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THE ANALYSIS OF TWO-DIMENSION AL NEUTRON TRANSPORT
PROBLEMS BY MEANS OF SINGULAR INTEGRAL EQUATIONS
IN TWO COMPLEX VARIABLES

Julian Sanchez
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Apdo. Postal 75-189, Mexico 14, D. F,
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ABSTRAGCT: The two-dimensional quarter-space problem of neutron transport
theory is analyzed by means of the Fourier transformation. Two
procedures for the approximate determination of the neutron
density are developed and their convergence analyzed. As-
suming that the two-dimensional dispersion function is factorized

in a convenient manner, a closed-form solution is established.

INTRODUCTION

The analysis of two-dimensional transport problems can be attempted
through either the integrodifferential equation or the integral equation for the
neutron angular density. Recently, the application of the theory of two

1 ; " . 1
complex variables to problems in analytic function theory  has led us to re-
examine the integral transport equations.

We have found that this method is very powerful and that we can indeed
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evaluate some previously insoluble problems. One of these problems is
presented in this paper along with a complete description of the method of
solution.

In Section 1, an appropriate integral equation for the angular density
is developed. Section 2 contains transformed functional relations in two
complex variables. In Section 3, two different iteration schemes are de-
veloped to solve, in an approximate manner, the transformed equations. In
Section 4, an exact, closed form, solution of the transformed equation is given
by assuming that an appropriate factorization of the dispersion function exists.
Conclusions and suggestions for future work are given in Section 5.

1. THE FUNCTIONAL RELATION FOR THE TRANSFORM OF
THE NEUTRON DENSITY.

The time-independent neutron angular density ¢(r,(}) in a homogeneous,
isotropic scattering medium for monoenergetic neutrons satisfies the equation

(1+Q - V)p(r,Q) = (c/4m)p () + q(r,Q), (L1
where
= Q : .
p(r) j;ﬁbg(r ) dS) (1.2)

length is measured in units of mean free path, ) is a unit vector in the
direction in which neutrons are travelling, c is the average number of secondary
neutrons per collision and g is a known source. The solution of equation
(1.1) for a region V (bounded or unbounded) with convex surface § is completely
determined (for ¢ < 1) when the following boundary condition is imposed:

qﬁ(rs,ﬂ) = (,‘bs(r,Q), Q) inward to V, Ig€S . (1.3)

Case and Hazeltine? have obtained from equation (1.1) an integral equation
for ¢ (r,Q) by means of the Green’s Function technique, and after applying the
Fourier transformation, they have translated the general problem to mono-
energetic neutron transport theory, into the problem of the determination of
the functions R(k) and Ry, (k) which appear in the functional relation:
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R(k) = [1-A (k)] Ry, (k) *+ (c/4m) Q (k) + B(k) , (1.4)

where k is a vector with real components kl 2k, k_in the transformed space,
and

A(k) = 1-(c/k) tan" 'k (1.5)

the principal branch being taxen, and

Ry (k) =fv exp(ik *r)p(r) dr , (1.6)
R(k) =fa1t;1>9(k,0)dﬂ ; (1.7)
® (k,Q) :fa”rexp(ik 1 (r,Q)dr (1.8)
Qo(k)=fam [k, @)/(1 - ik -@)] dQ , (1.9)
Q(k,2) = (4w/c)fanrexp(ik ) q(r,Q)dr , (1.10)

B (k) =_J;drs exp (ik = rg) x
5 = (1.11)
x jam(n,.-n/u—:k W), (r, Q) dQ

in this last equation n; is the inward unit normal to §.
We will describe our attempts for the determination of R, in a par-
ticular instance.

2. THE QUARTER-SPACE PROBLEM

When the region V is one-quarter of the whole space, no neutrons
enter the region and the internal source g is isotropic and independent of
the coordinate z, equation (1.4) yields, after one integration over k3
the equation:

y
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Rk k)=[1-Ak k)] [R, (kR k)+Q*k k)], (2.1)
where, in this instance,

Q(k k)= (47/c) [q(x,y) exp [i(k x + k y)] dxdy . (2.2)

Also, in equation (2.1) we are using the notation

R(kl,k2)=jp(x,y)exp [i(k x + ky)] dxdy | (2.3)

so that by introducing the following definition

Rn(kl’kz) :fvp(x,y) exp [i(klx + kzy)] dady ;3 =1, 050

n (2.4)
where
V, ={x,y):%y>0}, (2.5)
vV, ={(xy):x <0,y >0}, (2.6)
Vv, = {(x,y): %,y <0}, (2.7)
v, = {(xy): x>0,y <0}, (2.8)

we can write from equation (2.1)

4
Rk ,k,)= % R (k ,k)=[1-Ak k)[R k)+Q(k k)],

n=1

(2.9)
where Q1 = Q and
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I
_ 2 2,-% -1..2 2.2
A(kl,kz)ﬁl-c(kl+k2) tan (}zl+k2) : (2.10)

3. INTEGRAL EQUATIONS FOR THE TRANSFORM OF THE
NEUTRON DENSITY

A. The Hilbert Boundary Value Problem Approach.
If we rewrite equation (2.9) in the form

4
Ak k) Rl(kl,k2)+n§ Rtk k) = [1-Ak &)]Q (k k)
(3.1)

and recall that the k.’s are real, we can interpret equation (3.1) as a Hilbert

boundary value problem, in two complex variables on the real axes, for proper-
ly behaved functions R, and Q .

Let us consider the sectionally analytic function

R(z,z) = @mi)y? [ " [k, k)/(k -z )k, - z,)] dk dk

=00 =00

(3:2)

where the function cf)(kl,kz) is to be determined in such a way that
R(zl,zz)ERl(zl,zZ), Im(zj)>0, 1= 1:2: 4 (3-3)
R(z, ’zz)E'Rz(zx’zz)' Im(z ) <o, Im(z ) >0, (3.4)
R(zl,zz)aRs(zl,zz), Im(zj)<0, i=1,2. , (3-5)
R(zl ,ZQ)E—R‘(Zx,Z2) , lm(zl) >0, Im(zz) <0, (3.6)

and that when z .z are real, equation (3.1) be satisfied.
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Employing the Sokhotski formulae3,
R (k k)=4 [Pk k)+SD+SP+S ], (3.7)

= n+1

S (-1) R(k k) =@k, k)R (R k), (3.8)
n=2

where

$.b = (i) [ [, k)r, - k)T, (3.9)
s = (mi) [~ (bl 7)1k N dr, (3.10)

s p=-m2 [ Lo, 7)/(r ~k X1, ~k))dTdT, , (31D

—00 =00

and the integrals are taken in the sense of the principal value, enables us
to write from equation (3.1) the following singular integral equation for &:

Pk k) =(4KQ M4~ K)(k &)+ (K/(4-K)S, (&), (3.13)
where

S, D)=(S +S,+S )P, (3.13)

Kk k)=1-Ak k) . (3.14)

It is also convenient to define the functions

Y (k k) = (4KQ /(4= K))k k) . (3.15)
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a(k k) =(K/4-K))(k k), (3.16)
and write equation (3.12) in terms of these:
bk k) =Yk k)talk k)SP, (3.17)

from here, the following iterative procedure for the approximate determination

of ¢ suggests itself:

() B ol (n-1)
¢k k)= R)Yalk ,k)SD  ,n=1,2,... (3.18)

Proof of the convergence of this iterative procedure is given in Ap-
pendix A.

Taking
(0)

o3 (kl ‘kz) =0 , (3.19)

gives

(i)

¢ Uzl.kz) = )/U-’-l,kz) 3 (3.20)
(2)

bk k) =Yk k)T ok kS, (3.21)

(3)
o3 (k k)= Yk k)t alk k)Sy ta(k k) Sasy,

(3:.22)

and the general from of the nth iteration is evident.
l-quation (3.7) gives us the nth iteration for the transform of the
ncutron density in the quarter space:
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() N (n)
R (k,k)=4% [ (k. k)+sp 1, (3.23)

in particular

(1)
R1 (kl,kz): k'y(kl,k2)+ a.g)f, (3.24)

(2)
R (k k)= 4y k)+(1M4-K)S,y + 55,08y, (3.25)

(3)
Rk k)= 5y k) HIAG-KK1#S,0) S,y + 4 5,05,05,7 .

(3.26)

B. Bochner’s Decomposition

We now consider an alternate approach to the approximate solution
of equation (2.9). To this end, we first determine the region of the z,z,
complex planes where equation (2.9) is valid (we will reserve the symbols
kl ,k2 for the real parts of z,z, respectively). As discussed in reference 4,
the asymprotic behavior of the neutron density is given by

il ) = @(exp(—x/r/o)) as x ~* oo

p(x,y):©(expx) as x — —oo
,O(x,y):©(exp(-y/1/0)) asy — oo
o (x,y) = Q(exp y) asy — -
where v, satisfies the equation
1=%cv Ln ﬂ : (3.27)

0]
I = 1/1/0
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and for 0 <¢ <1, A is a monotonically increasing function of ¢ with values

on the interval (1,00), (VO — oo as ¢ —* 1). Hence,
O<1/v0<1 ) (3.28)

The asymptotic behavior of the neutron density determines the region
of analyticity of the R”’s and one obtains from equation (2.4) the following
results:

J‘i’l(z1 ,zz) is analytic in the region
p R =

Im(zl) 1/?/0, lm(zz)> I/I/n .

Rz(zI ,zz) is analytic in the region
> 3

lm(zl)< I Im(zz) 1/2/0 .
Rz(zﬂzz) is analytic in the region

Im(z1)< | lm(z2)< ]
and R4(zl, 22) is analytic in the region

Im(z])>—1/V0, [m(zz)<1 .

These regions are shown in figures 1 to 4.
The function 1\(2:l ,zz) is analytic in the region determined by the
conditions

|lm(z}.)|<l/ﬁ, i=%2 (3.29)
We see then that in the region

!Im(zf)] <min(1M2, 1/4), j=1,2, (3.30)
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shown in figure 5, the functions R and A are analytic

without loss of generality, that the function Q (z
region. Hence the equation

. We can also assume,
z_) is analytic in this
: LS

4
ARI(z z )‘|' > R, {z zz)=KQl(zl,zz)

n=2

(3-31)

is valid in the region determined by the conditions given in equation (3.30)

|| Z; - plane

i

7477
A

-ia

\\\\\

FIG. 5 COMMON REGION OF ANALITICITY

We now invoke a remark due to Bochner® and made more precise by

Kraut® which for our purposes can be stated as follows: If a function f (z_, 22)

is anal_ytic in a region of the form given in equation (3.30) and if the integral

fmfmh(z],zz)‘zdkldk

’
-0 —0Q

converges in the region, then there exists in the region a decomposition

I:Zf

where each fj is analytic and bounded in the Cartesian product
;=1

of two-half-planes. When the f; are obtained by means of Cauchy integrals

the decomposition is unique, up to additive constants.
We now illustrate the way in which the decomposition is accomplished:

If one considers the contours L, L, shown in figure 6, Cauchy’s formula in
two complex variables is

j(zl,zz):(27n')“2j;fl Lf(r 7 ) /7 = 2 M7= 2 )] dT dT,

,(3.32)
. e
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FIG.6 CONTOURS Lj

* + . ; " : :
where z; EDj ,j =1,2; D, is the interior of Lf , and f is continuous on L1 X L2 :
Letting now a; oo and under the condition

(T, )T~ 0 as |Re(r)|-w, (3.33)

we have

f(zl,z2)=(27ri)'2_1;j:y e, T )T = 2 X7, - 2 )] d7 dT,
172

where
Y =%y, i=12, (3-34)

> . i .
and the contours Y; are shown in figure 7. Now we can write

f(zl,zz) = (Zwi)'2[£,+fy +J; +Iy [f(Tl’Tz)/(TI_' 21)(72"2’2')] dTlde ,
1 11 III v

(3.35)

where
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+
N =V %Y,

- +
i R le

- = (3.36)
Wir = 71 x 72 ;
= =
N = 71 x 72 ’
and
|Im(zj.)|<bj ,j=1,2 . (3.37)
| Zj -plane
Bj- sl
8j+
Tt-ic
FIG.7 CONTOURS 8
. By defining the regions
M =A{(z,z):Imz)>-5,, j=1,2},
(I = {(zl,zz): Im(z)<b , Im(z)>b,},
(3.38)

(M) = {(z,,2,): Im(z,) <b, , Im(z,) <b,},

(V) = {(z,z): Im(z) > - b, ,Im(z,) <6}
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we can say that the function given by

-2
SR A AR AL R R TR

a

where Y is any one of the contours given in equation (3.36), is analytic in
the corresponding region (@) given in equation (3.38).

The application of these results to the functions KQl(z1 : 2:2) ;
/\Rl(z1 " 22), appearing in equation (3.31) yields after some labor the following

integral equation
oo
J:L U\.R1 (T, Tz)/(’."l— z NT,- 12)J dr d7, =

(3.39)

=J] [KQ (7, T M7, - 2 X7~ z,)]d7 d7, , Im(z)) >0, j=1,2
or, equivalently,

R(z ,z,)= (27?;')'2_{,]0 {k[Q*R (T 7)1~z AT~ z)}d7 dT |

Im(z) >0, j=1,2
(3.40)

it is proved in Appendix B that for ¢ <1, ARl is of bounded L2 norm in the
region given in equation (3.30) and hence that the decomposition is valid.
We now let Im(z}.) ~ 0+,j7=1,2 and obtain, according to the Sokhotski

formula:

= I/
R (k k) =%[KQ (k k)+ SIKQI]wL 4 [KR (B &)+ s,KRl}

(3.41)
and, solving for Rl(kl,kz):

R (k  k,)=(1M4-KNKQ (k k) +SKQ + s,KRl] : (3.42)
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where the singular integral operator §, is defined by equation (3.13).
Again we prescribe the iterative procedure

(n) (n-1) _
Rk k)=(1/4-K)KQ (k k) * $,KQ +SKR lam=1,3,..
(3.43)
and set
R k) =0 (3.44)
1 1 2
giving
Rm—(l/(zi K) KO +5,KO ] (3.45)
1 -K)) =hy SISy ’

(2)
Rl2 =(144-K)LKQ +5,(4KQ /G-K)* S (K/(4~K) 5,KQ ],  (3.46)

or, in terms of the functions @,?, given in equations (3.15) and (3.16):

R, =4k k)+(1/(4-K)S,y t5,a8,KQ ) (3.46")
also

(3)
R13 = 47 (kR )+H1/(4-K)(1 + S,0) S,y +5,a8,a8,KQ ] . (3.47)

A comparison of equations (3.45), (3.46') and (3.47) with equations
(3.24) and (3.26) of section 3A shows that, except for the last summand on
the right hand side, both approaches yield the same results. Specifically,
whereas in the iterative procedure of section 3A there appears the term

(1/4-K)Spa ... 5. (4KQ /(4 -K)),
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in this section the corresponding term is

(1/4-K)S,a...5; KQ

7
4. CLOSED FORM SOLUTION

We now return our attention to equation (3.1) and consider the following
Hilbert boundary value problem on the real axes:

Afl)l(kl,kz) +B(I)2(k1,k2) + C@S(kl,kz) +D®4(kl,k2) = F(kwkz) i

(4.1)

where the functions A, B, C,D do not vanish anywhere on the real axes.
We first set

A@l(kl,kz)+B<D2(k1,k2)=f(k],k2) (4.2)

and make the assumptions

(B/AYk, k)= ~(L /L )k &) , (4.3)
(D/CYk k) == (£,/E )k k), (4-4)
where:
'ﬁll(zl,zz) is an analytic function in the region Im(zf.) >0,j=1,2,
1’2(21 , zz) is an analytic function in the region Im (zl) <0, Im (zz) 20

§3(z] , z2) is an analytic function in the region Im(zl) <0, Im (zz) <0,

f4{z] ,2.'2) is an analytic function in the region Im(zl) >0, Im (zz) <0

then we write equation (4.2) in the form
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® (k k)~ /L) (k k)= (//ANE k)
or

@,/ Wk, k)~ (@, /0, Nk k)= (/AL )k, &) ;
proceeding in a similar fashion one can write the equation

CO,(k, k) + DB, (k k) = F(k k)= [(k k),
in the form

(@,/2 )k, k)= @,/ Nk, k) =(F-{)/CE Xk, k) .
By introducing the sectionally analytic function

Yz ,z,)) = (zwg)-z_fofo [, TAT, - 2 )7~ 2,)) d7.dT,
and applying the appropriate Sokhotski formulae, we have that

Yk k) =k k) =% [PlR k) +SB],

and observe that by making

(1/AL )k, k) =% [Pk k) +S,P],

247

(4.5)

(4.57)

(4.0)

(4.7)

(4.8)

(4.9)

(4.1M

we will be able to identify the functions l,bl and L,bz with the functions

(I)I/Cl, sz/éz , respectively.

Using the expression

Yok k)= (R k) =5 [Pk k)= S P)

(4.11)
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which is also a consequence of the Sokhotski formulae, we see that we must
set

((F~/CEY R k) =% [Pk k) - S,P] (4.12)

in order to identify ), and j with ® /£, @ /&, respectively.

Solving for f in equation (4.10) and substituting in equation (4.12)
we obtain

[(F - 540D +S,AWCE Nk k) = 5 [Pk k) -5,8]  (4.13)

and from this equation we find the singular integral equation that ¢ must
satisfy:

(CE,+ AL ) @ +(AL - CE)) 5, = 2F (R ,k,) . (4.14)

This singular integral equation can be solved by the standard procedures

given in reference 8 and in this manner, the special Hilbert boundary value
problem is solved.

Applying the technique employed above to equation (3.1), the corre-
sponding form of equation (4.14) for the quarter space problem is

[1- 0k k)b R k) - [1+ L (R k)]S,b = 2KO (kB ),
(4.15)

where we have assumed that we can express A in the form

A=-C (k k)L (R k) . (4.16)

By letting
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a(kl,kz):l—iz(kl,kz) (4.17)
b(k, k) =-1- Cz(kl,kz) (4.18)
clk k)= 2KQ (k . k) (4.19)

we can write equation (4.15) in the standard form

ap(k, k) + (b Gk, ki) |~ [BGk,,7)/(7,m )T, = c(hy k)

(4.20)
A physically acceptable solution of equation(4.20) (i.e., a solution
without delta function singularities) is given by

Pk, k,) = a*clk k)= [b*Z (K ,k,)/mi] x

« [ ek, /2 k7 X7, - VAT, (4.21)

where
a*(k k) =(a/(a - b)) (R k), (4.22)
b* (ky k) =(b/(a*~ b)) (k k), (4.23)

Z(k k)= (a? - bz)(kl,kz) x
xexp{-(2m)" [ [Ln Gk, k)/(5,~k)]dr},  (4.24)

Gk k) =((a~b)/(atb)(k k). (4.25)

In terms of Cz and KQ1’ a*, b*, G and Z are given by
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at(h k) = 4 (1= 8 kD] (4.26)
bt (k k) = 4 [1+ 10k R)] (4-27)
Gk k) ==L "(k k), (4.28)

, 5%
Z(k k) =207 (k k)

cexp {- @[ [La (- L)k, A7, )] AT} -
(4.29)

We must recall that
R (z,,2) = L (z,,7,) (2, %), Im(z) >0, j=1,2.  (430)
where

k7L’1('zla"""'2) B (ZWI)’z_J-J; [qﬁ("rlvq—z)/(’rl_ 21)(T2— 22)] dTIdT27 Im (Z]) 20!

(4.31)

so that

R (z.%)= cl(zl,zz)(zm)'z_f} [(1- 3 X m,) - 2] =

x [KQ (T, T )T~ =,)]dr dT,+

~ L. z2>(zwf)'2_jz {I z;f (1+ LT, - 2 X7,=2,)] (2md) '
< S KQ, L F (&, 7)) exp(-TYAr) -7V dr]} expldr, dr,

— 00

(4.32)
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where lm(zr.) 20,7=1,2, and

Dk k) = exp {- @m)" [ [Ln (- L,k , 7,V - k)] d7,}

(4.33)

5. CONCLUSIONS AND EXTENSIONS

The solution to the behavior of neutrons in a quarter space has been
resolved through the application of complex variable theory to the transformed
integral transport equation. Two approximate techniques were developed and
their convergence analysed, An exact solution was also obtained, based on
the decomposition of one equation into two simpler equations, and an ap-
plication of singular integral equation theory a la Muskhelishvili. The
factorization of the dispersion function is suggested as an area of research.

The “solutions” described above were found in the transformed space
and none were inverted back. We suggest this as another problem for future
work. If appropriate solutions in the real space can be found these will
perhaps lead to an elementary decomposition and completeness theorem. We
expect this theorem will require mathematics similar to that described herein
for its solution.

In principle at least, any two-dimensional problem can be cast into a
Hilbert boundary problem in two complex variables (with or without terms
containing integrals of the functions) and techniques resembling the approaches
we have followed can be developed to obtain the transform of the neutron
density.

The simplest logical extension to a three-dimensional problem would
be the octant-space problem. One must recall, however, that in this case
the Hilbert boundary value problem will consist in the determination of z°
unknown functions but, apart from this fact, the same approach used here
can be successfully applied.
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APPENDICES

A. Convergence of the Iterative Procedures.?

We will define the operator § as follows
Sf=ytk k)t ak k)Spf, feL, , (A1)

where, ¥, a and ST are defined in section 3A. Then we can write equation
(3.17) in the form

bk, k) = 5P (4.2)

hence if we show that § is a contraction mapping with respect to the L
norm, then equation (A.2) will have one and only one solution of integrable
square in the real axes.

! . (n) (m) .
Taking the functions ¢ , ¢ , in L, one can write

(n) (m) (r)  (m) (n)  (m)
[s¢ =50 = las,@ "¢ "), < max |a] |5, -6 ],
(A.3)
Using Minkowski’s inequality and the properties
Isill, = lrll, . 7=1,2, (A.4)
s, rl, = l11, (A.5)
given in reference 10, we obtain
(n) (m) (n)  (m)
s =56 " |, < max|a|3]l¢ -4 | (A-6)

and since it can be shown that
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3max|a|$3/4c, (A.7)
we see that for all values of ¢ such that
c <% » (A.8)

§ is a contraction mapping and by Banach’s fixed point theorem,

¢ = lim 5" , (A.9)

n oo

where q%el.z "

A similar proof can be given for the convergence of the iterative
procedure of section 3B, the only difference is that instead of defining the
operator §, one would define the operator

Mf =gk ,k)+ % [Kf+S,Kf], (A.10)
where
glk k)= %[KQ +5KQ ], (A.11)

the condition for convergence of the iterative procedure is in this case that
A

B. Boundedness of the Norm of AR1 .

From equation (3.41), and Minkowski’s inequality we write
IR I, <5 tlkr I+l ko I, +1skr | +]skKo, |, +

tllskrl, + Isxe, I+ s ke, I+ s ke, 1.7,

(B.1)



and, using the properties given in equations (A.4) and (A.5),
I [ < llxr 1,+ ke, 1, .

also, since max |K| i
Ikg |, <max [K| & |, .

so that (B.2) is
(1-max [k [|R [ < [k, Il,

and by letting

b

4 =3
Hik k)= [an™ (&2 +4£2) 12 + &)
we write
IR I, <(e/1-c max |H N HO, |,
hence, if we choose ¢ and Q: , in such a way that

¢ max lH\'(l : HHQ1 H2<°° -
then

Ir |, <=

Sanchez

(B.2)

(B.3)

(B.4)

(B.3)

(B.6)

(B.7)

(B.8)

and ” AR Hz is also finite. The conditions (B.7) together with the fact that

1

max | H | <1, imply that for ¢ <1, AR has a bounded L, norm.
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RESUMEN

El problema bidimensional en un cuadrante, para la teoria de transpor-
te de neutrones se analiza por medio de la transformacién de Fourier.  Se
desarrollan-dos procedimientos para la determinacion aproximada de la densi-
dad de neutrones y se analiza su convergencia. Se establece una solucién
de forma cerrada, suponiendo que la funcién de dispersién bidimensional se
factoriza de forma conveniente.





