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CRITICAL PHENOMENA 1965-1972: QUESTIONS AND ANSWERS
M.S. Green
National Bureau of Standards, Washington, D, C.

(Recibido: septiembre 18, 1972)

ABSTRACT: Recent advances on the field of Critical Phenomena are dis-
cussed. We restrict the discussion to three main problems:
a) What is the nature of the singularities in the thermodynamic
properties near the critical point? b) How do the exponents
which express these singularities depend on the physical
nature cf the system? and ¢) Which transport properties are

anomalous near the critical point?.

INTRODUCTION

When I was invited to give a talk on Critical Phenomena, I thought
that the best thing to do would be to evaluate the main advances that were
made in answering the questions that were raised at the 1965 Critical Phe-
nomena Conference held ar Washington, D. C.1. I believe that ar this confer-
ence the relevant problems in this field were exhibited in @ unified way and
precise questions were stated. These questions are the basic material for

this paper.

-
This paper 5 based on an invited talk delivered at the Statistical Mechanics
i‘;yn\plnsaum_ sstepec, Morelos, January 1972 and has been adapted by
. Alexander,
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At that time the re-interest in the study of Critical Phenomena came
first from the fact that widely different systems or phenomena manifest simi-
lar behaviour as one approaches the critical point; to mention a few, vapor-
liquid transition, mixtures, magnetism, superconductivity, superfluidity.
Although such similarities could be understood through the Classical theories
of 2nd order transitions? (Van der Waals, mean field type theories) we still
were puzzled by the singular behaviour of analogous properties in different
systems.

We wanted to know if there was a common reason which could explain
such behaviour. We also knew that the classical theories failed to predict
the experimental data® from a quantitative point of view and we felt too that
some fundamental fact underlaid these experimental discrepancies.

Of course, to support this last conjecture we had at that time the
Onsager solution to the two dimensional Ising model* and also all the nu-
merical results achieved by the group at King’'s College, London?®, using
series summation methods. Both gave significant differences from the classi-
cal theories. In addition to these reasons which motivated our interest, we
had also such spectacular features of critical phenomena as critical opal-
escence, which at that time were only partially understood®.

In re-reading the introduction I wrote for the Proceedings of the 1965
Conference I felt that we could regroup all the questions into three main
questions and three subsidiary ones. There were also other questions raised
at that meeting; however, these became spurious due to experimental mistakes
or other reasons and therefore we will not mention them here.

The first question is a very broad one: what is the nature of the singu-
larities in the thermodynamic and other quantities near the critical point? In
other words, are the singularities of the exponent type, logarithmic or other
type of singular behaviour?

The second question has to do with the physical nature of the ex-
ponents: how do the exponents which express these singularities depend on
the physical nature of the system? By this question we mean whether the
exponents depend on the specific model we choose, say, a Heisenberg or an
Ising Model, or on the specific form of the intermolecular forces., Are the
exponents affected by taking square lattices instead of triangular ones for
the purpose of our calculations? What is the role of the space dimension?
What is the order of magnitude of these effects? Are there any specific
quantum effects on Critical Phenomena? At the 1965 meeting there was a
paper’ showing differences between the critical behaviour of liquid helium
and that of xenon. In a few words, do the exponents remain constant for all
systems or not? If they do, what is the fundamental reason underlying this
fact? If they are not the same for all systems, what would be the most ade-
quate scheme for calculating them?
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The third question is: which transport properties are anomalous near
the critical point and why? This question should be taken in a very broad
sense. Here we are concerned with all aspects of non-equilibrium phenomena
near the critical point.

The subsidiary questions I have chosen on the basis of personal
interest and also because they are still open questions. The first one is:
How does the pair correlation function behave near the critical point? Here
we are interested in the deviations from the Ormstein-Zernike theory. I
might say that I have been a bit biased choosing this question because this
is my personal area of research on Critical Phenomena.

The second question is: What is the experimental behaviour of the
specific heat of various systems near the critical point? This question was
formulated in 1965 in a somewhat incorrect way; that is, is the logarithmic
behaviour of the specific heat universal for all critical systems? However
we now know that this question was wrongly posed. The third question is:
How wide ranging are the analogies among critical phenomena?

We now come to the answers or progress made towards an answer to
all these questions.

II. NATURE OF THE SINGULARITIES NEAR THE CRITICAL
POINT

The most significant development in this area was the concept
of scaling . Nowadays the idea of scaling can be stated in a very simple
way, that is: The Gibbs potential is a generalized homogeneous function
near the critical point . This brings about a unification of the behaviour of
all thermodynamic properties near the critical point, not only along certain
lines but through out all the thermodynamic phase space. Scaling is associ-
ated with the names of Widom®, Domb and Hunter? and Kadanoff!®. These
authors arrived at this idea by means of different arguments. Widom reached
the idea of scaling by continuing his phenomenological studies on the
nature of the thermodynamical properties near the critical point. Domb and
Hunter noticed certain characteristics of their series expansions which could be
reinterpreted to imply scaling behaviour. Finally, Kadanoff gave a heuristic
argument based on the Ising model. Instead of considering the interaction
between the sites on this lattice he assumed an interaction between cells.
However he preserved the form of the Hamiltonian and then asked for
the Gibbs potential to have the same functional relationship with respect to
the new Hamiltonian parameters except for a multiplying constant. With
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this and some other physical assumptions he was led to scaling.

The most important achievements of scaling were first to produce
relationships among the exponents and sccondly, to make specific predictions
concerning the form of the equations of state near the critical point. One of
the significant features of this second point was the reduction of the two
dimensionz! thermodynamic data to a one dimensional relationship.

This was done by Kouvel'! et al and Fisher'? and later by myself,
Levelt-Sengers and Vicentini Missoni ™ for a number of liquid vapor systems
as well, and with ]nsephs” for magnetic systems.

However this concept of scaling is not a complete answer to the
question of what is the nature of the singularities, specially when we are
concemned with a neighborhood of the critical point. More recently a number
of authors have attempted to extend the idea of scaling to find what are the
next terms in an asymptotic expansion in which scaling is the most important
rerm. I must emphasize that this is not a pedantic problem but one which has
to be understood for true analysis of experimental darta, specially for that
related to weak divergences. We might mention some experimental work
concerned with these higher order terms as that of Wallace and Meyer ™ on
the density dependence of chemical poun:;al dlfff_rt?n(.‘e between the liquid
and gas phases on the critical isotherm of H and H as well as that of

Levelt-Sengers 18

et al, on the coexistent curve of COE. From the theoretical
point of view we might mention a very important paper in this direction by
Griffiths and Wheeler'] where it was emphasized that near the critical point
the behaviour of the system is characterized by a principal direction in the
space of the intensive variables (“fields”), which can be identified in a
single component system with the tangent to the coexistence curve at the
critical point. Green, Cooper and Levelt-Sengers ¥ proposed an cxpansion
for the thermodynamic properties in the critical region which extended
beyond the range of ordinary scaling. Their work was based on a gener-
alization of the Josephson 19 Schofield ™ parametric representation of thermo-
dynamic scaling by introducing a new critical exponent and relaring 1t to
the existing ones by means of the invariance principle stated in the work by
Griffiths and Wheeler. Another imporrant paper is that by Mermin and Rehr 2!
in which they argue that the conclusion that Green, Cooper and Levelt-Sengers
arrived at in their paper about the singularity of the derivate of the coexistence
curve-diameter, could be reached without making any reference to the equation
of state and showing that this follows directly from the Griffith and Wheeler
hypothesis. We could mention other developments on the nature of the

singularities, vet I think we have mentioned the more relevant ones
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III. CRITICAL EXPONENTS AND THE PHYSICAL NATURE
OF THE SYSTEMS

One of the most exciting features of critical phenomena is how similar
quite different systems scem to behave near their critical poing, for instance,
liquid helium near its A point behaves like argon near its critical point.

Two different lines of thought have developed in order to answer
this question. One makes the assumption of universality and the other does
not make any reference to this concept. The concept of universality states
that within a good approximation, completely different systems have the
same critical behaviour. In a concrete way we would say that all critical
exponents assume the same values for different systems. However this is
not entirely correct; Griffiths?? pointed out that there are various causes
for the variation of the critical exponents such as: lattice dimensionality,
the symmetry of the order parameter, the range of interaction, etc. Nonetheless
if the parameters in the Hamiltonian do not produce a basic change such as
those mentioned above, this “restricted” universality is a good working
hypothesis. In other words we could restate the concept of universality as
follows: All systems of a similar type have the same bebaviour near the
critical point,

One of the most prominent exponents of the idea of universality is
Kadanoff?® . He expresses this idea by making usc of the “reduction hypothe-
sis” which suggests that a product of any two nearuy fluciuating local quanti-
ties is expected to behave as a linear combination of all other local vari-
ables. In,other words only a finite number of local fluctuating variables are
necessary to describe critical phenomena. The coefficients of the expansion
of these products in terms of the relevant variables will describe an algebra.
He later shows a scheme of how this reduction algebra can determine the
exponents. We may hope that inherent symmetry properties of each system
»ill introduce enough constraints on the elgebra that the values of the
~xponents are determined. Until now, this has becn only done in the case
of the two-dimensional Ising model. Therefore from Kadanoff’s point of view
the changes from one set of values of the critical exponents to another,
hoppens in a discrete way because they are caused by a change in the symme-
tty of the system.

A theoretical study which favors the ideas of universality is the work
24 i

of Wortis?* and associates, in which a very extensive serics expansions of
the properties of a system was performed. This system was characterized
by a Hamiltonian with two parameters in which one could go continuously

from a Heisenberg to an Ising model. They found thar the values of the



Critical Phenomena, .. 285

the equilibrium correlation function with no attempt to solve the problem of
the equilibrium critical phenomena. We must name a number of authors in
this connection. In particular the concept of dynamical scaling is associ-
ated with the names of Halperin and Hohenberg®' who extended the concept
of scaling to the time correlation function which provided valuable infor-
mation about the transport coefficients. However this theory is not capable
of predicting the magnitude of the thermal conductivity exponent nor the
magnitude of the Botch-Fixman coefficient or the value of the critical region
line width exponent.

Another approach is the mode-mode coupling theory, which succeeds
in predicting the values of the critical-point exponents for the transport
coefficients and shows which of these are expected to diverge. Many authors
have contributed in formulating this theory, the first one was Fixman® he
was followed by Kawasaki®), Kawasaki and Tanaka™®, Deutch and Zwanzig ™,
Mountain and Zwanzig®, Villain ¥, Ferrell®, and Kadanoff®® and Swift b,
Experimentally both theorics have come up with very important confirmations.
I should mention an extensive study of the inelastic neutron scattering of
rubidium manganese fluoride® which provided the time correlation function
for this composite near its Curie point. This was in very good agreement
with the prediction of dynamic scaling among other things. Another experi-
mental technique which has been of great importance in the study of Critical
Phenomena is the inelastic scattering of light. This technique was made
possible by the existence of the laser and the combination of optic and
electronic means. The first successful realization of this technique was
reported in 1965*! and since then the temporal nature of the fluctuations re-
sponsible for critical opalescence are now pretty well understood due to the
work of Swinney and Cummins*?, Benedek*®, Ford*, Sengers %
These results are much in agreement with the theory of Kawasaki (1970).
Just recently one contradiction with respéct to the existing theory was re-
solved in favor of theory; that is, the difference in the width of the Rayleigh
line above and below the critical point of sulphur hexafluoride. Large differ-
ences in these two measurements which no theory could explain were thought

among others.

to exist, but later on these disappeared through new experiments*® and
theoretical explanations proposed by Sengers*. We can conclude that this
question is in a very satisfactory state and we could not ask for better answers

to it.
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exponent would only change when the basic symmetry of the Hamiltonian
was changed and not otherwise. Although in their method as one approached
the change in symmetry the exponent started to change continuously, they
adscribe this ambiguity to their method. A counter example to this configu-
ration was given by Baxter?® who solved a rather peculiar model of a phase
transition (the eight-vertex model) in whtich the exponents dependend continu-
ously on a parameter in the Hamiltonian . Although this is a very special
case of a phase transition this would support the other conflicting view point
which states that the behaviour of critical phenomena varies from system to
system and would change accordingly with the paramecters included in the
Hamiltonian characterizing the system. The first to take this point of view
were Migdal® and Polyakovm which by using Quantum Field theoretical
methods (Diagrammatic approach) were able to give a proof of scaling as
well as diagrammatic expressions for the critical exponents. This idea of
Migdal and Polyakov was further pursued by ]ona—LaSiniom and Di Castro®
using another Quantum Field theoretical approach, the Renormalization Group
method. They manage, by making appropriate assumprions about the analytic
behaviour of the vertex function, to predict singularities of the exponent form,
where the exponents are given as derivates of the Vertex function.

All the previous arguments are of a formal character. They are able
to predict scaling, the exponent form of the singularities, yet they do not
come out with a numerical value for the exponents. However, Wilson™ has
recently produced a “tour de Force” by actually calculating these exponents
by means of a very sophisticated use of the “Renormalization Group” which
agree very well with the results predicted by the experiment. As you can
see this question is still a controversial one and the answer is up in the air.
To my mind this is one of the most interesting questions in Critical Phenome-
na, and where exciting things will be happening in the coming years.

IV. TRANSPORT PROPERTIES NEAR THE CRITICAL POINT

Let us now refer to the third question which is perhaps one of the
most significant successes since 1965 because in a way we have answered
nearly all the questions which were unknown to us at that time. This came
about by the combination of well-known principles of non-equilibrium Statisti-
cal Mechanics combined with a phenomenological theory (Scaling theory) of

.
54
Kadanoff and Wegner” have shown that the Baxter model is the limiting case when
the exponents depend continuously on a parameter.
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V. SUBSIDIARY QUESTIONS

The first of these quesrions, as we mentioned before, has to do with
the deviations from the Omstein-Zemike theory of critical opalescence. This
theory was proposed in the early days of this century and explained quali-
tatively the major features of critica] opalescence. However we have reasons
to believe that this is not the tuly cccroet theory. The Ornstein-Zernike
theory predicts a pair correlation function of the Yukawa form
Gr) = [exp(-}er)] /r. However we expect that there is a small difference
in the exponent of r of the order of .06 to .09 which Fisher denoted by 7.

A 4T @ Ama z .
i/ 1" "] where d is the di-

That is, we expect a form G (r) = [e xp (- i
mension of the space. If 7 is not zero | don’t belicve there are any tempera-
tures and densities for which the Ormstein-Zernike theor «onld stand under a suf-

Jence that we have

ficiently critical analysis of the data. One piece of evi
that 7 is not zero, are the Buckingham-Gunton inequalizic- ™. In 1965 we

thought we knew that 77 was different from zero, but Lielng me ¢ critical about it
we could say that we did not know that 7 differed from zero, xnd is still an
open question to actually measure 7. Apparently it has been measured for
rubidium manganese fluoride* and I hope someone will complere a measure-
ment for Neon near its critical point. 1 might say that in exponents, small
exponents are open questions; exponents of the order of .05 =5 .09 are very
hard to measure. Feynman once made a statement which we cannot accept,
but has a lot of truth in ir: “exponents less than a quarter are zero”.

The second question has to do with the experimental behaviour of the
specific heats near critical points. In 1965 the evidence seemed to he that
all the singularities in the specific heat at constant volume were logarithmic
of the type found for Helium, yer closer examination indicated that these
'singu!arities were not logarithmic but of, the exponent type of behaviour, where
the exponents were also of the order of .05 €0 .07. However there are ex-
perimental difficulties, which become very great near the critical point, in
order to determine the value of such exponents. This is still an open ex-
perimental question.

We finally come to the last subsidiary question. One aspect of criti-
cal phenomena on which we were very much interested in 1965 was the analo-
gies among the various types of transitions. We knew that the specific
heat at constant volume of liquid Helium near its A point seemed to behave
like the specific heat at constant volume of liquid Argon near its critical
point, but we did not know too much of the detail of the analogy between a
A-point and a liquid-vapor transition. I can mention two experiments in
this respect in which the order parameter for liquid Helium was measured
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near its A-point. The order parameter is. in this case, the condensate wave
function. Josephson has pointed out that this order parameter is almost,
but not exactly the square root of the superfluid density. Tyson and Douglasss‘0
on one hand, and Clow and Reppy ! on the other, measured the superfluid
density near the A-point and found that the behaviour of the square root of
the superfluid density with respect to the reduced temperature, had an ex-
ponent very close to 1/3 which is the same as the exponent for the order
parameter in magnetism (the magnetization), and that of a liquid-vapor tran-
sition (the difference between the liquid and gas densities). I should also
mention the work of Ferrell®® who showed that beyond the Bardeen-Cooper-
SchriefferS? theory of superconductivity which is in the category of the mean
field theories, there are, in certain special systems, phenomena which are
different from that predicted by the Bardeen-Cooper-Schrieffer theory and can
be understood as being analogous to the non-lassical behaviour of magnetic
and liquid-vapor systems.

This is a very personal review of what has happened from the point
of view of one person, but 1 hope 1 have not been too biased.

REFERENCES

1. M.S. Green and’].V. Sengers, Eds. Critical Phenomena, Proceedings of
a Conference, Washington, D.C. 1965.
2. See for example the lecture by G. Uhlenbeck in ref. (1).
P. Heller, Reports on Progress in Physics, 1967, Vol. XXX, Part II.
4. L. Onsager, Phys. Rev. 65 (1944) 117, Nuovo Cimento Suppl. 6 (1949)
261.
C.N. Yang, Phys. Rev. 85 (1952) 808;
T.D. Lee and C.N. Yang, Phys. Rev. 87 (1952) 410:
E.W. Montroll, R.B. Potts and J.C. Ward, J. Math. Phys. 4 (1963) 308.
S. For a complete set of reference on the work of Domb and colaborators
and also of Marshall and colaborators see for example the references
included in M. E. Fisher, J. Math. Phys. 5 (1964) 944.
6. L.S. Omstein and F. Zemike, Proc. Acad. Sci. Amsterdam 17 (1914)
793; Physik Z., 19 (1918) 134; ibid 27 {1926) 761,
F. Zermike, Proc. Acad. Sci. Amsterdam 18 (1916) 1520.
7. The papers of Sherman and of Edwards ref. (1).
B. Widom, J. Chem. Phys., 43 (1965) 3892; ibid 43 (1965) 3898.
C. Domb and D.L. Hunter, Proc. Soc. 86 (1965) 1147.
10. L.P. Kadanoff, Physics 2 (1966) 263.

o @



288

1

12
13.

14.

15.
16.

17.
18.

19.
20.
21,
22.
25.

24.
25.

26.

27
28.

29.
30.

31.

32.

Green

J-S. Kouvel and ]J.B. Comly, Phys. Rev. Lett. 20 (1968) 1327.

J-S. Kouvel and D.S. Rodbell, Phys. Rev. Lett. 18 (1967) 215.

J-S. Kouvel and M. E. Fisher, Phys. Rev. 136A (1964).

M. Vicentini-Missoni, J.M.H. Levelt Sengers and M.S. Green,

J- Res. Nam. Bur. Stnds. Sect. A73, (1969) 563.

M.|Vicentini-Missoni, R.I. Josephson, M.S. Green, and

J-M.H. Levelt Sengers, Phys. Rev. B 1 (1970) 2312.

B. Wallace and H. Meyer, Phys. Rev. A2 (1970) 1610.

J-M.H. Levelt Sengers and M. Vicentini-Missoni in Proc, of the Fourth
Symposium on Thermophysical Properties, Ed. by J.R. Moszynnski
(American Society of Mechanical Engineers, New York, 1968) p- 79.
R.B. Griffiths and J.C. Wheeler, Phys. Rev. A2 (1970) 1047.

M.S. Green, M. J. Cooper and ]J.M.H. Levelt Sengers, Phys. Rev. Letts.
26 (1971) 492.

B.D. Josephson, J. Phys. C2 (1969) 1113.

P. Schofield, Phys. Rev. Lett. 22 (1969) 606.

N.D. Mermin and J.]. Rehr., Phys. Rev. Lett. 26 (1971) 1155.

R. 8. Griffiths, Phys. Rev. Letts. 24 (1970) 1479.

L.P. Kadanoff, Phys. Rev. Letts. 23 (1969) 1430; Phys. Rev. 188 (1969)
859

L. P. Kadanoff, in the Enrico Fermi Summer School of Physics, Course
51, Ed. by M.S. Green, (Academic Press, 1972).

M. A. Moore, D. Jasnow and M. Wortis, Phys. Rev. Lett. 22 (1969) 940.
R.]. Baxter, Phys. Rev. Lett. 26 (1971) 832 Phys. Today September
1971, p. 17

A.A. Migdal, JETP 28 (1969) 1036.

A.M. Polyakov, JETP 28 (1969) 533, 30 (1970) 151.

Lectures by G. Jona Lasinio, C. DiCastro in the Enrico Fermi Summer
School of Physics, Cousse 51, Ed. by M.S. Green (Academic Press
1972).

C. DiCastro, Revista Nuovo Cimento 1 (1971) 199.

K.G. Wilson, Physical Review B 4 (1971) 3174;

ibid 4 (1971) 3184;

K.G. Wilson, and M. E. Fisher, Phys. Rev. Lett. 28 (1972)

B.I1. Halperin, P.C. Hohenberg, Phys. Rev. Lett. 19 (1967) 700;

Phys. Rev. 177 (1969) 952.

M. Fixman, J.Chem. Phys. 36 (1962) 310; ibid 36 (1962) 1961;

ibid 47 (1967) 2808; in Advances in Chemical Physics,Vol. (1) Ed.

by I. Prigogine, (Interscience New York, 196)



Critical Phenomend . .. 289

33.

34.
35.
36.
Al
38.
39a.

39b.
40.

41.

42.

43.

44.

45.

K. Kawasaki, Phys. Rev. 150 (1966) 291; Prog. Theor. Phys.

Kyoto 39 (1968) 1133; ibid 40 (1968) 11; ibid 40 (1968) 706;

ibid 40 (1968) 930; ibid 41 (1969) 1190; Ann. Phys. N.Y., 61 (1970) 1.
K. Kawasaki and M. Tanaka, Proc. Phys. Soc. 90 (1967) 721.

] -M. Deutsch and R. Zwanzig, J. Chem. Phys. 46 (1967) 1612.

R.D. Mountain and R. Zwanzig, J. Chem. Phys. 48 (1968) 1451.

J. Villain, J. Phys. Paris 29 (1968) 321; ibid 29 (1968) 687

Phys. Stat. Sol. 26 (1968) 501.

R. A. Ferrell, Phys. Rev. Lett. 24 (1970) 1169.

L.P. Kadanoff, J. Phys. Soc. Japan 265 (1969) 122.

L.P. Kadanoff and J. Swift, Phys. Rev. 166 (1968) 89.

H.Y. Lau, L.M. Corliss, A. Delapalme, ]J.M. Hastings, R. Nathans and
A. Tucciarone, Phys. Rev. Lett. 23 (1969) 1225.

See also the work on the anisotropy antiferromagnetic material
manganese fluoride by M. P. Schulhof, P. Heller, R. Nathans and

A. Linz, Phys. Rev. Bl (1970) 2304. Phys. Rev. Lett. 24 (1970) 1184.
And also on ferromagnetic metal iron by M. F. Collins, V.]. Minkiewicz,
R. Nathans, L. Passel and G. Shirane, Phys. Rev. 179 (1969) 417, and
by V.]. Minkiewicz, M. F. Collins, R. Nathans and G. Shirane, Phys.
Rev. 182 (1969) 624 on ferromagnetic nickel.

G. Benedek, Critical Phenomena, A Report of a Conference,

National Bureau of Standards Publ. #273, U.S. Govt. Printing Office.
H.L. Swinney and H.Z. Cummins, Phys. Rev. 171 (1968) 152, see also
D.L. Henry, H.Z. Cummins and H.L. Swinney, Bull. Am. Phys. Soc.
14 (1969) 73;

D.L. Henry, H.L. Swinney and H.Z. Cummins, Phys. Rev. Leut. 25
(1970) 1170 and R.W. Gammon, H.L. Swinney and H.Z. Cummins,
Phys. Rev. Lett. 19 (1967) 1467.

G.B. Benedek in Statistical Pbysics, Phase Transitions and
Superfluidity , Vol. (2) (ed. by M. Chrétien, E.P. Gross and S. Deser,
Gordon & Breach, New York, 1968) p. 1; G.B. Benedek in Polarization,
Matter and Radiation, (Presses Universitaire de France, Paris 1969)

p- 49 and references included therein;

G.B. Benedek and D.S. Cannell, Bull. Am. Phys. Soc. 13 (1969) 182,
M. Giglio and G.B. Benedek, Phys. Rev. Lett. 23 (1969) 1145.

N.C. Ford Jr., K.H. Langley and V.G. Puglielli, Phys. Rev. Lett. 21
(1968) 9.

J.V. Sengers in Ref. (1) and in Proceedings of the Enrico Fermi Summer
School of Physics, Course 51, ed. by M. S. Green (Academic Press,
New York, 1972)



290

46.

i

48.

49.

50.
5L:
52;
53,

54.

Green

See reference (43) Benedek (1969)

] - Sengers Private Communicarion

M.]. Buckingham and J.D. Gunton, Phys. Rev. 178 (1969) 848

See also M. E. Fisher, Phys. Rev. 180 (1969) 594 and G. Stell

Phys. Rev. Let. 20 (1968) $32. \

L.M. Corliss, A. Delapalinc, !.3. Hastngs, H.Y. Lau, R. Nathans,
J- Appl. Phys. 40 (1969) 1278.

J-A. Tyson and D.H. Douglass, Jr., Phys. Rev. Letters 17 (1966) 472.
J-R. Clow & J.D. Reppy, Phys. Rev. Letters 16 (1966) 887.

R.A. Ferrell & H. Schmidt, Phys. Let. 254 (1967) 544.

J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108 (1957)
1175,

L. Kadanoff, F. Wegner, Phys. Rev. B4 (1971).

RESUMEN

Se discuten los ultimos adelantos en el campo de los Fenémenos

Criticos. Restringimos la discusién a tres problemas principales: a); Cual
es la naturaleza de las singularidades en las propiedades termodinamicas
cerca del punto critico? b) ;Como dependen los exponentes que expresan es-
tas singularidades en la nawraleza fisica del sistema? y ¢) ;Cudles propie-
dades de transporte son anomalas cerca del punto critico?.





