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ABSTRACT: The widths of the distant-neighbour spacing distributions for
the eigenvalues of k-body Hamiltonians acting in finite-di-
mensional m-particle spaces are considered. The relationship
between the spacing widths, as calculated by using a single
spacing unit for the entire ensemble, and by using separate
units for each matrix (which has been of consequence in studying
whether energy-level fluctuations can yield information about
many-body components in the interaction), is calculated explicitly.

A related question about the validity of an elementary ergodic
theorem is settled.
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Level spacing distributions for many-particle systems have been
conventionally described! via a Gaussian orthogonal ensemble of matrices
(GOE). Recently however?, particle structure has been explicitly taken into
account by using operator ensembles of two-body Hamiltonians (TBRE). One
then asks, for example, whether analysis of high-order-spacing distributions
can distinguish between two-body interactions and the multi-body interactons
which are in fact implied by the GOE, this question being of obvious physical

34 In the absence of analytic results for the new ensembles,

interest
Monte-Carlo calculations have been made, these in parallel with calculations
for GOE ensembles of the same matrix dimensionality. Certain questions
have arisen about the method of analysis which we wish to clear up in this note.

In one method of analysis one spacing (or a few spacings) of the
order in question, say p (nearest neighbours correspond to p = 0), is taken
from the immediate neighbourhood of the centre of each martrix; the average
of these spacings (= (p + 1) D) defines the ensemble-averaged nearest-
neighbour spacing D, which, to within finite-matrix and sample-size effects,
should be independent of p. Each spacing § is then measured in terms of D
and the spacing distribution (that of §/D) then constructed.

In the second method, which treats the results of each matrix as one
would treat a set of experimental data, one chooses a run of spacings from
the central region of each matrix, calculates with these a D for that matrix
and uses that to reduce the spacings; collecting the reduced spacings from
each matrix one constructs the distribution, in this case of §/D. Since (for
each method) the centroids are at (p + 1) and since, forp > 3 say, the distri-
butions are close to Gaussian, the width of the distribution is the only sig-
nificant quantity.

To within the errors mentioned above these two methods give in
practical cases the same results for GOE. The two sets of TBRE results
agree for very small spacings but diverge rapidly as the spacing order in-
creases’ % the ensemble-D spacing (O (p)) being larger than that given by
the second method (o (p)) by a factor which reaches 2-3 for o 10 in the
cases considered.

In contrast to the first method, the second gives TBRE values which
are found* to be stable under variation of the matrix dimensionality, as one
would demand of a satisfactory analysis if the finite-size effects could be
ignored. Itisnot surprising also that these results are in agreement with
those derived by considering single large shell-model matrices. They are
very close also to those from GOE, but of course that is a significant outcome
rather than an @ priori requirement. The first method which assigns a real
significance to the ensemble itself has however its own claim to consideraton,
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based on an elementary ergodic property” which would assert that, to within
finite-size effects, the two methods should give the same results. We ask
therefore whether this expectation is in fact correct, which is a matter of
formal interest, and if so, why the analyses which have been carried out with
this method run into a surprisingly large finite-size effect, a matter of more
practical interest.

It has already been recognized that a finite-size effectarises in the
Monte Carlo calculations from matrix-to-matrix fluctuations in the spectrum
span, which results, ceteris paribus, in a fluctuation in the mean level
spacing D which supplies the natural energy unit. We thus get an apparent
increase in the ensemble variance of the nearest-neighbour spacing D. Simi-
larly the variance of the p’th-order spacing, which involves an addition of
(p + 1) nearest neighbours, grows by an apparent factor which increases with
p. We shall calculate this effect as a function of the parameters of the system.

Before proceeding, we remark that the second method involves a
separate finite-size effect arising from the curvature in the density, which
gives a secular change in D over the range of the spectrum considered. This
is of secondary importance unless we wish to cover a large fraction of the
spectrum, and even in that case may be essentially eliminated by a spectrum
unfolding*; so we ignore it. We may also in the first method, use a run of
levels from each spectrum instead of the one or two levels called for above.

We start now by decomposing the matrix ensemble into “fixed-strength”
subensembles® characterized by values of A where, for a given matrix,
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Here the number of particles is m, d, is the matrix dimen sionality and the
E; are the cigenvalues. A isthen the spectrum width, a measure of the
extent or “strength” of the matrix, and all matrices of the same A form the
A-subensemble. Letus now make the assumption, whose validity we con-
sider ahead, that all the suben sembles are identical except for their scale
and their measure h(N), (h(X)d\ being the relative probability of finding a
matrix in the (A, A + d\)interval). It follows from this that D (r), the sub-
ensemble-averaged spacing unit (derived as above by considering a subset of
levels from each A-matrix), is proportional to A,so that we may classify the
subensembles instead by [) with subensemble probability measure g(lg') :
Then the centroid and width (square root of the second central moment) of
g(;f}) which we write as [, 3 are related to X, %5 , the same quantities for
bh(A) by >;/70 — 2)\/-?;. (p+ I)E is of course the ensemble-averaged value of
S, and thus D =D =S/(p + 1), while X is the average spectrum width and the
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2’s are the RMS deviations of these quantities.
If the § values are distributed according to F; (x) we have then

, 0 R0
Py ) = [2(9) B (21 = [g(0) 07 Py (x/9aB 2)

where the last form follows by a scale change. Ps/p (y), defined for the
D-suben semble, is, by our assumption, the same function for all subensembles
and by its definition is the spacing distribution as given by the second method;
its second moment is then {o? (p)+(p+ 1)2 }. The ensemble-averaged value
of S2 1S now
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and since G‘z(p) =D {SE— § } we have
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which, in somewhat different notation, has already been given4 (without
derivation) and used in discussing the difference between the two methods
of analysis. We must now verify that our basic assumption about the suben-
semble structure is correct, and we must calculate E%/Xz.

The Monte-Carlo calculations have dealt with two-body interactions
as encountered in conventional spectroscopy, namely those which preserve
angular momenwm (and isospin wherever that is relevant) acting in a space
defined by a set of spherical orbits. Let us drop these restrictions, which
lead to great complications in a formal analysis but which appear to be ir-
relevant for our present purpose®; at the same time let us extend to k-body

.

There is good evidence, though as yet little or no theoretical understanding for ir,
that the fixed-J spaces display the same energy-level fluctuations as the simpler
ones.
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interactions. We consider then, a system defined by four quantities (N, m, k, v),
a Gaussian orthogonal ensemble of k-body interactions acting in a d_—di-
mensional vector space, formed by distributing m particles over N single-
particle states (dm = (N)) The individual matrix elements wa,,B , where a,f3
are k-particle states, are taken real and with a Gaussian distibution centered
about zero with vardance v? for off-diagonal and 2v? for diagonal. We shall
see that in the large-N limit this operator ensemble shares with the GOE, to
which it becomes equivalent in m = k spaces, the important property of in-
variance under orthogonal transformations. In general m > k spaces we may
speak of the “embedded GOE” or EGOE for short.

For the GOE, i.e. k = m, it is easy to see that the ensemble structure
is as we have assumed; the probability of finding any preassigned H(k) in the
ensemble depends only on the k-particle trace of H (k) and this, to within a
dimensionality factor (N) is simply the k-particle spectrum variance, the
square of the spectrum width. Thus the fixed-strength sub-ensembles, those
in which A is fixed, differ from each other only in their measure (which is
looked after by g(ig)) and in their scale, just as we have assumed. We see
that this separation of scale and spectrum- shape effects has come about
because of an isotropy in the matrix-element space (invariance under orthogo-
nal transformations), every k-particle matrix element entering into A with
equal weight, due allowance being made for the difference between diagonal
and off-diagonal ones.

This isotropy does not strictly apply when we proceed to the m-parti-
cle EGOE; for while g (m) is of course quadratic in the k-particle Wa,B 5 it
is not a multiple of A (k). This comes about because there are different
classes of k-particle matrix elements, the members of a class behaving uni-
formly but in a manner which depends on the class, when we proceed from k
to m particles. The classes derive from the U(N) decomposition of H(k) which
transforms according to a sum of (£ + 1) irreducible representations whose
column structures are [N -v,7 ] with dimensionalities

H

2 2
dtpy= B - Nl - 5 gy =Y (5)
(1~J+ 1) g v

2 -
where v = 0,1,2....k. Forlarge N, d() ~ () sz, so that the highest
symmetry, v = k, dominates in the k-particle space (it is in fact this dominance
which enables one to ignore diagonal matrix elements and to make similar ap-

proximations in the asymptotic GOE). The explicit decomposition for a specified
k-body H is given by’
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where n is the number operator and N(v), a v-body irreducible operator,
vanishes in states with less than v particles or holes, and is invariant to
within a sign under hole 5 particle transformations. Since the trace oper-

ation 1s U(N) scalar, X (m) also decomposes by v (no cross terms appearing) ;
thus’,
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In the second step we have used the fact that the m-particle ave rage expec-

tation value of an operator of max1mumNpart1cle rank u (= 2v for }i (v)) is a

polynomial of order u in m ; (:)(Nvm)( is such a polynomial and satus-

fies the defining COﬂd;th[‘lS of reducing tO umty when m = v and vanishing

when m <vand when (N-m) <v. In the thitrd step we have eliminated

v . . .

<H (> by using the m = & result; we observe now that the fixed-v widths
do “propagate” from k-pardcles to m but with v-dependent coefficients so that
the exact matrix-element isotropy is lost.

To average this result over the k-body GOE we note that, because of
the isotropy in the k-particle space

-2
W (B = 02 8 40)/5d ) = k) w)(”‘) (M
(N+1) v o

large N (k!/vf)2 N‘z{k-v) % l}\z(k) ; (8)

and thus in the large-N limit (m, £ fixed) v = k& is dominant in the k—particle

space. Since moreover the propagation coefficientof (7) which connects X (m)
with A (k:v) is in the same limit independent of N, v = £ is dominant for m
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particles as well. From (7, 8) we find

2 2
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9)

so that for large enough N we may take v = k and then (see (11) ahead)

N ~ ()X k) = a4,(0) ", (10)

and thus for N large we do have isotropy in the m-particle space. It is hard
to say just how large N should be for a given fluctuation measure, because
no information is available about energy-level fluctuations for H's of fixed
unitary symmetry, and thus we cannot predict the effect of admixtures of
symmetries v <k. But reducing v is equivalent to reducing the particle
rank in a sense defined by (6) and, since fluctuations are believed insen-
sitive to rank, we would expect that even for quite small N, say for N > 10,
the subensemble structures should be essentially identical and equation (4)
applicable. From the proportionality of the two quadratic traces it follows,
moreover, that the probability measure for the m-particle trace is also invari-
ant under orthogonal transformations, so that in the large-N limit the EGOE
becomes an orthogonal ensemble (which,however, is presumably not Gaussian
and whose matrix elements are not statistically 1ndependent2)

There remains now the explicit evaluation of Z}\/?\ needed in (4),
which we carry out in the large-N limit. For a given H(k) with defining
matrix elements W.g we have now

2 -1ym 2 -1fm »
Nm)=d, () Z o) =24y G =, (wﬁ) ; (11)

2
and thus is distributed over the ensemble as the sum of squares of % d,

independent Gaussian random variables (centroid = 0, RMS deviation
- 1 2

= {Za’kl(:) 1»2}/2 . This distribution® is XZ(I/Qd ) and for large d becomes

Gaussian® (dk(:) v 2 (:) v?) : smce dk >> 1 we have from this that

N= {dk(:)vz}lz . Ba = {d.l; (m)uz}2 , and },')\//\ = dk , aresult which is

entirely to be expected since d, is the number of degrees of freedom (inde -
pendent matrix elements).
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-
We would predict for the GOE (m = &), taking v =1, that A = d"?,

Iy

Y3 =d 2 where d now is the matrix dimensionality; for d = 294 this gives
W= 17.15 +0.058 which compares with the Monte~Carlo values* 17.17 +0.057 .
The TBRE Monte-Carlo calculations which have been made are howevernot
strictly EGOL because of the (J,T) conservation, and thus a priori calcu-
lation of dk is not possible, nor in fact is it obvious how accurate in this
case is the concept of a single dy . From the observed results for the 294-
dimensional matrices* (N =32, m =6, 8 =2, A=7.8 £ 1.0) we have very
roughly d; (effective) ~5~10, so that the effective dimensionality is greatly
reduced and the flucwations greatly increased because of the symmetry
restrictions, a result which is not surprising at all. Eq. (4) is found to be
stll valid even for these more complex ensembles,and one may have confi-
dence in its prediction that the ensemble-D method of calculating spacing
widths,will show deviations due to spectrum-span fluctuations as soon as the
spacing order becomes comparable with the effective dimensionality d, . We
remark also that if one renommalizes the matrices, all ro have the same spectrum
width, then the two methods of analysis should become equivalent. This is

found to be true?

not only for spacing widths but also for other long-range
fluctuation measures, as the analysis would indicate.

Returning now to the EGOE and the question of “intemal ergodicity”
we stress that, for fixed N and k&, the relevant fluctuations,and hence the
deviation between 5 (p) and o (p), cannot be reduced by increasing the parti-
cle number even though this does result in larger matrices; for the number
of degrees of freedom, d,, is independent of particle number.  On the other
hand, if for fixed (m, k) we increase N, the flucwations de crease rapidly and,
for any preassigned spacing order, we can always take N large enough so
that ergodicity is restored.
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RESUMEN

Se discuten las anchuras de las distribuciones de espaciamientos
entre vecinos lejanos para un hamiltoniano estocastico de & cuerpos. Se ob-
tiene la relacion entre las anchuras calculadas al usar un sélo espaciamien-
to promedio para todo el ensemble,y las calculadas al usar un espaciamiento
promedio para cada matriz. Esta relacién ha sido importante para resolver
el problema siguiente: ;Pueden las fluctuaciones en el espectro de energias
de un sistema dar informacién sobre la existencia de fuerzas de muchos cuer-
pos? Se aclaran también algunos puntos sobre la validez de un teorema ergo-
dico elemental.





