density results of l.ee, Huang, and Yang?. Similarly,
when the method in this pairwise limit, as developed by Eger and Gross, is applied to
the many-body hard-core Fermi system®, the ground state energy and Landau
parameters are in agreement with those of Abrikosov and Khalatikov 0 In
essence, in these methods approximations are rigorously valid only in the
limit of low-density (smallness of the ratio Cp3 , where p is the density and
c is the radius of the hard-core potential). For physical systems of interest,
such as liquid *He, *He, and nuclear matter, the conditions for the validity
of these approximations are not actually satisfied.

Recently, N.M. Witriol 12 has extended the method of point transform
to the consideration of the truly many-particle terms of many-particle systems.
Witriol’s methods have been based on the previous point transformation method

35 In his first paper’, Witriol developed an

developed by Eger and Gross
interacting particle cluster method for transforming the many-body hard-core
Hamiltonian into a less singular and equivalent Hamiltonian. The transfor-
mation is taken to be regional -one free particle, two interacting particles,
three interacting particles, ... N-interacting particles, as desired - and con-
tinuous in the 3N-dimensional configuration space. The cluster transfor-
mation functions were defined in a manner such that each N-particle cluster
would shrink about its center of mass; the shrinkage factor depending on the
smallest interparticle separation. Mathemarically, these transformation
functions depend only on the two-body smallest distance. For large clusters
-more than two-body interactions - the form of the transformations leads to
laborius mathematical computations as a result of the continuous and cutoff
conditions on the cluster formalism. Inhis second attemptz,Witriol removed
the cutoff terms in the transformation. Essentially, it is an N-body cluster
where the cutoff distance of the new transformation is taken to be oo throughout
the configuration space. To facilitate the calculation of this hard-core
N-particle term, the transformation function is restricted to being also regional
as in his previous work, regions being determined by the smallest interparti-
cle separation; that is to say, the transformation function is restricted to
depend only on the smallest distance between the particles. Moreover,
because of the very long range of the transformation function used, the
resulting Hamiltonian does not approach the free particle Hamiltonian for
large values of the interparticle separation, and the original and transformed

wave function differs asymptotically for large r, which is of course somewhat
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inconvenient in discussing scattering problems.

In this article we suggest a new transformation function without using
the cluster formalism introduced by Witriol ' 2. In the resulting configuration
space the system is also shrunk around its center of mass with the same
purpose of reducing the effects of the short-range, strongly repulsive or hard-
core potential, but with a cutoff conditions in such a way that the transfor-
mation varies from the identity transformation -one particle isolated - to the
N-bodies interacting, as the interparticle separations fall within an arbitrary
chosen cutoff distance. In other words, when the mean interparticle sepa-
ration is much larger than a certain distance, the probability of a configuration
with higher order of particles within this distance of cach other is negligible.
For large interacting terms the expansion technique caused by this transfor-
mation gives rise to less mathematical computation than that caused by the
functional form of the transformation suggested by Witriol.

In sec. 2 we define a transformation of coordinates and construct
the corresponding family of transformation functions on the ground of conti-
nuity, one-to-one and invariance conditions. In sec. 3 the transformation is
used for transforming the many-body hard-core Hamiltonian into an equivalent,
“well behaved” set of hermitian Hamiltonians. We note how, in the limit of
the two-particle interaction term, the resulting set of point transformation
approximates the set of pairwise point transformation developedby Eger and
Gross®>™® and how it emerges in an elementary and unambiguous way. In the
final secrion we give a discussion and compile the general remarks of the
present work.

2. DEFINITION OF THE TRANSFORMATION

Let us start by defining the transformation which is essentially a
transformation of coordinates. Notationally, Latin indices refer to particle
indices (from 1 to N), Greek indices refer to cartesian space coordinates
(from 1 to 3), capital letters refer to original variables, and small letters to
the transformed variables. The original coordinates X, are related to the

transformed coordinates X according to the following transformation:

X =Xy =l M - oI 2 ) (2.1)

H ia a

wheie the transformation function ¢ is an arbitrary real function of the po-
sition of the particles; X,
the N-body system in each configuration space, thart is

and x represent the center of mass coordinate of
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. N
X,=(1/NVE X, . (2.2)

1 =1

The center of mass is thus chosen as the reference point of the transformation.

If the center of mass motion is nor altered, then X = x_; and it immediately

a’
follows from eq. (2.1) that the transformation may be written in the form

X, ,=px;,t(1-P)x, . (2.3)

Let us now examine our function (“b in detail. If the system is invariant
under simultaneous rotation of the coordinates of the system, ¢¢ must be
a symmetric function of the difference of the coordinates. Since our problem
is to make “soft” the “hard-core”, the range of ¢ must be considerably
greater than the diameter ¢ of this core. Notice that we only need to specify
the function, which, of course, plays an important role in the theory for
making strong statements about the behaviour of the dynamical variables,
the coordinates and momenta, depending upon the form we may choose for
this function. The transformation shall be chosen to shrink the system,
reducing or eliminating in this way -depending of this choice - the strong
short range potential. We wish to consider next how the function ¢ can be
built from general considerations about the interactions of the particles.
First of all, if ¢ must include the identity transformation, then ¢ — 1 as the
distance R, . between any two particles 7 and j is larger than certain distance
b, taken to be larger than the radius of the hard-core, ¢, to guarantee the
one-to-oneness of the transformation, so

B P for (Rl']"rff)> b, (24)

where e is the interparticle separation in the transformed configuration
space. The transformation is then healed in a distance & which acts as a
cutoff parameter and as the range of the interaction created by this transfor-
mation. Our purpose is to modify the direct potential, which in this case
is a hard-core type; since under the transformation (eq. 2.3), the potential
becomes

VIR =V [R(] =V [¢(r)] , (2.5)
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and, since in the original space the potential is

V(Ry==, R<c

) (2.6)
v'(R)=0,R>c
then the class of functions
=1+, (2.7)
where
f—c/r when r—0 (2.8)

and c is equal to the core diameter, removes completely the hard-core, that
is, from eq. (2.5), we obtain V(r) = Oover all space. We note also, from the
condition on ¢ established above, that

f—0 wheneach 1.~ b . (2.9)

Then the characteristics of the problem are thrown now onto f.
If the two-body encounters are dominant in the interaction, we write [
as

fe) = [e/(r+ €)] g(r)

so, for the two-body interacting terms we have:

N
Fwsiicly =, ;}:= 1 [e/try; + €] glry) (2.10)
i<j

W= may imagine € >0 and pass to the limit € =0 after all phase shifts,

matrix elements, etc., have been evaluated. Clearly, the function g is
chosen such that
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g(rz.jl**l . rl.].ﬂO

g[r;.}.)ﬂ 0 . i - b

In this case the probability of a configuration with more than two particles
within a distance b is negligible.

To consider the third order interaction terms we should take into ac-
count the continuous transition between these terms and the two-body rerms,
when the probability that a third body were correlated to other two bodies
which are certainly correlated, is small. We shall assume thar thev can be
built up as a product of pair terms, similar tothe form thathas been proposed
for the three-atom correlation function in the Born-Green theory of quulds“.
Thus, we write the three-bodyv term:

N
i, T FLY L = s ) (2.1 2)
i.f.zk=17‘1kg{ru)g‘rrk ik’ > '

i<j<

where Y1 depends only on the smallest interparticle separation ‘between the
7 . . s ;
particles 7, 7. &£. That is, it has the form

= 1 el
’)/:-].k = c/(r:.?. +€) if i <rp < e (2.13)
or
1 1 3 ) . B lab)
=t Y = H A6 s =8 o et o {8
y‘llzza ! c,d=1a,b=1 tatp tetd T + €
ced wdh cd
"aib £ iy
where
3 3

r = 3 I e . =-r. ), (2.13c)



Point Transjormation in. .. 261

and ’.a""b means thart r. ; and i
‘a’bh cd
and the product over the £ is such that

are not the same interparticle spacing,

glr, . =-r )= (2.14)

If the fourth order interaction terms are considered, we also assume

that they can be buile up as a product of pair terms, then the four body term
is as follows:

N
2, o Yiikt8ii€r8ur8 1 - 8) (1= gy) (2:13)

I

1<j<k<1

where ..., is defined as above, depending on the smallest interparticle
spacing between the particles 7,4, k&, /.

We 1llustrate the general features of the transformation by showing
diagrammatically the first lower order terms:

1 - particle isolated (i)‘.(Ri}. ; r;.].)> boall j£i,1<jEN
i® P, 1
2 - particles interacting (#j): (Rik , R;‘k o r;’k)> b
{R;‘j’rij)Sb‘ all £ #4,7, 1€kE€EN
T IES— P L [C/(r:-j t+ €)) g(r;:)

3 - particles interacting (ij&) :

(Ril,R;‘.I,Rkl;ril,rﬂ,rk[}>b all 1#4,7,k. 1X1EN
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which in the case (R, Rjk’ Rii; Tk Tiko rl.j)\< b, we have

k

bige = [1+e/lr+ )] glr )+

leileg + E)] glrp) t [e/tr,, + €)] glryy)+

i ] ’)/”k { g(fq)g(rjk) [1"g(fzk)] +

g(r;)e(ry) [1-glrp) ] + g(rp)e(ry) [1-g(;)] b

4
For the case (RI.J., Rjk; Tii s rjk)éb; (R rz.k)> b, then

k
c'bijk -1+ {c/(r‘.]. + 6)] g(r‘.]_}-i-

i® ' ;
: and so on. We easily note that the form
chosen for ‘?5;,‘&. is in concordance with the continuity conditions of the

transformation.

3. THE HAMILTONIAN

Clearly, the relationship between the transformed momenta g, and
the original momenta P, , , according to the definition of our point transfor-
mation,eq. (2.3), and due to the hermiticity conditions on this operator, is

_y s % | 2Ns %%ip
Pia = % -51 B =1 BXl.a jﬁ+ pjﬁ X, o

where Pig=- ih a/axjﬁ . In checking that X and P obey the correct commu-

tation rules, one needs the theorems '?:
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(3.2)

where A i1s the 3N th-order Jacobian
Ox

I!-B
ia

— | of the inverse transformation by the relation

Xip

related to the 3N th-order Jacobian

B:

A*B=1. (3.3)

This allows us to write P, in the alternative form

N 3 ax :
Pu=3% 3 3 4 4 g
P j=18=1 Bxia [pfﬁ T x4

N
~ 3 3 g8 2sa] s (3.4)
i=18=1 |8 7 ox5 | X, '

By means of this transformation the original Hamiltonian

N 3
HR,P)= X X p tV(R,P)

=1 a=1

(3.5)

where R,P,r p, represent their respective set of 3N variables
R;. P.,r;. p;) is ransformed into itself according to

N 3
H' = = 2
(P =H[REL Pl = 3 5 5 0+

.

Vir,p) t Wi(r), (3.6)
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where
N 3 D3x. Ox.
Lijg= 2 2 2 18,
7 I=17=1 'axh axh,
and

N 3

W)= 3 s [r/? ‘Cia;'ﬁ aIOgA alogA + & a ‘C'a'ﬁ alogA ]

R - 1

i,7=1 a,B=1 axt.a a.r].ﬁ E‘rja 7 Bx’.ﬁ

(3.7)

In order to ensure that the Schrodinger’s equation in both configuration spaces
leads to the same eigenvalue E, the corresponding wave function may be re-
lated by

% g
Y. [RO]=B"NW¥(r) (3.8)

or, by the eq. (3.3)
W (R) = A (R) ¥, (e (R)] . (3.9)

The Jacobians ensure the preservation of the normalization of wave functions
as may be easily checked.

Let us evaluate now Bxia/axm . By differentiating eq. (2.3) with
respect to X, we find

N 3 dx - Ox.
Bl = & Zad’ k?\(x.—x)'l-qﬁ B ¢
il “ar =13 =1 D% X ia a X
kX ilr ir
N 9x
1-¢ 5 & (3.10)
N k=10X,_
L N
but by the definition of N kE x, it follows immediately that
=1
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so that eq. (3.10) leads to

N 3 ox
_ ) A e =% +
L~ (-l b= B B B 1
B Eff_a_ . (3.11)
oX,

Using Cramer’s rule, the set of equations for dx,, /dX, are of the form

o) E
xk). s k}\,l'r (312)
dX,, D

where D is the 3Nth-order determinant

a —
%(xia'xa) . c’baik 8or.-r (3.13)

and Egs . 14 1s D with the kA column replaced by the coefficients on the left-
hand-side of eq. (3.11). For labeling the columns £\ and the rows ia , we
fix first A or @, which have the value 1,2, 3 and then & or ; are runned from 1
to N.

The determinant D is easily calculated (see ref. 2 where its elements
are now given by the eq. (3.13)); we find‘

N 3.
D= NUp+ 3 3 P 5 ) (3.14)
i=18=1 axj:" 1L

where x, , = x, - ;,G' Using the fact that @ is a symmetric function of the
difference of the coordinates, then we have

N
_E %‘i_:o' (3.1%)
1=1 9%
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so the eq. (3.14) may also be written as
N S 2o
p=¢pNUp+ 5 § 9 . (3.16)
i=18=17dx,, I8
18
On the other hand, for E, % g using eq. (3.15), we obtain
N 3
o 3N-2 w} = a¢ _'_, =
iB
sw, 98 | (3.17)
Bxl-r.

where 5 =(1-¢)/N. Putting eqs. (3.14) and (3.17) in eq. (3.12), we have

e 1 (5, - $)8,, - k1P /0,
9X b &

ir N S 5

iB
Therefore,
N 3 Ox. Ox. 2 .
.= % 5 “he “%p 1 5,08, ¢+ 1) .
L = CTg aX“_ BX”, q52 D' gl N
2
- 4 . ! N 3 At
_ %a%ip " %ipPia +x% %, X 3 ar) - )
= 82 g8 oz = i 3 2
N 3 k=1 A=1 (gid g s oy )
} - I +
¢+1k:'1r%1x""d)]7 l=11v—=1x‘!'jr =
(3.19)
and

3y,

o |
N 3
1 34”'4 o =g I
B = = $ B X Eedhly) . (3.20)
axl'r [¢ (d) i :l

j:lﬁ:l 7
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where qb’ = a¢/ax

Another 1mmed1ate result coming from the symmetry condition on the
function ¢, which is a function of the difference of coordinates, is

N

R
C’fjfB_ 2}75__ (x; —ij)/rl.]. (3.21)
Tij
so thar,
| '
s %i8%is = * o Pry L
and
Spb/5Gis = 2 Thi g g (3.23)
BF8 LA Thi Tl kj 1§
where ' = 9¢/3r..and G is an arbitrary function of the difference of coordinates.

In order to evaluate W(r) we first note that eq. (3.7) can also be

written as

_ s g 9 |c (1/B)* (3.24)
W(r)_ ':';'2=1 a,§=1B axi [1(11,8 E

where we have used the relation (3.3). When using the eqs. (3.19),(3.22),

we have

| N xx.
wo-8%{s 3 . i x
el L d)ru(d)-'.'/zzk,frk[(ﬁ:kl)
)

1 X £ Y o gk 1
i (Ef) ¢+ Et ki qb'kl) ’ qb’f,' Et "kl (?)
Tos g
4

)
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Y 1Y _ 25
-2 d)rkj [kzsfks (BT)v ] 3:29)

7

ks
where we have used the relations
P 3
- =2 (3.26)
5"im éxja. Xija

x:’ja Xia xja

With respect to the potential V(R,P), if this is originally a short-
range, strongly repulsive, or hard-core potential

o , R<c
V(R,P)=V(R) = (3.27)
0 R>c

the transformation will eliminate the regions of the 3N dimensional configu-
ration space in which any interparticle separation r,. is less than the hard-
core diameter ¢, as discussed in sec. 2. Therefore, due to eq. (3.27), the

transformed potential will be V,.(r) = 0 in the all the configurdtion space,

in such a way that the transformed Hamiltonian, eq. (3.6), becomes in this

case of a hard-core Hamiltonian,

N 3
H(r,p)= X §= ,pia‘ciaiﬁpjﬁ + W(r) (3.28)

i,j=1a,
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where Eia‘,@ is given by (3.19) and W(r) by (3.25) and (3.20). The large
effect of the original strong repulsive interaction is thus throwninto the new
“metric” potential W(r) and into the new coordinate and momentum potential

pLp . .

It is worth commenting at this stage that we have not specified the
exact form of the function g(r;.) except for the conditions given in (211 .
We have, therefore, a family ot’ Hamiltonians, corresponding to the arbitrari-
ness in the choice of the function g(r), equivalent to the original hard-core
Hamiltonian. Furthermore, eq. (3.28) represents a set of hermitian Hamiltonians
amenable to the ordinary perturbation and variational techniques.

This method is accurate for calculation in which one can assume
the existence of only few-body interaction terms. Of course, for a one-body
isolated term, from egs. (3.19) and (3.25), we obtain the unperturbed form:

3
Hy= X pl, (3.29)

1
a=1

The pairwise limit is obtained if we consider obviously the two-body
interaction terms, and then we put eq. (2.3), according to the eqs. (2.7)
and (2.10) into the form

a=x,-7-a(l+ ﬁ)g(rij) (3.30)
if

Xy
LS

by changing to the relative coordinates Xff“ and Xiia given by (3.26) and
assuming that only the two-particles 7,j are within a distance T <b so
g(rl.k), g(rik) = 0 fork #4,j. The transformation given by eq. (3.31) is
the form assumed in previous investigations>*%, where the systems are con-
sidered to be sufficiently dilute, so that the probability of a configuration

with more than two particles within a distance 4 from another is negligible.

4. GENERAL REMARKS

Perhaps the most central quantity in the present theory is the function
g(rl.!. ), related to the original trasnformation ¢ according to the discussion
in sec. 2. This function seems to play the role of a radial distribution
function like the one used in the theory of the liquid state' ; and actually
a theory more in accordance with first principles should include this de-
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pendence of the probability distribution of the particles for the equilibrium
situations. It should be emphasized that the derivation of the general form
of the transformation function @ (. .. Xpg o )in sec.2 is,up to a certain point,
arbitrary, in such a way that, depending upon the form we choose for this
function, strong statements about the behavior of the dynamical variables,
the coordinates and momenta, and hence, about the class of transformed
Hamiltonians, will be made.

Our approach in this problem has the advantage that analytic progress
can be made although a lot of numerical work is still required. This method
then becomes for those cases where the contribution of high order interacting
terms is negligible; that is the price we have to pay when we put in balance
accuracy and laborious mathematical computations. The value of this method
is that a perturbation expansion can be considered to any order by keeping
large enough interacting terms.
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RESUMEN

En este articulo se modifican las transformadas puntuales de muchas
particulas, desarrolladas anteriormente for N.M. Witriol, para cubrir desde la
_transformacién identidad —un cuerpo aislado — hasta la de N cuerpos inter-
acruando al variar las separaciones entre las particulas dentro de una dis-
tancia de corte escogida arbitrariamente. El método se usa para proporcio-
nar Hamiltonianos de particulas que interaccionan fuertemente, que son equi-

valentes a los usuales.





