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ABSTRACT: The widths of the distant-neighbour spacing disrributions fot

the eigenvalues of k-body lIamiltonians acting in finite-di-
mensional m-particle spaces ate considered. The telationship

between the spacing widths, as calcuiated by using a single

spacing unit for the entire ensemble, and by using separate
units for each matrix (which has been of conse~ence in studYlng
whether energy-leve1 f1ucruarion s can yield informarion abour

many-body componenrs in the inreracrion), is calculared explicitly.
A related quesrion abour [he validiry of an elementary ergodic
[heorem is seuied .

•Suppoued in part by rhe U.S. Atomic Energy CommislOn.
tOn leave from the University of Rochesrt'"t.
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Level spacing distributioos for many-particle systems have beco
convencionally described I via a Gaussian orthogonal ensemble of matrices

(COE). Recently however2, particle structure has bem explicidy taken ioto
aceDunt by using operator ensembles of [wo-bod}' lIamilronians (TBRE). GOl'
(hen asks, fOf example, whcrher analysis of high-order-spacing distributions
can distinguish betwct.'1l [wo-body interactions and (he multi-body interaccioos

which are in faer implied by (he GOE, (his question bcing oC obvious physical
interesr3,"". In theabsenceofanalytic results foc thenew ensembles,

"Iante-Carlo calculations have beco made, mese in patallel with calculatims
foc GOE ensembles of (he same matrix dimensionality. Certain queseions

have arisen aboue me memod of analysis which \\'e wish to clear up in chi s noee.

In one mechod of analysis one spacing (or a few spacings) of che

order in queseion, sal' P (nearese neighbours correspond eo p 0::= O). is eaken
from che irnmediaee neighbourhocad of me centre of each maerix; che average
of mese spacings (0::= (p + 1) O) defines che ensemble-averaged nearese-
neighbour spacing 75, which, to wiehin finiee-rnaerix and sample-size effeecs,

should be independene of p. Each spacing S is chen measured in cerms of 75
and me spacing discribution (ehac of s!D) chen conseruceed.

In me second mechod. which creacs che resules of each maCrIx as one
would creac a sec of experimental daca, one chooscs a run of spacings from

che ceneral region of each macrix, calculares wich chese a [) for chal matrix

and uses chal to reduce lhe spacings; colleccing the reduced spacings from

each macrix one conseruets che distributioo, io mis case of S/O. Since (for
each mechod) che cencroids are at (p + 1) and since, for p > 3 sa)', che diseri-
butions are close Co Gaussiao, the width of che discributioo is che 001)' sig-
nificanr quanriry.

To wichin che errors mencioned abo ve ehese r\\lo mechods glve In

practical cases che same resulcs for GOE. 'loe two sets of TBRE rcsults

agree for very small spacings bue diverge rapidly as che spacing order in-
creases.3.<4, che ensemble-D spacing (á(p)) being larger rhan chac given by

the seeond method (a (p)) by a factor whieh reaehes 2-3 for p ~ 10 in ,he
cases considered.

In conrrasc co che firsc mnhod, che second gives TBRE vatues which
are found4 to be stable uoder variacion of che rnatrix dirnensionaliey, as ooe
would demand oí a sarisfacrory analysis if rhe finite-size ('Hecrs could be
ignored. It is noc surprising also that chese resulrs are in agreemenr wich
rhose derived by considering single Iarge shell-model matrices. Theyare
ver)' close also to rhose from GOE, but of course rhar is a significant outcnne
ramer man an a priori requin.menr. The firsr merhod which assigns a real
significance to me ensemble itse1f has however its own c1aÍm ro consideration,
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ba~ed 00 an c1em<'""flcary ergodic propertyS which would asscrt that, ro within

finite-sizc effects. the [WO methods should give me samc results. We ask
merefore whether this expectation is in faer correct, which is a malteT of

formal interest, and if so, why the analyses which have beco carried out wi th
this method run ioto a surprisingly large finite-size eHect, a mat[eT of more

practical interest.
It has airead)' beco recognized mar a finitc-size eff('ct ar¡ses in the

~lonte Cario calculations froro marrix-to-marrix fluctuations in lhe spcctrum

span, which rcsuhs, ceteris paribus, in a fluctuation in lhe mean level
spacing IJ which supplics lhe natural energy unir. We thus gCt an apparent
¡necease in lhe ensemble vafiance of the nearest-ncighbour spacing lJ. Simi-

lady the variance of the p'th-order spacing, which involves an addition of

(P + 1) nearcst ncighbours, grows by an apparent factor which incre;lses with
p. \Ve shall calculate this eHect as a function of the parametcrs of the system.

Hefore proceeding, we remark that the second method in\'olves a
separate finite-size eHect arising £rom me curvature in the den sity, which
gi\'es a secular change in n over me range of che specrrum considered. This

is of s(:condary importance uniess we wlsh te cover a large fraedan of the

spcctrum, and e\'en in that ease may be essentially c1iminated by a spectrum
unfolding-4; so we ignore it. \Ve may aiso in the first method. use a run of
Icvds from each spectrum instead of the one or tWO l('veis calleu for abo\'e.

\Ve start no\\' by decomposing the matrix ensemble into "fixcJ-str<'l1gm"
subensembles6 characterizcJ by values of f.....where, for a given matrix,

(1)

Ilere dIe numbn of particles is m, dm is the matrix dirncnsionality and the

ni are the eig('nvalues. 1\. is then me spectrum width, a measure oC the
extent or "strength" of (he matrix, and all matrices of me same f.....forrn the

f.....-subens<,'mblc. Lct us now make me assumption, whose validity we con-

sidcr ahead, that all the subensemblcs are identical cxcept far their scale

ami meir measure h(i\), (h(i\)di\ being ,he relative prubabi lit y uf finding a
matrixin thc('\.1\. + d'f.....)interval). It follows from this that I)(f.....), the sub-

cnscmblc-a\'craged spacing unir (derived as abo\'e by considering a subset of
I('\'els fmm each I\.-m a tri x). is proportional lO 1\.,50 that we may classify the
sub('nsembles instead by ~ with subenscmble probability measurt' g(1]).
Then dlC cen(roid and width (square rout of the second central moment) of
g(10) which W{' wr¡te as ].~ are related [Q >::, ~A' the same quanti(ies for
h(,\) by :SI] = :s A/\.. (p + 1)] is of course me ensemble-averaged value uf
S. and thus •. = D = S/(P + 1). while X' is the avera~e spectrum width and the



are the R.\IS dC'viarions of dl{'se quanrilies.
If rhe S valUl'S art' disrribu(ed according to ~ (x) \H' '1<1\"e th{'n

French

(2 )

( 1,) )
where me last form follows by a scale change. Psi!) ()') , (kfined for [h('
-....•uoll1semble. is, by our a ...•sumpClOfl. [he srune funcrion fm all submsemble ...•

and by irs definition is rh<.' spacing disrriburion as gin'n hy the second method;
irs sel'ond momenr is rhen {CT2 (p) + (p + 1)2}. Thl' ens(:mblc-averaged valul'
f lo' oo, IS now

&'(P) = a'(p) + {a'(p) + (p+ 0'> ;¿'¡¡¡'

2 {' '}o2-'= a (p) + a (p) + (P + 1) ~ )f\

(3)

( 4)

which. in some<;\ha[ differt'nt I1otation. has alrt'ady hcen giv('n" (wi[hour
derivarion) and usecl in dis('u.<¡;sing the differeflc(, betwcell the two mc.thod ....•
of analvsis. \\'e lllU:-;[no\\' vcri e). rhar our basic asslJlIlprion abour [he ...•uben-

-' 2 -2
semble strucrure is corre('[, ,uld we must calculare ~)jA ,

The .\fonte-CarIo calculations han' dealr with rwo-body inreranions
as encounrercd in COllVl'fltioflal specrroscopy. n,lIncly mose which pres('(n .
.ln¡::ular rnOIlH'nrum (•.lnd iS(lspin wht'f('vl'r thar is [(,le'.,1OI) acting in a "'p;lce

dt..fincd by a ser of spherical orbits. Ler us drop [hese re ....•rricrion ....•.which
I('ati ro Wear complicuion ....•in él formal analysis InH which arrear [() be ir-
re!e'.élIlr for our prcsen[ purpo.<¡;c.; a[ me samc rime It'l u:-. cxt('nd ro k-blHJy

.
TIH"ce i .• ,{:ood evidf'nct', dHJu,{:h ,\~ Yl'l littlc oc no rhl"ocl'lical und{'cstanding (oc j"
1!J;U th(' (¡H.'d-] spaces display [he same enecgy-lev('1 flucrua[ions as rhe simple!
OfH.S.
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lfl[eraUlOns. \X'econsider then, a sysrem defined by four q.Janticies U,I,m, k, ti),
a Gaussian orthogonal ensemble of k-body interaction s acting in a dm-di-
mensional vector space, formed by disuibuting m particles over ¡,,' single.
partide srates (d = C"l)). The individual matrix elements lYaj3' where a,/3
arto k-particle sta~s, a7e taken real and with a Gaussian distribninl cL1ltered
abour zero with variance f)2 for off-diagonal and 2ri for diagonal. \Xle shaIl
s('e thar in the large-N limir this operator ensemble shares with the GOE, to
which i[ becomes equivalent in m = k spaccs, [he imponant property of in-
variance mllJer orthogonal transformations, In general m ';) k spac<'s we ma)'
speak of [he "embeJded GOE" or EGOE for short.

For [he GOE, i.e. k = m, it is eas)' ro su.' that the ensemble strucrure
is as we ha\'e assumed; the probabilit)' of finding an)' preassigned lI(k) in the
ensemble depends onlr 00 [he k-particle trace of 1/2(k) and this, to within a
dimenslOnality facror (N) is simply rhe k.panicle spectrum \'ariance, the
square of the SIH.'C[rum\".últh., Thus the fixed-strength sub-ensembles, those
in which 'A is fixed, differ from {'ach o[her only in their measure (v.hich is
lookul after by g(J9)) and in thcir scale. just as we have assumed. We see
that tbis separation of scale and speetrum-shapc effect:-. has come abou[
because of an isotropy in the ma[rix-e1ement space (invariance under orthogo-
nal [ransformations), (',,'cry k.particle matrix demcn[ entering into '1\.2with
equal wcight, due allowancc being made for [he diffcrence between diagonal
and off-diagonal ones.

This iSO[fOPYdoes nO[ suictly apply when we procced ro the m -parti-
ele FGO!':; for while 'A2(m) is of course quadra[ic in [he k-particle Waj3, i[
is not a multiple of 'A

2
(k). This comes abou[ because there are different

classes of k-particle matrix elements, the members of a class behaving uni-
forml)' bu[ in a manner which depends on the class, when we proceed £rom k
to m particles. The classes derive from [he U(N) decomposition of Il(k) \\hich
transforms according [O a sum of (k + l) irreduci ble represen [ations whose
column structures are Li'..•.-v, v] with dimensionalities

d(v) (N - 21' + !)
(N + [)

L d(v)
v

( 5)

whcre V = O, 1, 2 .... k. For large N, d(v) '" (V!)-2/,,2V, so [ha[ [hehighest
symmt.'try, V = k, dominates in the k-partide space (i[ is in faet this dominance
which enables one ro ignore diagonal ma(rix elemen[s and [O make similar ap-
proxima[ions in (he asymptouc GOE). 'l11eexplicit decomposition for a specifi(.'d
k-body 1/ is given by7
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H(k)
k
L (n-') u (v)

v~o k-v
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(6)

where 11 is the number operator and JÚV), a v-body irreducible operaror,
vanishes in states w¡th less mao v particles oc holes, and is in varian t [O

wirhin a sigo uodee hole ~ particle transformations. Since [he trace oper-
arion ¡s U(JV) sealar, 'A..

2
(m) also decomposes by V (no cross rerms appearing);

thus7,

\.' (m)
k
L \.' (m:v)

v=1

(7)

In the sccond step we have used me faer rhar the m .panicle average expec-,
talioo va1ue of an opcrator of maximurnrr.article rank u (= 21/ fOf Ji (1/)) is a
polrnomial of ordcr u in m; (m)(N-m)( -vr 1 is such a polynomial and satis-

v v v
fíes the defining conditions of reducing to unity when m = V and vanishing
when m <vand when (N - m) <!J. In (he third step we have e1iminarcd

< U2
(v) > JI by using [he m = k result; we observe now mar me fixed-vwidths

do "propagate" from k-parricles [() m bur with v-dep<..í1dent coefficienrs so that
the exact matrix-element isotropy is lose

1'0 average this result over the k- boJy GOE we note [hat, because of
the isotropy in the k-panicle space

2A: (k:v) i\'(k) d(v)/'id(v)
v

large N l (k!/V!)2 J"'r2(k-v) • "l\2(k) (8)

and [hus in the large-N limir (m, k fixed) v = k is dominant in the k-particle
space. Since moreoyer [he propagation coefficientof (7) \\hidt connecrs >....2 (m)

w¡[h >....2 (k:v) is in rhe same limir independenr of N, V = k is dominanr for m
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particles as well. From (7,8) we find
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, / 't: (m:v- 1) t: (m: v)
m_v+lv2

(k -v + 1) ;> v = k- ,
(m -k + 1) ~

N'
(9)

so ,ha, for large enough N we may ,ake v = k and ,hen (see (11) ahead)

>C(m) (lO)

and chus for N large we do ha ve isotropy in the m-particle space. It is hard
ro say just how large N should be for a given flucruation measure, because
no information is available about energy-Ievel fluccuations for H's of fixed
unitary symmetry, and thus we cannot predict the effect of admixtures of
symmetrics v<k. Rut reducing V is equivalent to reducing the particle
rank in a sense deíined by (6) and, since f1uctuations are believed inseo-
s it ive to caok, we would expec t that even for quite small N, say for N ). ID,
the subensemble struc(Ures should be essentially identical and equation (4)
applicable. From the proportiooality oí the two quadratic uaces it followsJ
moreover:matthe probability measure for the m-particle trace is also invari-
ant under ormogonal transCormations, so that in the large-N limit the EGOE
becomes an ormogonal ensemble (which, however, is presumably not Gaussian
and whose matrix elements are not statistically independent).-,

There remains now the explicit evaluatioo oí 2.\/~ needed in (4),
which we carry out in the large-N limit. For a given lI(k) with defining
matrix eIemen ts Waf3 we have now

, -1(,") ~ , .1(,")t: (m) = dk k L (Wa,B) ~ 2 dk k
a,j3

(11)

, 'and mus is distributed over the ensemble as the sum oí squares of 1dk
indcpendcnt Gaussian random variables (centroid = O, RMS dcviation

= {2d¡I(:)O,}II,. This distrihu,im8 is X'(!;;d:) and for large dkheeomes

Gaussian8 (dk (;) 1/2,2 (;) f)2); since dk» 1 we havc from thi s that

:1. = {d
k
(:)v'}'1, , LA = {dk 1(:) o' }'!, , and 2.A/:1. = dk 1, a re su it whi eh i s

entireIy ro be cxpected since dk is the number of degrees oC frcedom (inde-
pcndent matrix elemcnts).
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( ') k' 1 I -;- ~,/(j,\l'e would pce<iict foc dI(' (;OE m = ~ , w'¡ng r' = , r la! f\.,
~ ,. = d./2 \\h{'re d 1101,1,'is rhe matrix dirnensionaliry; for d = 294 mis ,gi\'('S

\ = 17.15 :tü.05ti which comp<lfc~ wilh me .\f{'(}(c-Carlo \lllu('s-4 17.17 ::tO,OSi,

'¡he TBRE '\lonr(.-Carlo calcuLltion.<.; "hich haH' het.11 made,ace howevcc,nor
...•rcictiy EGOE bccall"'C uf [hc (), T) COllscf\';uion, and (hus a priori calell-
Iatiof1 uf dk i ....llor possibk. !lOC in faer is ir obviulIs ho\\' aeClIra{(' in [his
{'aM' is rhe COllcept of a single dI.:.' From !ht'~b .••t'f\'{'d reslIlrs foc rhe 2y4-
dim('Il.<.;ionall1la{rie(' ...'" (.\' = 32. m = ó. k = 2, A = 7.H :t 1.0) w(' ha\'(' \'erl'
cou,gh I y d k ({, ffcni n') "" 5 - 1O, "'0 tlt ar rh(, cf fen i \'(' dim t'n si Olla Ii r~' ¡s gce<lrIy
ceduced and d)(, f1ucruarion ... gcearly incceascd beCallS(' of rhe ...•ymmcrry
re~lricrions .•• r(''''lIlr \\hich is not ~urprising ;1( ,di. Eq, (4) is found [O be
.••till \'alid ('\'('11 for tla'se more compiex en s(:mble .•••and one ma)' han' confi-
d('IlCC in ir ....pccdinioll that !he ('n~('mbk-f) m('rhod of calculatillg ...•pacing
widehs,will ....ho\\' devia!in:ls till{' ro Sp('ctrurn-sp,lIl flucruations as SOOll as rhc
,"'pacin,g ordn b('colllcS comparabl(. widl rhc efft-Clivc dimt'nsionaliry dk, \\c
cemark also thar if ont' renormalizc ....the marrices, all'o han: rhe sanl(' spectnuTI
widrh. rhen rhe rwu IIlcthods of an.dy ....is shollld b('colll(' equivaknr. 'Ibis is
foulld lO he rnJ(,4 1l0t only fur spacin,g widrhs hue abo for otlH'r lon,g.rangc
f1l1uuation JneaSlJ({'s. as rhe anal)'sis would indicare.

Rcrurnin.'-': IlO\\' ro dl(' I:(;()J': and rl1(' t¡lI('srioll of "inremal ('r,godiciry"
we stress rh.lt, for fixed .\' and k. the cele\'anr flucruarions,and hence rhe
deviation hcrwu.'tl tj-(p) and a(p),cannor bc reduc{'d by increa ....in,g ((¡(Oo' parti-
de nllmbcr e\'t'n though !his dll('S re .••uit in larger matriccs; foc rhe numbcr
of degrees of freedom, dk, is indept'ndent of panic!(: Ilumbn. On rhe omer
hand. if for fixed (m.k) we incrt'ase S, rhe flllc[u,ltion.s deCfcas{' rapidly and,
foc ¡U1YpreassiglH'd spacing or<iec, \\(> can always rake S larg(' eflough so
rhat er,godicity i ....c(' ...•wrcd.

A(:Kt-:()WLE IJGEM EN'!"

For ('omrnents. criticisllls and sug,ge ....tiolls the aurhor i .••indeor(,d ro
(), Bohigas. T,:\. Brody. J, Flore ...•..\1. J, Giannoni, P.A . .\kllo.:\. Hosenzwei.'!:
illld ~,S,.\I. \X'01l,g
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REsmlEN

Se discuten las anchuras de las distribuciones de espaciamientos
entre vecinos lejanos para un hamiltoniano estocastico de k cuerpos. Se ob-
tiene la relación <"lltre las anchuras calculadas al usar un sólo espaciamien~
ro prom<..'(lio para todo el ensemble, y las calculadas al usar un espaciamiento
promedio para cada matriz. Esta relación ha sido imrortan te para resolver
el problema siguiente: ¿Pueden las fluctuaciones en el espectro de energías
de un sistema dar información sobre la existencia de fuerzas de muchos cuer-
pos? Se aclaran cambién algunos puntos sobre la validez de un teorema ergó~
dico elementaL




